ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1584 by gezelter, Fri Jun 17 20:16:35 2011 UTC vs.
Revision 1588 by gezelter, Sat Jul 9 15:05:59 2011 UTC

# Line 57 | Line 57 | namespace OpenMD {
57      storageLayout_ = sman_->getStorageLayout();
58      ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <
60 >    
61      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
62      // gather the information for atomtype IDs (atids):
63      idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67 +
68      massFactors = info_->getMassFactors();
69  
70 <    PairList excludes = info_->getExcludedInteractions();
71 <    PairList oneTwo = info_->getOneTwoInteractions();
72 <    PairList oneThree = info_->getOneThreeInteractions();
73 <    PairList oneFour = info_->getOneFourInteractions();
70 >    PairList* excludes = info_->getExcludedInteractions();
71 >    PairList* oneTwo = info_->getOneTwoInteractions();
72 >    PairList* oneThree = info_->getOneThreeInteractions();
73 >    PairList* oneFour = info_->getOneFourInteractions();
74  
75   #ifdef IS_MPI
76  
# Line 112 | Line 112 | namespace OpenMD {
112      AtomCommIntRow->gather(idents, identsRow);
113      AtomCommIntColumn->gather(idents, identsCol);
114      
115 +    vector<int>::iterator it;
116 +    for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) {
117 +      cerr << "my AtomLocalToGlobal = " << (*it) << "\n";
118 +    }
119      AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
120      AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
121      
# Line 143 | Line 147 | namespace OpenMD {
147        }      
148      }
149  
150 <    skipsForAtom.clear();
151 <    skipsForAtom.resize(nAtomsInRow_);
150 >    excludesForAtom.clear();
151 >    excludesForAtom.resize(nAtomsInRow_);
152      toposForAtom.clear();
153      toposForAtom.resize(nAtomsInRow_);
154      topoDist.clear();
# Line 155 | Line 159 | namespace OpenMD {
159        for (int j = 0; j < nAtomsInCol_; j++) {
160          int jglob = AtomColToGlobal[j];
161  
162 <        if (excludes.hasPair(iglob, jglob))
163 <          skipsForAtom[i].push_back(j);      
162 >        if (excludes->hasPair(iglob, jglob))
163 >          excludesForAtom[i].push_back(j);      
164          
165 <        if (oneTwo.hasPair(iglob, jglob)) {
165 >        if (oneTwo->hasPair(iglob, jglob)) {
166            toposForAtom[i].push_back(j);
167            topoDist[i].push_back(1);
168          } else {
169 <          if (oneThree.hasPair(iglob, jglob)) {
169 >          if (oneThree->hasPair(iglob, jglob)) {
170              toposForAtom[i].push_back(j);
171              topoDist[i].push_back(2);
172            } else {
173 <            if (oneFour.hasPair(iglob, jglob)) {
173 >            if (oneFour->hasPair(iglob, jglob)) {
174                toposForAtom[i].push_back(j);
175                topoDist[i].push_back(3);
176              }
# Line 189 | Line 193 | namespace OpenMD {
193        }      
194      }
195  
196 <    skipsForAtom.clear();
197 <    skipsForAtom.resize(nLocal_);
196 >    excludesForAtom.clear();
197 >    excludesForAtom.resize(nLocal_);
198      toposForAtom.clear();
199      toposForAtom.resize(nLocal_);
200      topoDist.clear();
# Line 202 | Line 206 | namespace OpenMD {
206        for (int j = 0; j < nLocal_; j++) {
207          int jglob = AtomLocalToGlobal[j];
208  
209 <        if (excludes.hasPair(iglob, jglob))
210 <          skipsForAtom[i].push_back(j);              
209 >        if (excludes->hasPair(iglob, jglob))
210 >          excludesForAtom[i].push_back(j);              
211          
212 <        if (oneTwo.hasPair(iglob, jglob)) {
212 >        if (oneTwo->hasPair(iglob, jglob)) {
213            toposForAtom[i].push_back(j);
214            topoDist[i].push_back(1);
215          } else {
216 <          if (oneThree.hasPair(iglob, jglob)) {
216 >          if (oneThree->hasPair(iglob, jglob)) {
217              toposForAtom[i].push_back(j);
218              topoDist[i].push_back(2);
219            } else {
220 <            if (oneFour.hasPair(iglob, jglob)) {
220 >            if (oneFour->hasPair(iglob, jglob)) {
221                toposForAtom[i].push_back(j);
222                topoDist[i].push_back(3);
223              }
# Line 223 | Line 227 | namespace OpenMD {
227      }
228      
229      createGtypeCutoffMap();
230 +
231    }
232    
233    void ForceMatrixDecomposition::createGtypeCutoffMap() {
234 <
234 >    
235      RealType tol = 1e-6;
236      RealType rc;
237      int atid;
238      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
239 <    vector<RealType> atypeCutoff;
235 <    atypeCutoff.resize( atypes.size() );
239 >    map<int, RealType> atypeCutoff;
240        
241      for (set<AtomType*>::iterator at = atypes.begin();
242           at != atypes.end(); ++at){
243        atid = (*at)->getIdent();
244 <
241 <      if (userChoseCutoff_)
244 >      if (userChoseCutoff_)
245          atypeCutoff[atid] = userCutoff_;
246 <      else
246 >      else
247          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
248      }
249  
250      vector<RealType> gTypeCutoffs;
248
251      // first we do a single loop over the cutoff groups to find the
252      // largest cutoff for any atypes present in this group.
253   #ifdef IS_MPI
# Line 303 | Line 305 | namespace OpenMD {
305  
306      vector<RealType> groupCutoff(nGroups_, 0.0);
307      groupToGtype.resize(nGroups_);
306
307    cerr << "nGroups = " << nGroups_ << "\n";
308      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
309  
310        groupCutoff[cg1] = 0.0;
# Line 333 | Line 333 | namespace OpenMD {
333      }
334   #endif
335  
336    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
336      // Now we find the maximum group cutoff value present in the simulation
337  
338      RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
# Line 454 | Line 453 | namespace OpenMD {
453             atomRowData.functionalDerivative.end(), 0.0);
454        fill(atomColData.functionalDerivative.begin(),
455             atomColData.functionalDerivative.end(), 0.0);
456 +    }
457 +
458 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
459 +      fill(atomRowData.skippedCharge.begin(),
460 +           atomRowData.skippedCharge.end(), 0.0);
461 +      fill(atomColData.skippedCharge.begin(),
462 +           atomColData.skippedCharge.end(), 0.0);
463      }
464  
465   #else
# Line 475 | Line 481 | namespace OpenMD {
481        fill(snap_->atomData.functionalDerivative.begin(),
482             snap_->atomData.functionalDerivative.end(), 0.0);
483      }
484 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
485 +      fill(snap_->atomData.skippedCharge.begin(),
486 +           snap_->atomData.skippedCharge.end(), 0.0);
487 +    }
488   #endif
489      
490    }
# Line 582 | Line 592 | namespace OpenMD {
592      
593      if (storageLayout_ & DataStorage::dslTorque) {
594  
595 <      int nt = snap_->atomData.force.size();
595 >      int nt = snap_->atomData.torque.size();
596        vector<Vector3d> trq_tmp(nt, V3Zero);
597  
598        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
599 <      for (int i = 0; i < n; i++) {
599 >      for (int i = 0; i < nt; i++) {
600          snap_->atomData.torque[i] += trq_tmp[i];
601          trq_tmp[i] = 0.0;
602        }
603        
604        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
605 <      for (int i = 0; i < n; i++)
605 >      for (int i = 0; i < nt; i++)
606          snap_->atomData.torque[i] += trq_tmp[i];
607      }
608 +
609 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
610 +
611 +      int ns = snap_->atomData.skippedCharge.size();
612 +      vector<RealType> skch_tmp(ns, 0.0);
613 +
614 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
615 +      for (int i = 0; i < ns; i++) {
616 +        snap_->atomData.skippedCharge[i] = skch_tmp[i];
617 +        skch_tmp[i] = 0.0;
618 +      }
619 +      
620 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
621 +      for (int i = 0; i < ns; i++)
622 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
623 +    }
624      
625      nLocal_ = snap_->getNumberOfAtoms();
626  
# Line 691 | Line 717 | namespace OpenMD {
717   #ifdef IS_MPI
718      return massFactorsRow[atom1];
719   #else
694    cerr << "mfs = " << massFactors.size() << " atom1 = " << atom1 << "\n";
720      return massFactors[atom1];
721   #endif
722    }
# Line 718 | Line 743 | namespace OpenMD {
743      return d;    
744    }
745  
746 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
747 <    return skipsForAtom[atom1];
746 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
747 >    return excludesForAtom[atom1];
748    }
749  
750    /**
751 <   * There are a number of reasons to skip a pair or a
727 <   * particle. Mostly we do this to exclude atoms who are involved in
728 <   * short range interactions (bonds, bends, torsions), but we also
729 <   * need to exclude some overcounted interactions that result from
751 >   * We need to exclude some overcounted interactions that result from
752     * the parallel decomposition.
753     */
754    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
# Line 746 | Line 768 | namespace OpenMD {
768      } else {
769        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
770      }
771 + #endif
772 +    return false;
773 +  }
774 +
775 +  /**
776 +   * We need to handle the interactions for atoms who are involved in
777 +   * the same rigid body as well as some short range interactions
778 +   * (bonds, bends, torsions) differently from other interactions.
779 +   * We'll still visit the pairwise routines, but with a flag that
780 +   * tells those routines to exclude the pair from direct long range
781 +   * interactions.  Some indirect interactions (notably reaction
782 +   * field) must still be handled for these pairs.
783 +   */
784 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
785 +    int unique_id_2;
786 +    
787 + #ifdef IS_MPI
788 +    // in MPI, we have to look up the unique IDs for the row atom.
789 +    unique_id_2 = AtomColToGlobal[atom2];
790   #else
791      // in the normal loop, the atom numbers are unique
751    unique_id_1 = atom1;
792      unique_id_2 = atom2;
793   #endif
794      
795 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
796 <         i != skipsForAtom[atom1].end(); ++i) {
795 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
796 >         i != excludesForAtom[atom1].end(); ++i) {
797        if ( (*i) == unique_id_2 ) return true;
798      }
799  
# Line 779 | Line 819 | namespace OpenMD {
819  
820      // filling interaction blocks with pointers
821    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
822 <                                                     int atom1, int atom2) {    
822 >                                                     int atom1, int atom2) {
823 >
824 >    idat.excluded = excludeAtomPair(atom1, atom2);
825 >  
826   #ifdef IS_MPI
827      
828      idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
# Line 820 | Line 863 | namespace OpenMD {
863        idat.particlePot2 = &(atomColData.particlePot[atom2]);
864      }
865  
866 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
867 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
868 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
869 +    }
870 +
871   #else
872  
873      idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
# Line 860 | Line 908 | namespace OpenMD {
908        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
909      }
910  
911 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
912 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
913 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
914 +    }
915   #endif
916    }
917  
# Line 877 | Line 929 | namespace OpenMD {
929      snap_->atomData.force[atom1] += *(idat.f1);
930      snap_->atomData.force[atom2] -= *(idat.f1);
931   #endif
932 <
932 >    
933    }
934  
883
884  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
885                                              int atom1, int atom2) {
886 #ifdef IS_MPI
887    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
888                             ff_->getAtomType(identsCol[atom2]) );
889
890    if (storageLayout_ & DataStorage::dslElectroFrame) {
891      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
892      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
893    }
894
895    if (storageLayout_ & DataStorage::dslTorque) {
896      idat.t1 = &(atomRowData.torque[atom1]);
897      idat.t2 = &(atomColData.torque[atom2]);
898    }
899
900    if (storageLayout_ & DataStorage::dslSkippedCharge) {
901      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
902      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
903    }
904 #else
905    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
906                             ff_->getAtomType(idents[atom2]) );
907
908    if (storageLayout_ & DataStorage::dslElectroFrame) {
909      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
910      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
911    }
912
913    if (storageLayout_ & DataStorage::dslTorque) {
914      idat.t1 = &(snap_->atomData.torque[atom1]);
915      idat.t2 = &(snap_->atomData.torque[atom2]);
916    }
917
918    if (storageLayout_ & DataStorage::dslSkippedCharge) {
919      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
920      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
921    }
922 #endif    
923  }
924
925
926  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
927 #ifdef IS_MPI
928    pot_row[atom1] += 0.5 *  *(idat.pot);
929    pot_col[atom2] += 0.5 *  *(idat.pot);
930 #else
931    pairwisePot += *(idat.pot);  
932 #endif
933
934  }
935
936
935    /*
936     * buildNeighborList
937     *
# Line 944 | Line 942 | namespace OpenMD {
942        
943      vector<pair<int, int> > neighborList;
944      groupCutoffs cuts;
945 +    bool doAllPairs = false;
946 +
947   #ifdef IS_MPI
948      cellListRow_.clear();
949      cellListCol_.clear();
# Line 963 | Line 963 | namespace OpenMD {
963      nCells_.y() = (int) ( Hy.length() )/ rList_;
964      nCells_.z() = (int) ( Hz.length() )/ rList_;
965  
966 +    // handle small boxes where the cell offsets can end up repeating cells
967 +    
968 +    if (nCells_.x() < 3) doAllPairs = true;
969 +    if (nCells_.y() < 3) doAllPairs = true;
970 +    if (nCells_.z() < 3) doAllPairs = true;
971 +
972      Mat3x3d invHmat = snap_->getInvHmat();
973      Vector3d rs, scaled, dr;
974      Vector3i whichCell;
# Line 976 | Line 982 | namespace OpenMD {
982      cellList_.resize(nCtot);
983   #endif
984  
985 +    if (!doAllPairs) {
986   #ifdef IS_MPI
980    for (int i = 0; i < nGroupsInRow_; i++) {
981      rs = cgRowData.position[i];
987  
988 <      // scaled positions relative to the box vectors
989 <      scaled = invHmat * rs;
990 <
991 <      // wrap the vector back into the unit box by subtracting integer box
992 <      // numbers
993 <      for (int j = 0; j < 3; j++) {
994 <        scaled[j] -= roundMe(scaled[j]);
995 <        scaled[j] += 0.5;
996 <      }
997 <    
998 <      // find xyz-indices of cell that cutoffGroup is in.
999 <      whichCell.x() = nCells_.x() * scaled.x();
1000 <      whichCell.y() = nCells_.y() * scaled.y();
1001 <      whichCell.z() = nCells_.z() * scaled.z();
1002 <
1003 <      // find single index of this cell:
1004 <      cellIndex = Vlinear(whichCell, nCells_);
1005 <
1006 <      // add this cutoff group to the list of groups in this cell;
1007 <      cellListRow_[cellIndex].push_back(i);
1008 <    }
1009 <
1010 <    for (int i = 0; i < nGroupsInCol_; i++) {
1011 <      rs = cgColData.position[i];
1012 <
1013 <      // scaled positions relative to the box vectors
1014 <      scaled = invHmat * rs;
1015 <
1016 <      // wrap the vector back into the unit box by subtracting integer box
1017 <      // numbers
1018 <      for (int j = 0; j < 3; j++) {
1019 <        scaled[j] -= roundMe(scaled[j]);
1020 <        scaled[j] += 0.5;
1021 <      }
1022 <
1023 <      // find xyz-indices of cell that cutoffGroup is in.
1024 <      whichCell.x() = nCells_.x() * scaled.x();
1025 <      whichCell.y() = nCells_.y() * scaled.y();
1026 <      whichCell.z() = nCells_.z() * scaled.z();
1027 <
1028 <      // find single index of this cell:
1029 <      cellIndex = Vlinear(whichCell, nCells_);
1030 <
1031 <      // add this cutoff group to the list of groups in this cell;
1032 <      cellListCol_[cellIndex].push_back(i);
1033 <    }
988 >      for (int i = 0; i < nGroupsInRow_; i++) {
989 >        rs = cgRowData.position[i];
990 >        
991 >        // scaled positions relative to the box vectors
992 >        scaled = invHmat * rs;
993 >        
994 >        // wrap the vector back into the unit box by subtracting integer box
995 >        // numbers
996 >        for (int j = 0; j < 3; j++) {
997 >          scaled[j] -= roundMe(scaled[j]);
998 >          scaled[j] += 0.5;
999 >        }
1000 >        
1001 >        // find xyz-indices of cell that cutoffGroup is in.
1002 >        whichCell.x() = nCells_.x() * scaled.x();
1003 >        whichCell.y() = nCells_.y() * scaled.y();
1004 >        whichCell.z() = nCells_.z() * scaled.z();
1005 >        
1006 >        // find single index of this cell:
1007 >        cellIndex = Vlinear(whichCell, nCells_);
1008 >        
1009 >        // add this cutoff group to the list of groups in this cell;
1010 >        cellListRow_[cellIndex].push_back(i);
1011 >      }
1012 >      
1013 >      for (int i = 0; i < nGroupsInCol_; i++) {
1014 >        rs = cgColData.position[i];
1015 >        
1016 >        // scaled positions relative to the box vectors
1017 >        scaled = invHmat * rs;
1018 >        
1019 >        // wrap the vector back into the unit box by subtracting integer box
1020 >        // numbers
1021 >        for (int j = 0; j < 3; j++) {
1022 >          scaled[j] -= roundMe(scaled[j]);
1023 >          scaled[j] += 0.5;
1024 >        }
1025 >        
1026 >        // find xyz-indices of cell that cutoffGroup is in.
1027 >        whichCell.x() = nCells_.x() * scaled.x();
1028 >        whichCell.y() = nCells_.y() * scaled.y();
1029 >        whichCell.z() = nCells_.z() * scaled.z();
1030 >        
1031 >        // find single index of this cell:
1032 >        cellIndex = Vlinear(whichCell, nCells_);
1033 >        
1034 >        // add this cutoff group to the list of groups in this cell;
1035 >        cellListCol_[cellIndex].push_back(i);
1036 >      }
1037   #else
1038 <    for (int i = 0; i < nGroups_; i++) {
1039 <      rs = snap_->cgData.position[i];
1040 <
1041 <      // scaled positions relative to the box vectors
1042 <      scaled = invHmat * rs;
1043 <
1044 <      // wrap the vector back into the unit box by subtracting integer box
1045 <      // numbers
1046 <      for (int j = 0; j < 3; j++) {
1047 <        scaled[j] -= roundMe(scaled[j]);
1048 <        scaled[j] += 0.5;
1038 >      for (int i = 0; i < nGroups_; i++) {
1039 >        rs = snap_->cgData.position[i];
1040 >        
1041 >        // scaled positions relative to the box vectors
1042 >        scaled = invHmat * rs;
1043 >        
1044 >        // wrap the vector back into the unit box by subtracting integer box
1045 >        // numbers
1046 >        for (int j = 0; j < 3; j++) {
1047 >          scaled[j] -= roundMe(scaled[j]);
1048 >          scaled[j] += 0.5;
1049 >        }
1050 >        
1051 >        // find xyz-indices of cell that cutoffGroup is in.
1052 >        whichCell.x() = nCells_.x() * scaled.x();
1053 >        whichCell.y() = nCells_.y() * scaled.y();
1054 >        whichCell.z() = nCells_.z() * scaled.z();
1055 >        
1056 >        // find single index of this cell:
1057 >        cellIndex = Vlinear(whichCell, nCells_);      
1058 >        
1059 >        // add this cutoff group to the list of groups in this cell;
1060 >        cellList_[cellIndex].push_back(i);
1061        }
1042
1043      // find xyz-indices of cell that cutoffGroup is in.
1044      whichCell.x() = nCells_.x() * scaled.x();
1045      whichCell.y() = nCells_.y() * scaled.y();
1046      whichCell.z() = nCells_.z() * scaled.z();
1047
1048      // find single index of this cell:
1049      cellIndex = Vlinear(whichCell, nCells_);      
1050
1051      // add this cutoff group to the list of groups in this cell;
1052      cellList_[cellIndex].push_back(i);
1053    }
1062   #endif
1063  
1064 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1065 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1066 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1067 <          Vector3i m1v(m1x, m1y, m1z);
1068 <          int m1 = Vlinear(m1v, nCells_);
1061 <
1062 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1063 <               os != cellOffsets_.end(); ++os) {
1064 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1065 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1066 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1067 >            Vector3i m1v(m1x, m1y, m1z);
1068 >            int m1 = Vlinear(m1v, nCells_);
1069              
1070 <            Vector3i m2v = m1v + (*os);
1071 <            
1072 <            if (m2v.x() >= nCells_.x()) {
1073 <              m2v.x() = 0;          
1074 <            } else if (m2v.x() < 0) {
1075 <              m2v.x() = nCells_.x() - 1;
1076 <            }
1077 <            
1078 <            if (m2v.y() >= nCells_.y()) {
1079 <              m2v.y() = 0;          
1080 <            } else if (m2v.y() < 0) {
1081 <              m2v.y() = nCells_.y() - 1;
1082 <            }
1083 <            
1084 <            if (m2v.z() >= nCells_.z()) {
1085 <              m2v.z() = 0;          
1086 <            } else if (m2v.z() < 0) {
1087 <              m2v.z() = nCells_.z() - 1;
1088 <            }
1089 <            
1090 <            int m2 = Vlinear (m2v, nCells_);
1091 <
1070 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1071 >                 os != cellOffsets_.end(); ++os) {
1072 >              
1073 >              Vector3i m2v = m1v + (*os);
1074 >              
1075 >              if (m2v.x() >= nCells_.x()) {
1076 >                m2v.x() = 0;          
1077 >              } else if (m2v.x() < 0) {
1078 >                m2v.x() = nCells_.x() - 1;
1079 >              }
1080 >              
1081 >              if (m2v.y() >= nCells_.y()) {
1082 >                m2v.y() = 0;          
1083 >              } else if (m2v.y() < 0) {
1084 >                m2v.y() = nCells_.y() - 1;
1085 >              }
1086 >              
1087 >              if (m2v.z() >= nCells_.z()) {
1088 >                m2v.z() = 0;          
1089 >              } else if (m2v.z() < 0) {
1090 >                m2v.z() = nCells_.z() - 1;
1091 >              }
1092 >              
1093 >              int m2 = Vlinear (m2v, nCells_);
1094 >              
1095   #ifdef IS_MPI
1096 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1097 <                 j1 != cellListRow_[m1].end(); ++j1) {
1098 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1099 <                   j2 != cellListCol_[m2].end(); ++j2) {
1100 <                              
1101 <                // Always do this if we're in different cells or if
1102 <                // we're in the same cell and the global index of the
1103 <                // j2 cutoff group is less than the j1 cutoff group
1104 <
1105 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1106 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1107 <                  snap_->wrapVector(dr);
1108 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1109 <                  if (dr.lengthSquare() < cuts.third) {
1110 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1096 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1097 >                   j1 != cellListRow_[m1].end(); ++j1) {
1098 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1099 >                     j2 != cellListCol_[m2].end(); ++j2) {
1100 >                  
1101 >                  // Always do this if we're in different cells or if
1102 >                  // we're in the same cell and the global index of the
1103 >                  // j2 cutoff group is less than the j1 cutoff group
1104 >                  
1105 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1106 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1107 >                    snap_->wrapVector(dr);
1108 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1109 >                    if (dr.lengthSquare() < cuts.third) {
1110 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1111 >                    }
1112                    }
1113                  }
1114                }
1106            }
1115   #else
1116 <
1117 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1118 <                 j1 != cellList_[m1].end(); ++j1) {
1119 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1120 <                   j2 != cellList_[m2].end(); ++j2) {
1121 <
1122 <                // Always do this if we're in different cells or if
1123 <                // we're in the same cell and the global index of the
1124 <                // j2 cutoff group is less than the j1 cutoff group
1125 <
1126 <                if (m2 != m1 || (*j2) < (*j1)) {
1127 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1128 <                  snap_->wrapVector(dr);
1129 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1130 <                  if (dr.lengthSquare() < cuts.third) {
1131 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1116 >              
1117 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1118 >                   j1 != cellList_[m1].end(); ++j1) {
1119 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1120 >                     j2 != cellList_[m2].end(); ++j2) {
1121 >                  
1122 >                  // Always do this if we're in different cells or if
1123 >                  // we're in the same cell and the global index of the
1124 >                  // j2 cutoff group is less than the j1 cutoff group
1125 >                  
1126 >                  if (m2 != m1 || (*j2) < (*j1)) {
1127 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1128 >                    snap_->wrapVector(dr);
1129 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1130 >                    if (dr.lengthSquare() < cuts.third) {
1131 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1132 >                    }
1133                    }
1134                  }
1135                }
1127            }
1136   #endif
1137 +            }
1138            }
1139          }
1140        }
1141 +    } else {
1142 +      // branch to do all cutoff group pairs
1143 + #ifdef IS_MPI
1144 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1145 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1146 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1147 +          snap_->wrapVector(dr);
1148 +          cuts = getGroupCutoffs( j1, j2 );
1149 +          if (dr.lengthSquare() < cuts.third) {
1150 +            neighborList.push_back(make_pair(j1, j2));
1151 +          }
1152 +        }
1153 +      }
1154 + #else
1155 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1156 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1157 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1158 +          snap_->wrapVector(dr);
1159 +          cuts = getGroupCutoffs( j1, j2 );
1160 +          if (dr.lengthSquare() < cuts.third) {
1161 +            neighborList.push_back(make_pair(j1, j2));
1162 +          }
1163 +        }
1164 +      }        
1165 + #endif
1166      }
1167 <    
1167 >      
1168      // save the local cutoff group positions for the check that is
1169      // done on each loop:
1170      saved_CG_positions_.clear();
1171      for (int i = 0; i < nGroups_; i++)
1172        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1173 <  
1173 >    
1174      return neighborList;
1175    }
1176   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines