ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
(Generate patch)

Comparing branches/development/src/parallel/ForceMatrixDecomposition.cpp (file contents):
Revision 1584 by gezelter, Fri Jun 17 20:16:35 2011 UTC vs.
Revision 1587 by gezelter, Fri Jul 8 20:25:32 2011 UTC

# Line 57 | Line 57 | namespace OpenMD {
57      storageLayout_ = sman_->getStorageLayout();
58      ff_ = info_->getForceField();
59      nLocal_ = snap_->getNumberOfAtoms();
60 <
60 >    
61      nGroups_ = info_->getNLocalCutoffGroups();
62    cerr << "in dId, nGroups = " << nGroups_ << "\n";
62      // gather the information for atomtype IDs (atids):
63      idents = info_->getIdentArray();
64      AtomLocalToGlobal = info_->getGlobalAtomIndices();
65      cgLocalToGlobal = info_->getGlobalGroupIndices();
66      vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67 +
68      massFactors = info_->getMassFactors();
69  
70 <    PairList excludes = info_->getExcludedInteractions();
71 <    PairList oneTwo = info_->getOneTwoInteractions();
72 <    PairList oneThree = info_->getOneThreeInteractions();
73 <    PairList oneFour = info_->getOneFourInteractions();
70 >    PairList* excludes = info_->getExcludedInteractions();
71 >    PairList* oneTwo = info_->getOneTwoInteractions();
72 >    PairList* oneThree = info_->getOneThreeInteractions();
73 >    PairList* oneFour = info_->getOneFourInteractions();
74  
75   #ifdef IS_MPI
76  
# Line 143 | Line 143 | namespace OpenMD {
143        }      
144      }
145  
146 <    skipsForAtom.clear();
147 <    skipsForAtom.resize(nAtomsInRow_);
146 >    excludesForAtom.clear();
147 >    excludesForAtom.resize(nAtomsInRow_);
148      toposForAtom.clear();
149      toposForAtom.resize(nAtomsInRow_);
150      topoDist.clear();
# Line 155 | Line 155 | namespace OpenMD {
155        for (int j = 0; j < nAtomsInCol_; j++) {
156          int jglob = AtomColToGlobal[j];
157  
158 <        if (excludes.hasPair(iglob, jglob))
159 <          skipsForAtom[i].push_back(j);      
158 >        if (excludes->hasPair(iglob, jglob))
159 >          excludesForAtom[i].push_back(j);      
160          
161 <        if (oneTwo.hasPair(iglob, jglob)) {
161 >        if (oneTwo->hasPair(iglob, jglob)) {
162            toposForAtom[i].push_back(j);
163            topoDist[i].push_back(1);
164          } else {
165 <          if (oneThree.hasPair(iglob, jglob)) {
165 >          if (oneThree->hasPair(iglob, jglob)) {
166              toposForAtom[i].push_back(j);
167              topoDist[i].push_back(2);
168            } else {
169 <            if (oneFour.hasPair(iglob, jglob)) {
169 >            if (oneFour->hasPair(iglob, jglob)) {
170                toposForAtom[i].push_back(j);
171                topoDist[i].push_back(3);
172              }
# Line 189 | Line 189 | namespace OpenMD {
189        }      
190      }
191  
192 <    skipsForAtom.clear();
193 <    skipsForAtom.resize(nLocal_);
192 >    excludesForAtom.clear();
193 >    excludesForAtom.resize(nLocal_);
194      toposForAtom.clear();
195      toposForAtom.resize(nLocal_);
196      topoDist.clear();
# Line 202 | Line 202 | namespace OpenMD {
202        for (int j = 0; j < nLocal_; j++) {
203          int jglob = AtomLocalToGlobal[j];
204  
205 <        if (excludes.hasPair(iglob, jglob))
206 <          skipsForAtom[i].push_back(j);              
205 >        if (excludes->hasPair(iglob, jglob))
206 >          excludesForAtom[i].push_back(j);              
207          
208 <        if (oneTwo.hasPair(iglob, jglob)) {
208 >        if (oneTwo->hasPair(iglob, jglob)) {
209            toposForAtom[i].push_back(j);
210            topoDist[i].push_back(1);
211          } else {
212 <          if (oneThree.hasPair(iglob, jglob)) {
212 >          if (oneThree->hasPair(iglob, jglob)) {
213              toposForAtom[i].push_back(j);
214              topoDist[i].push_back(2);
215            } else {
216 <            if (oneFour.hasPair(iglob, jglob)) {
216 >            if (oneFour->hasPair(iglob, jglob)) {
217                toposForAtom[i].push_back(j);
218                topoDist[i].push_back(3);
219              }
# Line 223 | Line 223 | namespace OpenMD {
223      }
224      
225      createGtypeCutoffMap();
226 +
227    }
228    
229    void ForceMatrixDecomposition::createGtypeCutoffMap() {
230 <
230 >    
231      RealType tol = 1e-6;
232      RealType rc;
233      int atid;
234      set<AtomType*> atypes = info_->getSimulatedAtomTypes();
235 <    vector<RealType> atypeCutoff;
235 <    atypeCutoff.resize( atypes.size() );
235 >    map<int, RealType> atypeCutoff;
236        
237      for (set<AtomType*>::iterator at = atypes.begin();
238           at != atypes.end(); ++at){
239        atid = (*at)->getIdent();
240 <
241 <      if (userChoseCutoff_)
240 >      if (userChoseCutoff_)
241          atypeCutoff[atid] = userCutoff_;
242 <      else
242 >      else
243          atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
244      }
245  
246      vector<RealType> gTypeCutoffs;
248
247      // first we do a single loop over the cutoff groups to find the
248      // largest cutoff for any atypes present in this group.
249   #ifdef IS_MPI
# Line 303 | Line 301 | namespace OpenMD {
301  
302      vector<RealType> groupCutoff(nGroups_, 0.0);
303      groupToGtype.resize(nGroups_);
306
307    cerr << "nGroups = " << nGroups_ << "\n";
304      for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305  
306        groupCutoff[cg1] = 0.0;
# Line 333 | Line 329 | namespace OpenMD {
329      }
330   #endif
331  
336    cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
332      // Now we find the maximum group cutoff value present in the simulation
333  
334      RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
# Line 456 | Line 451 | namespace OpenMD {
451             atomColData.functionalDerivative.end(), 0.0);
452      }
453  
454 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
455 +      fill(atomRowData.skippedCharge.begin(),
456 +           atomRowData.skippedCharge.end(), 0.0);
457 +      fill(atomColData.skippedCharge.begin(),
458 +           atomColData.skippedCharge.end(), 0.0);
459 +    }
460 +
461   #else
462      
463      if (storageLayout_ & DataStorage::dslParticlePot) {      
# Line 475 | Line 477 | namespace OpenMD {
477        fill(snap_->atomData.functionalDerivative.begin(),
478             snap_->atomData.functionalDerivative.end(), 0.0);
479      }
480 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {      
481 +      fill(snap_->atomData.skippedCharge.begin(),
482 +           snap_->atomData.skippedCharge.end(), 0.0);
483 +    }
484   #endif
485      
486    }
# Line 582 | Line 588 | namespace OpenMD {
588      
589      if (storageLayout_ & DataStorage::dslTorque) {
590  
591 <      int nt = snap_->atomData.force.size();
591 >      int nt = snap_->atomData.torque.size();
592        vector<Vector3d> trq_tmp(nt, V3Zero);
593  
594        AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
595 <      for (int i = 0; i < n; i++) {
595 >      for (int i = 0; i < nt; i++) {
596          snap_->atomData.torque[i] += trq_tmp[i];
597          trq_tmp[i] = 0.0;
598        }
599        
600        AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
601 <      for (int i = 0; i < n; i++)
601 >      for (int i = 0; i < nt; i++)
602          snap_->atomData.torque[i] += trq_tmp[i];
603      }
604 +
605 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
606 +
607 +      int ns = snap_->atomData.skippedCharge.size();
608 +      vector<RealType> skch_tmp(ns, 0.0);
609 +
610 +      AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
611 +      for (int i = 0; i < ns; i++) {
612 +        snap_->atomData.skippedCharge[i] = skch_tmp[i];
613 +        skch_tmp[i] = 0.0;
614 +      }
615 +      
616 +      AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
617 +      for (int i = 0; i < ns; i++)
618 +        snap_->atomData.skippedCharge[i] += skch_tmp[i];
619 +    }
620      
621      nLocal_ = snap_->getNumberOfAtoms();
622  
# Line 691 | Line 713 | namespace OpenMD {
713   #ifdef IS_MPI
714      return massFactorsRow[atom1];
715   #else
694    cerr << "mfs = " << massFactors.size() << " atom1 = " << atom1 << "\n";
716      return massFactors[atom1];
717   #endif
718    }
# Line 718 | Line 739 | namespace OpenMD {
739      return d;    
740    }
741  
742 <  vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
743 <    return skipsForAtom[atom1];
742 >  vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
743 >    return excludesForAtom[atom1];
744    }
745  
746    /**
747 <   * There are a number of reasons to skip a pair or a
727 <   * particle. Mostly we do this to exclude atoms who are involved in
728 <   * short range interactions (bonds, bends, torsions), but we also
729 <   * need to exclude some overcounted interactions that result from
747 >   * We need to exclude some overcounted interactions that result from
748     * the parallel decomposition.
749     */
750    bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
# Line 746 | Line 764 | namespace OpenMD {
764      } else {
765        if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
766      }
767 + #endif
768 +    return false;
769 +  }
770 +
771 +  /**
772 +   * We need to handle the interactions for atoms who are involved in
773 +   * the same rigid body as well as some short range interactions
774 +   * (bonds, bends, torsions) differently from other interactions.
775 +   * We'll still visit the pairwise routines, but with a flag that
776 +   * tells those routines to exclude the pair from direct long range
777 +   * interactions.  Some indirect interactions (notably reaction
778 +   * field) must still be handled for these pairs.
779 +   */
780 +  bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
781 +    int unique_id_2;
782 +    
783 + #ifdef IS_MPI
784 +    // in MPI, we have to look up the unique IDs for the row atom.
785 +    unique_id_2 = AtomColToGlobal[atom2];
786   #else
787      // in the normal loop, the atom numbers are unique
751    unique_id_1 = atom1;
788      unique_id_2 = atom2;
789   #endif
790      
791 <    for (vector<int>::iterator i = skipsForAtom[atom1].begin();
792 <         i != skipsForAtom[atom1].end(); ++i) {
791 >    for (vector<int>::iterator i = excludesForAtom[atom1].begin();
792 >         i != excludesForAtom[atom1].end(); ++i) {
793        if ( (*i) == unique_id_2 ) return true;
794      }
795  
# Line 779 | Line 815 | namespace OpenMD {
815  
816      // filling interaction blocks with pointers
817    void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
818 <                                                     int atom1, int atom2) {    
818 >                                                     int atom1, int atom2) {
819 >
820 >    idat.excluded = excludeAtomPair(atom1, atom2);
821 >  
822   #ifdef IS_MPI
823      
824      idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
# Line 820 | Line 859 | namespace OpenMD {
859        idat.particlePot2 = &(atomColData.particlePot[atom2]);
860      }
861  
862 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {              
863 +      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
864 +      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
865 +    }
866 +
867   #else
868  
869      idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
# Line 860 | Line 904 | namespace OpenMD {
904        idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
905      }
906  
907 +    if (storageLayout_ & DataStorage::dslSkippedCharge) {
908 +      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
909 +      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
910 +    }
911   #endif
912    }
913  
# Line 877 | Line 925 | namespace OpenMD {
925      snap_->atomData.force[atom1] += *(idat.f1);
926      snap_->atomData.force[atom2] -= *(idat.f1);
927   #endif
928 <
928 >    
929    }
930  
883
884  void ForceMatrixDecomposition::fillSkipData(InteractionData &idat,
885                                              int atom1, int atom2) {
886 #ifdef IS_MPI
887    idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
888                             ff_->getAtomType(identsCol[atom2]) );
889
890    if (storageLayout_ & DataStorage::dslElectroFrame) {
891      idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
892      idat.eFrame2 = &(atomColData.electroFrame[atom2]);
893    }
894
895    if (storageLayout_ & DataStorage::dslTorque) {
896      idat.t1 = &(atomRowData.torque[atom1]);
897      idat.t2 = &(atomColData.torque[atom2]);
898    }
899
900    if (storageLayout_ & DataStorage::dslSkippedCharge) {
901      idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
902      idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
903    }
904 #else
905    idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
906                             ff_->getAtomType(idents[atom2]) );
907
908    if (storageLayout_ & DataStorage::dslElectroFrame) {
909      idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
910      idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
911    }
912
913    if (storageLayout_ & DataStorage::dslTorque) {
914      idat.t1 = &(snap_->atomData.torque[atom1]);
915      idat.t2 = &(snap_->atomData.torque[atom2]);
916    }
917
918    if (storageLayout_ & DataStorage::dslSkippedCharge) {
919      idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
920      idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
921    }
922 #endif    
923  }
924
925
926  void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) {    
927 #ifdef IS_MPI
928    pot_row[atom1] += 0.5 *  *(idat.pot);
929    pot_col[atom2] += 0.5 *  *(idat.pot);
930 #else
931    pairwisePot += *(idat.pot);  
932 #endif
933
934  }
935
936
931    /*
932     * buildNeighborList
933     *
# Line 944 | Line 938 | namespace OpenMD {
938        
939      vector<pair<int, int> > neighborList;
940      groupCutoffs cuts;
941 +    bool doAllPairs = false;
942 +
943   #ifdef IS_MPI
944      cellListRow_.clear();
945      cellListCol_.clear();
# Line 963 | Line 959 | namespace OpenMD {
959      nCells_.y() = (int) ( Hy.length() )/ rList_;
960      nCells_.z() = (int) ( Hz.length() )/ rList_;
961  
962 +    // handle small boxes where the cell offsets can end up repeating cells
963 +    
964 +    if (nCells_.x() < 3) doAllPairs = true;
965 +    if (nCells_.y() < 3) doAllPairs = true;
966 +    if (nCells_.z() < 3) doAllPairs = true;
967 +
968      Mat3x3d invHmat = snap_->getInvHmat();
969      Vector3d rs, scaled, dr;
970      Vector3i whichCell;
# Line 976 | Line 978 | namespace OpenMD {
978      cellList_.resize(nCtot);
979   #endif
980  
981 +    if (!doAllPairs) {
982   #ifdef IS_MPI
980    for (int i = 0; i < nGroupsInRow_; i++) {
981      rs = cgRowData.position[i];
983  
984 <      // scaled positions relative to the box vectors
985 <      scaled = invHmat * rs;
986 <
987 <      // wrap the vector back into the unit box by subtracting integer box
988 <      // numbers
989 <      for (int j = 0; j < 3; j++) {
990 <        scaled[j] -= roundMe(scaled[j]);
991 <        scaled[j] += 0.5;
992 <      }
993 <    
994 <      // find xyz-indices of cell that cutoffGroup is in.
995 <      whichCell.x() = nCells_.x() * scaled.x();
996 <      whichCell.y() = nCells_.y() * scaled.y();
997 <      whichCell.z() = nCells_.z() * scaled.z();
998 <
999 <      // find single index of this cell:
1000 <      cellIndex = Vlinear(whichCell, nCells_);
1001 <
1002 <      // add this cutoff group to the list of groups in this cell;
1003 <      cellListRow_[cellIndex].push_back(i);
1004 <    }
1005 <
1006 <    for (int i = 0; i < nGroupsInCol_; i++) {
1007 <      rs = cgColData.position[i];
1008 <
1009 <      // scaled positions relative to the box vectors
1010 <      scaled = invHmat * rs;
1011 <
1012 <      // wrap the vector back into the unit box by subtracting integer box
1013 <      // numbers
1014 <      for (int j = 0; j < 3; j++) {
1015 <        scaled[j] -= roundMe(scaled[j]);
1016 <        scaled[j] += 0.5;
1017 <      }
1018 <
1019 <      // find xyz-indices of cell that cutoffGroup is in.
1020 <      whichCell.x() = nCells_.x() * scaled.x();
1021 <      whichCell.y() = nCells_.y() * scaled.y();
1022 <      whichCell.z() = nCells_.z() * scaled.z();
1023 <
1024 <      // find single index of this cell:
1025 <      cellIndex = Vlinear(whichCell, nCells_);
1026 <
1027 <      // add this cutoff group to the list of groups in this cell;
1028 <      cellListCol_[cellIndex].push_back(i);
1029 <    }
984 >      for (int i = 0; i < nGroupsInRow_; i++) {
985 >        rs = cgRowData.position[i];
986 >        
987 >        // scaled positions relative to the box vectors
988 >        scaled = invHmat * rs;
989 >        
990 >        // wrap the vector back into the unit box by subtracting integer box
991 >        // numbers
992 >        for (int j = 0; j < 3; j++) {
993 >          scaled[j] -= roundMe(scaled[j]);
994 >          scaled[j] += 0.5;
995 >        }
996 >        
997 >        // find xyz-indices of cell that cutoffGroup is in.
998 >        whichCell.x() = nCells_.x() * scaled.x();
999 >        whichCell.y() = nCells_.y() * scaled.y();
1000 >        whichCell.z() = nCells_.z() * scaled.z();
1001 >        
1002 >        // find single index of this cell:
1003 >        cellIndex = Vlinear(whichCell, nCells_);
1004 >        
1005 >        // add this cutoff group to the list of groups in this cell;
1006 >        cellListRow_[cellIndex].push_back(i);
1007 >      }
1008 >      
1009 >      for (int i = 0; i < nGroupsInCol_; i++) {
1010 >        rs = cgColData.position[i];
1011 >        
1012 >        // scaled positions relative to the box vectors
1013 >        scaled = invHmat * rs;
1014 >        
1015 >        // wrap the vector back into the unit box by subtracting integer box
1016 >        // numbers
1017 >        for (int j = 0; j < 3; j++) {
1018 >          scaled[j] -= roundMe(scaled[j]);
1019 >          scaled[j] += 0.5;
1020 >        }
1021 >        
1022 >        // find xyz-indices of cell that cutoffGroup is in.
1023 >        whichCell.x() = nCells_.x() * scaled.x();
1024 >        whichCell.y() = nCells_.y() * scaled.y();
1025 >        whichCell.z() = nCells_.z() * scaled.z();
1026 >        
1027 >        // find single index of this cell:
1028 >        cellIndex = Vlinear(whichCell, nCells_);
1029 >        
1030 >        // add this cutoff group to the list of groups in this cell;
1031 >        cellListCol_[cellIndex].push_back(i);
1032 >      }
1033   #else
1034 <    for (int i = 0; i < nGroups_; i++) {
1035 <      rs = snap_->cgData.position[i];
1036 <
1037 <      // scaled positions relative to the box vectors
1038 <      scaled = invHmat * rs;
1039 <
1040 <      // wrap the vector back into the unit box by subtracting integer box
1041 <      // numbers
1042 <      for (int j = 0; j < 3; j++) {
1043 <        scaled[j] -= roundMe(scaled[j]);
1044 <        scaled[j] += 0.5;
1034 >      for (int i = 0; i < nGroups_; i++) {
1035 >        rs = snap_->cgData.position[i];
1036 >        
1037 >        // scaled positions relative to the box vectors
1038 >        scaled = invHmat * rs;
1039 >        
1040 >        // wrap the vector back into the unit box by subtracting integer box
1041 >        // numbers
1042 >        for (int j = 0; j < 3; j++) {
1043 >          scaled[j] -= roundMe(scaled[j]);
1044 >          scaled[j] += 0.5;
1045 >        }
1046 >        
1047 >        // find xyz-indices of cell that cutoffGroup is in.
1048 >        whichCell.x() = nCells_.x() * scaled.x();
1049 >        whichCell.y() = nCells_.y() * scaled.y();
1050 >        whichCell.z() = nCells_.z() * scaled.z();
1051 >        
1052 >        // find single index of this cell:
1053 >        cellIndex = Vlinear(whichCell, nCells_);      
1054 >        
1055 >        // add this cutoff group to the list of groups in this cell;
1056 >        cellList_[cellIndex].push_back(i);
1057        }
1042
1043      // find xyz-indices of cell that cutoffGroup is in.
1044      whichCell.x() = nCells_.x() * scaled.x();
1045      whichCell.y() = nCells_.y() * scaled.y();
1046      whichCell.z() = nCells_.z() * scaled.z();
1047
1048      // find single index of this cell:
1049      cellIndex = Vlinear(whichCell, nCells_);      
1050
1051      // add this cutoff group to the list of groups in this cell;
1052      cellList_[cellIndex].push_back(i);
1053    }
1058   #endif
1059  
1060 <    for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1061 <      for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1062 <        for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1063 <          Vector3i m1v(m1x, m1y, m1z);
1064 <          int m1 = Vlinear(m1v, nCells_);
1061 <
1062 <          for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1063 <               os != cellOffsets_.end(); ++os) {
1060 >      for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1061 >        for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1062 >          for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1063 >            Vector3i m1v(m1x, m1y, m1z);
1064 >            int m1 = Vlinear(m1v, nCells_);
1065              
1066 <            Vector3i m2v = m1v + (*os);
1067 <            
1068 <            if (m2v.x() >= nCells_.x()) {
1069 <              m2v.x() = 0;          
1070 <            } else if (m2v.x() < 0) {
1071 <              m2v.x() = nCells_.x() - 1;
1072 <            }
1073 <            
1074 <            if (m2v.y() >= nCells_.y()) {
1075 <              m2v.y() = 0;          
1076 <            } else if (m2v.y() < 0) {
1077 <              m2v.y() = nCells_.y() - 1;
1078 <            }
1079 <            
1080 <            if (m2v.z() >= nCells_.z()) {
1081 <              m2v.z() = 0;          
1082 <            } else if (m2v.z() < 0) {
1083 <              m2v.z() = nCells_.z() - 1;
1084 <            }
1085 <            
1086 <            int m2 = Vlinear (m2v, nCells_);
1087 <
1066 >            for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1067 >                 os != cellOffsets_.end(); ++os) {
1068 >              
1069 >              Vector3i m2v = m1v + (*os);
1070 >              
1071 >              if (m2v.x() >= nCells_.x()) {
1072 >                m2v.x() = 0;          
1073 >              } else if (m2v.x() < 0) {
1074 >                m2v.x() = nCells_.x() - 1;
1075 >              }
1076 >              
1077 >              if (m2v.y() >= nCells_.y()) {
1078 >                m2v.y() = 0;          
1079 >              } else if (m2v.y() < 0) {
1080 >                m2v.y() = nCells_.y() - 1;
1081 >              }
1082 >              
1083 >              if (m2v.z() >= nCells_.z()) {
1084 >                m2v.z() = 0;          
1085 >              } else if (m2v.z() < 0) {
1086 >                m2v.z() = nCells_.z() - 1;
1087 >              }
1088 >              
1089 >              int m2 = Vlinear (m2v, nCells_);
1090 >              
1091   #ifdef IS_MPI
1092 <            for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1093 <                 j1 != cellListRow_[m1].end(); ++j1) {
1094 <              for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1095 <                   j2 != cellListCol_[m2].end(); ++j2) {
1096 <                              
1097 <                // Always do this if we're in different cells or if
1098 <                // we're in the same cell and the global index of the
1099 <                // j2 cutoff group is less than the j1 cutoff group
1100 <
1101 <                if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1102 <                  dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1103 <                  snap_->wrapVector(dr);
1104 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1105 <                  if (dr.lengthSquare() < cuts.third) {
1106 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1092 >              for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1093 >                   j1 != cellListRow_[m1].end(); ++j1) {
1094 >                for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1095 >                     j2 != cellListCol_[m2].end(); ++j2) {
1096 >                  
1097 >                  // Always do this if we're in different cells or if
1098 >                  // we're in the same cell and the global index of the
1099 >                  // j2 cutoff group is less than the j1 cutoff group
1100 >                  
1101 >                  if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1102 >                    dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1103 >                    snap_->wrapVector(dr);
1104 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1105 >                    if (dr.lengthSquare() < cuts.third) {
1106 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1107 >                    }
1108                    }
1109                  }
1110                }
1106            }
1111   #else
1112 <
1113 <            for (vector<int>::iterator j1 = cellList_[m1].begin();
1114 <                 j1 != cellList_[m1].end(); ++j1) {
1115 <              for (vector<int>::iterator j2 = cellList_[m2].begin();
1116 <                   j2 != cellList_[m2].end(); ++j2) {
1117 <
1118 <                // Always do this if we're in different cells or if
1119 <                // we're in the same cell and the global index of the
1120 <                // j2 cutoff group is less than the j1 cutoff group
1121 <
1122 <                if (m2 != m1 || (*j2) < (*j1)) {
1123 <                  dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1124 <                  snap_->wrapVector(dr);
1125 <                  cuts = getGroupCutoffs( (*j1), (*j2) );
1126 <                  if (dr.lengthSquare() < cuts.third) {
1127 <                    neighborList.push_back(make_pair((*j1), (*j2)));
1112 >              
1113 >              for (vector<int>::iterator j1 = cellList_[m1].begin();
1114 >                   j1 != cellList_[m1].end(); ++j1) {
1115 >                for (vector<int>::iterator j2 = cellList_[m2].begin();
1116 >                     j2 != cellList_[m2].end(); ++j2) {
1117 >                  
1118 >                  // Always do this if we're in different cells or if
1119 >                  // we're in the same cell and the global index of the
1120 >                  // j2 cutoff group is less than the j1 cutoff group
1121 >                  
1122 >                  if (m2 != m1 || (*j2) < (*j1)) {
1123 >                    dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1124 >                    snap_->wrapVector(dr);
1125 >                    cuts = getGroupCutoffs( (*j1), (*j2) );
1126 >                    if (dr.lengthSquare() < cuts.third) {
1127 >                      neighborList.push_back(make_pair((*j1), (*j2)));
1128 >                    }
1129                    }
1130                  }
1131                }
1127            }
1132   #endif
1133 +            }
1134            }
1135          }
1136        }
1137 +    } else {
1138 +      // branch to do all cutoff group pairs
1139 + #ifdef IS_MPI
1140 +      for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1141 +        for (int j2 = 0; j2 < nGroupsInCol_; j2++) {      
1142 +          dr = cgColData.position[j2] - cgRowData.position[j1];
1143 +          snap_->wrapVector(dr);
1144 +          cuts = getGroupCutoffs( j1, j2 );
1145 +          if (dr.lengthSquare() < cuts.third) {
1146 +            neighborList.push_back(make_pair(j1, j2));
1147 +          }
1148 +        }
1149 +      }
1150 + #else
1151 +      for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1152 +        for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1153 +          dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1154 +          snap_->wrapVector(dr);
1155 +          cuts = getGroupCutoffs( j1, j2 );
1156 +          if (dr.lengthSquare() < cuts.third) {
1157 +            neighborList.push_back(make_pair(j1, j2));
1158 +          }
1159 +        }
1160 +      }        
1161 + #endif
1162      }
1163 <    
1163 >      
1164      // save the local cutoff group positions for the check that is
1165      // done on each loop:
1166      saved_CG_positions_.clear();
1167      for (int i = 0; i < nGroups_; i++)
1168        saved_CG_positions_.push_back(snap_->cgData.position[i]);
1169 <  
1169 >    
1170      return neighborList;
1171    }
1172   } //end namespace OpenMD

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines