36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
43 |
|
#include "math/SquareMatrix3.hpp" |
54 |
|
// surrounding cells (not just the 14 upper triangular blocks that |
55 |
|
// are used when the processor can see all pairs) |
56 |
|
#ifdef IS_MPI |
57 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
57 |
< |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
58 |
< |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
59 |
< |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
61 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
57 |
> |
cellOffsets_.clear(); |
58 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
59 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
60 |
< |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
60 |
> |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
61 |
> |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
62 |
> |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
|
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
66 |
– |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
– |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
64 |
|
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
85 |
|
#endif |
86 |
|
} |
87 |
|
|
234 |
|
} |
235 |
|
} |
236 |
|
|
237 |
< |
#endif |
222 |
< |
|
223 |
< |
// allocate memory for the parallel objects |
224 |
< |
atypesLocal.resize(nLocal_); |
225 |
< |
|
226 |
< |
for (int i = 0; i < nLocal_; i++) |
227 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
228 |
< |
|
229 |
< |
groupList_.clear(); |
230 |
< |
groupList_.resize(nGroups_); |
231 |
< |
for (int i = 0; i < nGroups_; i++) { |
232 |
< |
int gid = cgLocalToGlobal[i]; |
233 |
< |
for (int j = 0; j < nLocal_; j++) { |
234 |
< |
int aid = AtomLocalToGlobal[j]; |
235 |
< |
if (globalGroupMembership[aid] == gid) { |
236 |
< |
groupList_[i].push_back(j); |
237 |
< |
} |
238 |
< |
} |
239 |
< |
} |
240 |
< |
|
237 |
> |
#else |
238 |
|
excludesForAtom.clear(); |
239 |
|
excludesForAtom.resize(nLocal_); |
240 |
|
toposForAtom.clear(); |
267 |
|
} |
268 |
|
} |
269 |
|
} |
270 |
< |
|
270 |
> |
#endif |
271 |
> |
|
272 |
> |
// allocate memory for the parallel objects |
273 |
> |
atypesLocal.resize(nLocal_); |
274 |
> |
|
275 |
> |
for (int i = 0; i < nLocal_; i++) |
276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
277 |
> |
|
278 |
> |
groupList_.clear(); |
279 |
> |
groupList_.resize(nGroups_); |
280 |
> |
for (int i = 0; i < nGroups_; i++) { |
281 |
> |
int gid = cgLocalToGlobal[i]; |
282 |
> |
for (int j = 0; j < nLocal_; j++) { |
283 |
> |
int aid = AtomLocalToGlobal[j]; |
284 |
> |
if (globalGroupMembership[aid] == gid) { |
285 |
> |
groupList_[i].push_back(j); |
286 |
> |
} |
287 |
> |
} |
288 |
> |
} |
289 |
> |
|
290 |
> |
|
291 |
|
createGtypeCutoffMap(); |
292 |
|
|
293 |
|
} |
523 |
|
atomRowData.skippedCharge.end(), 0.0); |
524 |
|
fill(atomColData.skippedCharge.begin(), |
525 |
|
atomColData.skippedCharge.end(), 0.0); |
526 |
+ |
} |
527 |
+ |
|
528 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
529 |
+ |
fill(atomRowData.electricField.begin(), |
530 |
+ |
atomRowData.electricField.end(), V3Zero); |
531 |
+ |
fill(atomColData.electricField.begin(), |
532 |
+ |
atomColData.electricField.end(), V3Zero); |
533 |
+ |
} |
534 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
535 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
536 |
+ |
0.0); |
537 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
538 |
+ |
0.0); |
539 |
|
} |
540 |
|
|
541 |
|
#endif |
550 |
|
fill(snap_->atomData.density.begin(), |
551 |
|
snap_->atomData.density.end(), 0.0); |
552 |
|
} |
553 |
+ |
|
554 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
555 |
|
fill(snap_->atomData.functional.begin(), |
556 |
|
snap_->atomData.functional.end(), 0.0); |
557 |
|
} |
558 |
+ |
|
559 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
560 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
561 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
562 |
|
} |
563 |
+ |
|
564 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
565 |
|
fill(snap_->atomData.skippedCharge.begin(), |
566 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
567 |
|
} |
568 |
< |
|
568 |
> |
|
569 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
570 |
> |
fill(snap_->atomData.electricField.begin(), |
571 |
> |
snap_->atomData.electricField.end(), V3Zero); |
572 |
> |
} |
573 |
|
} |
574 |
|
|
575 |
|
|
609 |
|
atomColData.electroFrame); |
610 |
|
} |
611 |
|
|
612 |
+ |
// if needed, gather the atomic fluctuating charge values |
613 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
614 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
615 |
+ |
atomRowData.flucQPos); |
616 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
617 |
+ |
atomColData.flucQPos); |
618 |
+ |
} |
619 |
+ |
|
620 |
|
#endif |
621 |
|
} |
622 |
|
|
638 |
|
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
639 |
|
for (int i = 0; i < n; i++) |
640 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
641 |
+ |
} |
642 |
+ |
|
643 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
644 |
+ |
|
645 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
646 |
+ |
snap_->atomData.electricField); |
647 |
+ |
|
648 |
+ |
int n = snap_->atomData.electricField.size(); |
649 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
650 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
651 |
+ |
for (int i = 0; i < n; i++) |
652 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
653 |
|
} |
654 |
|
#endif |
655 |
|
} |
725 |
|
} |
726 |
|
|
727 |
|
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
728 |
< |
for (int i = 0; i < ns; i++) |
728 |
> |
for (int i = 0; i < ns; i++) |
729 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
730 |
+ |
|
731 |
|
} |
732 |
|
|
733 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
734 |
+ |
|
735 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
736 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
737 |
+ |
|
738 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
739 |
+ |
for (int i = 0; i < nq; i++) { |
740 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
741 |
+ |
fqfrc_tmp[i] = 0.0; |
742 |
+ |
} |
743 |
+ |
|
744 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
745 |
+ |
for (int i = 0; i < nq; i++) |
746 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
747 |
+ |
|
748 |
+ |
} |
749 |
+ |
|
750 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
751 |
|
|
752 |
|
vector<potVec> pot_temp(nLocal_, |
774 |
|
pairwisePot[ii] = ploc2; |
775 |
|
} |
776 |
|
|
777 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
778 |
+ |
RealType ploc1 = embeddingPot[ii]; |
779 |
+ |
RealType ploc2 = 0.0; |
780 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
781 |
+ |
embeddingPot[ii] = ploc2; |
782 |
+ |
} |
783 |
+ |
|
784 |
|
#endif |
785 |
|
|
786 |
|
} |
893 |
|
*/ |
894 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
895 |
|
int unique_id_1, unique_id_2; |
896 |
< |
|
896 |
> |
|
897 |
|
#ifdef IS_MPI |
898 |
|
// in MPI, we have to look up the unique IDs for each atom |
899 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
900 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
901 |
< |
|
902 |
< |
// this situation should only arise in MPI simulations |
901 |
> |
#else |
902 |
> |
unique_id_1 = AtomLocalToGlobal[atom1]; |
903 |
> |
unique_id_2 = AtomLocalToGlobal[atom2]; |
904 |
> |
#endif |
905 |
> |
|
906 |
|
if (unique_id_1 == unique_id_2) return true; |
907 |
< |
|
907 |
> |
|
908 |
> |
#ifdef IS_MPI |
909 |
|
// this prevents us from doing the pair on multiple processors |
910 |
|
if (unique_id_1 < unique_id_2) { |
911 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
912 |
|
} else { |
913 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
913 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
914 |
|
} |
915 |
|
#endif |
916 |
+ |
|
917 |
|
return false; |
918 |
|
} |
919 |
|
|
927 |
|
* field) must still be handled for these pairs. |
928 |
|
*/ |
929 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
930 |
< |
int unique_id_2; |
931 |
< |
#ifdef IS_MPI |
932 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
846 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
847 |
< |
#else |
848 |
< |
// in the normal loop, the atom numbers are unique |
849 |
< |
unique_id_2 = atom2; |
850 |
< |
#endif |
930 |
> |
|
931 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
932 |
> |
// version, and to use local IDs in the non-MPI version: |
933 |
|
|
934 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
935 |
|
i != excludesForAtom[atom1].end(); ++i) { |
936 |
< |
if ( (*i) == unique_id_2 ) return true; |
936 |
> |
if ( (*i) == atom2 ) return true; |
937 |
|
} |
938 |
|
|
939 |
|
return false; |
1008 |
|
} |
1009 |
|
|
1010 |
|
#else |
1011 |
+ |
|
1012 |
|
|
1013 |
+ |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
1014 |
+ |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
1015 |
+ |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
1016 |
+ |
|
1017 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
1018 |
|
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1019 |
|
// ff_->getAtomType(idents[atom2]) ); |
1063 |
|
|
1064 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1065 |
|
#ifdef IS_MPI |
1066 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
1067 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
1066 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
1067 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
1068 |
|
|
1069 |
|
atomRowData.force[atom1] += *(idat.f1); |
1070 |
|
atomColData.force[atom2] -= *(idat.f1); |
1071 |
+ |
|
1072 |
+ |
// should particle pot be done here also? |
1073 |
|
#else |
1074 |
|
pairwisePot += *(idat.pot); |
1075 |
|
|
1076 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
1077 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
1078 |
+ |
|
1079 |
+ |
if (idat.doParticlePot) { |
1080 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
1081 |
+ |
snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
1082 |
+ |
} |
1083 |
+ |
|
1084 |
|
#endif |
1085 |
|
|
1086 |
|
} |
1186 |
|
// add this cutoff group to the list of groups in this cell; |
1187 |
|
cellListCol_[cellIndex].push_back(i); |
1188 |
|
} |
1189 |
+ |
|
1190 |
|
#else |
1191 |
|
for (int i = 0; i < nGroups_; i++) { |
1192 |
|
rs = snap_->cgData.position[i]; |
1212 |
|
// add this cutoff group to the list of groups in this cell; |
1213 |
|
cellList_[cellIndex].push_back(i); |
1214 |
|
} |
1215 |
+ |
|
1216 |
|
#endif |
1217 |
|
|
1218 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1225 |
|
os != cellOffsets_.end(); ++os) { |
1226 |
|
|
1227 |
|
Vector3i m2v = m1v + (*os); |
1228 |
< |
|
1228 |
> |
|
1229 |
> |
|
1230 |
|
if (m2v.x() >= nCells_.x()) { |
1231 |
|
m2v.x() = 0; |
1232 |
|
} else if (m2v.x() < 0) { |
1244 |
|
} else if (m2v.z() < 0) { |
1245 |
|
m2v.z() = nCells_.z() - 1; |
1246 |
|
} |
1247 |
< |
|
1247 |
> |
|
1248 |
|
int m2 = Vlinear (m2v, nCells_); |
1249 |
|
|
1250 |
|
#ifdef IS_MPI |
1253 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1254 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
1255 |
|
|
1256 |
< |
// In parallel, we need to visit *all* pairs of row & |
1257 |
< |
// column indicies and will truncate later on. |
1256 |
> |
// In parallel, we need to visit *all* pairs of row |
1257 |
> |
// & column indicies and will divide labor in the |
1258 |
> |
// force evaluation later. |
1259 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1260 |
|
snap_->wrapVector(dr); |
1261 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1265 |
|
} |
1266 |
|
} |
1267 |
|
#else |
1169 |
– |
|
1268 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1269 |
|
j1 != cellList_[m1].end(); ++j1) { |
1270 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1271 |
|
j2 != cellList_[m2].end(); ++j2) { |
1272 |
< |
|
1272 |
> |
|
1273 |
|
// Always do this if we're in different cells or if |
1274 |
< |
// we're in the same cell and the global index of the |
1275 |
< |
// j2 cutoff group is less than the j1 cutoff group |
1276 |
< |
|
1277 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
1274 |
> |
// we're in the same cell and the global index of |
1275 |
> |
// the j2 cutoff group is greater than or equal to |
1276 |
> |
// the j1 cutoff group. Note that Rappaport's code |
1277 |
> |
// has a "less than" conditional here, but that |
1278 |
> |
// deals with atom-by-atom computation. OpenMD |
1279 |
> |
// allows atoms within a single cutoff group to |
1280 |
> |
// interact with each other. |
1281 |
> |
|
1282 |
> |
|
1283 |
> |
|
1284 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
1285 |
> |
|
1286 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1287 |
|
snap_->wrapVector(dr); |
1288 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1301 |
|
// branch to do all cutoff group pairs |
1302 |
|
#ifdef IS_MPI |
1303 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
1304 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1304 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
1305 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1306 |
|
snap_->wrapVector(dr); |
1307 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1309 |
|
neighborList.push_back(make_pair(j1, j2)); |
1310 |
|
} |
1311 |
|
} |
1312 |
< |
} |
1312 |
> |
} |
1313 |
|
#else |
1314 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
1315 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
1314 |
> |
// include all groups here. |
1315 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
1316 |
> |
// include self group interactions j2 == j1 |
1317 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
1318 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1319 |
|
snap_->wrapVector(dr); |
1320 |
|
cuts = getGroupCutoffs( j1, j2 ); |
1321 |
|
if (dr.lengthSquare() < cuts.third) { |
1322 |
|
neighborList.push_back(make_pair(j1, j2)); |
1323 |
|
} |
1324 |
< |
} |
1325 |
< |
} |
1324 |
> |
} |
1325 |
> |
} |
1326 |
|
#endif |
1327 |
|
} |
1328 |
|
|