42 |
|
#include "math/SquareMatrix3.hpp" |
43 |
|
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
|
#include "brains/SnapshotManager.hpp" |
45 |
+ |
#include "brains/PairList.hpp" |
46 |
|
|
47 |
|
using namespace std; |
48 |
|
namespace OpenMD { |
55 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
56 |
|
snap_ = sman_->getCurrentSnapshot(); |
57 |
|
storageLayout_ = sman_->getStorageLayout(); |
58 |
+ |
ff_ = info_->getForceField(); |
59 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
58 |
– |
nGroups_ = snap_->getNumberOfCutoffGroups(); |
60 |
|
|
61 |
+ |
nGroups_ = info_->getNLocalCutoffGroups(); |
62 |
+ |
cerr << "in dId, nGroups = " << nGroups_ << "\n"; |
63 |
+ |
// gather the information for atomtype IDs (atids): |
64 |
+ |
idents = info_->getIdentArray(); |
65 |
+ |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
66 |
+ |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
67 |
+ |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
68 |
+ |
massFactors = info_->getMassFactors(); |
69 |
+ |
PairList excludes = info_->getExcludedInteractions(); |
70 |
+ |
PairList oneTwo = info_->getOneTwoInteractions(); |
71 |
+ |
PairList oneThree = info_->getOneThreeInteractions(); |
72 |
+ |
PairList oneFour = info_->getOneFourInteractions(); |
73 |
+ |
|
74 |
|
#ifdef IS_MPI |
75 |
|
|
76 |
|
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
77 |
|
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
78 |
|
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
79 |
|
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
80 |
+ |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
81 |
|
|
82 |
|
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
83 |
|
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
84 |
|
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
85 |
|
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
86 |
+ |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
87 |
|
|
88 |
|
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
89 |
|
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
104 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
105 |
|
cgColData.resize(nGroupsInCol_); |
106 |
|
cgColData.setStorageLayout(DataStorage::dslPosition); |
107 |
+ |
|
108 |
+ |
identsRow.resize(nAtomsInRow_); |
109 |
+ |
identsCol.resize(nAtomsInCol_); |
110 |
|
|
111 |
< |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
112 |
< |
vector<RealType> (nAtomsInRow_, 0.0)); |
94 |
< |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
95 |
< |
vector<RealType> (nAtomsInCol_, 0.0)); |
96 |
< |
|
97 |
< |
|
98 |
< |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
111 |
> |
AtomCommIntRow->gather(idents, identsRow); |
112 |
> |
AtomCommIntColumn->gather(idents, identsCol); |
113 |
|
|
100 |
– |
// gather the information for atomtype IDs (atids): |
101 |
– |
vector<int> identsLocal = info_->getIdentArray(); |
102 |
– |
identsRow.reserve(nAtomsInRow_); |
103 |
– |
identsCol.reserve(nAtomsInCol_); |
104 |
– |
|
105 |
– |
AtomCommIntRow->gather(identsLocal, identsRow); |
106 |
– |
AtomCommIntColumn->gather(identsLocal, identsCol); |
107 |
– |
|
108 |
– |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
114 |
|
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
115 |
|
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
116 |
|
|
112 |
– |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
117 |
|
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
118 |
|
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
119 |
|
|
120 |
< |
// still need: |
121 |
< |
// topoDist |
122 |
< |
// exclude |
120 |
> |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
121 |
> |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
122 |
> |
|
123 |
> |
groupListRow_.clear(); |
124 |
> |
groupListRow_.resize(nGroupsInRow_); |
125 |
> |
for (int i = 0; i < nGroupsInRow_; i++) { |
126 |
> |
int gid = cgRowToGlobal[i]; |
127 |
> |
for (int j = 0; j < nAtomsInRow_; j++) { |
128 |
> |
int aid = AtomRowToGlobal[j]; |
129 |
> |
if (globalGroupMembership[aid] == gid) |
130 |
> |
groupListRow_[i].push_back(j); |
131 |
> |
} |
132 |
> |
} |
133 |
> |
|
134 |
> |
groupListCol_.clear(); |
135 |
> |
groupListCol_.resize(nGroupsInCol_); |
136 |
> |
for (int i = 0; i < nGroupsInCol_; i++) { |
137 |
> |
int gid = cgColToGlobal[i]; |
138 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
139 |
> |
int aid = AtomColToGlobal[j]; |
140 |
> |
if (globalGroupMembership[aid] == gid) |
141 |
> |
groupListCol_[i].push_back(j); |
142 |
> |
} |
143 |
> |
} |
144 |
> |
|
145 |
> |
skipsForAtom.clear(); |
146 |
> |
skipsForAtom.resize(nAtomsInRow_); |
147 |
> |
toposForAtom.clear(); |
148 |
> |
toposForAtom.resize(nAtomsInRow_); |
149 |
> |
topoDist.clear(); |
150 |
> |
topoDist.resize(nAtomsInRow_); |
151 |
> |
for (int i = 0; i < nAtomsInRow_; i++) { |
152 |
> |
int iglob = AtomRowToGlobal[i]; |
153 |
> |
|
154 |
> |
for (int j = 0; j < nAtomsInCol_; j++) { |
155 |
> |
int jglob = AtomColToGlobal[j]; |
156 |
> |
|
157 |
> |
if (excludes.hasPair(iglob, jglob)) |
158 |
> |
skipsForAtom[i].push_back(j); |
159 |
> |
|
160 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
161 |
> |
toposForAtom[i].push_back(j); |
162 |
> |
topoDist[i].push_back(1); |
163 |
> |
} else { |
164 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
165 |
> |
toposForAtom[i].push_back(j); |
166 |
> |
topoDist[i].push_back(2); |
167 |
> |
} else { |
168 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
169 |
> |
toposForAtom[i].push_back(j); |
170 |
> |
topoDist[i].push_back(3); |
171 |
> |
} |
172 |
> |
} |
173 |
> |
} |
174 |
> |
} |
175 |
> |
} |
176 |
> |
|
177 |
> |
#endif |
178 |
> |
|
179 |
> |
groupList_.clear(); |
180 |
> |
groupList_.resize(nGroups_); |
181 |
> |
for (int i = 0; i < nGroups_; i++) { |
182 |
> |
int gid = cgLocalToGlobal[i]; |
183 |
> |
for (int j = 0; j < nLocal_; j++) { |
184 |
> |
int aid = AtomLocalToGlobal[j]; |
185 |
> |
if (globalGroupMembership[aid] == gid) { |
186 |
> |
groupList_[i].push_back(j); |
187 |
> |
} |
188 |
> |
} |
189 |
> |
} |
190 |
> |
|
191 |
> |
skipsForAtom.clear(); |
192 |
> |
skipsForAtom.resize(nLocal_); |
193 |
> |
toposForAtom.clear(); |
194 |
> |
toposForAtom.resize(nLocal_); |
195 |
> |
topoDist.clear(); |
196 |
> |
topoDist.resize(nLocal_); |
197 |
> |
|
198 |
> |
for (int i = 0; i < nLocal_; i++) { |
199 |
> |
int iglob = AtomLocalToGlobal[i]; |
200 |
> |
|
201 |
> |
for (int j = 0; j < nLocal_; j++) { |
202 |
> |
int jglob = AtomLocalToGlobal[j]; |
203 |
> |
|
204 |
> |
if (excludes.hasPair(iglob, jglob)) |
205 |
> |
skipsForAtom[i].push_back(j); |
206 |
> |
|
207 |
> |
if (oneTwo.hasPair(iglob, jglob)) { |
208 |
> |
toposForAtom[i].push_back(j); |
209 |
> |
topoDist[i].push_back(1); |
210 |
> |
} else { |
211 |
> |
if (oneThree.hasPair(iglob, jglob)) { |
212 |
> |
toposForAtom[i].push_back(j); |
213 |
> |
topoDist[i].push_back(2); |
214 |
> |
} else { |
215 |
> |
if (oneFour.hasPair(iglob, jglob)) { |
216 |
> |
toposForAtom[i].push_back(j); |
217 |
> |
topoDist[i].push_back(3); |
218 |
> |
} |
219 |
> |
} |
220 |
> |
} |
221 |
> |
} |
222 |
> |
} |
223 |
> |
|
224 |
> |
createGtypeCutoffMap(); |
225 |
> |
} |
226 |
> |
|
227 |
> |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
228 |
> |
|
229 |
> |
RealType tol = 1e-6; |
230 |
> |
RealType rc; |
231 |
> |
int atid; |
232 |
> |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
233 |
> |
vector<RealType> atypeCutoff; |
234 |
> |
atypeCutoff.resize( atypes.size() ); |
235 |
> |
|
236 |
> |
for (set<AtomType*>::iterator at = atypes.begin(); |
237 |
> |
at != atypes.end(); ++at){ |
238 |
> |
atid = (*at)->getIdent(); |
239 |
> |
|
240 |
> |
if (userChoseCutoff_) |
241 |
> |
atypeCutoff[atid] = userCutoff_; |
242 |
> |
else |
243 |
> |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
244 |
> |
} |
245 |
> |
|
246 |
> |
vector<RealType> gTypeCutoffs; |
247 |
> |
|
248 |
> |
// first we do a single loop over the cutoff groups to find the |
249 |
> |
// largest cutoff for any atypes present in this group. |
250 |
> |
#ifdef IS_MPI |
251 |
> |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
252 |
> |
groupRowToGtype.resize(nGroupsInRow_); |
253 |
> |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
254 |
> |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
255 |
> |
for (vector<int>::iterator ia = atomListRow.begin(); |
256 |
> |
ia != atomListRow.end(); ++ia) { |
257 |
> |
int atom1 = (*ia); |
258 |
> |
atid = identsRow[atom1]; |
259 |
> |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
260 |
> |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
261 |
> |
} |
262 |
> |
} |
263 |
> |
|
264 |
> |
bool gTypeFound = false; |
265 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
266 |
> |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
267 |
> |
groupRowToGtype[cg1] = gt; |
268 |
> |
gTypeFound = true; |
269 |
> |
} |
270 |
> |
} |
271 |
> |
if (!gTypeFound) { |
272 |
> |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
273 |
> |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
274 |
> |
} |
275 |
> |
|
276 |
> |
} |
277 |
> |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
278 |
> |
groupColToGtype.resize(nGroupsInCol_); |
279 |
> |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
280 |
> |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
281 |
> |
for (vector<int>::iterator jb = atomListCol.begin(); |
282 |
> |
jb != atomListCol.end(); ++jb) { |
283 |
> |
int atom2 = (*jb); |
284 |
> |
atid = identsCol[atom2]; |
285 |
> |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
286 |
> |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
287 |
> |
} |
288 |
> |
} |
289 |
> |
bool gTypeFound = false; |
290 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
291 |
> |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
292 |
> |
groupColToGtype[cg2] = gt; |
293 |
> |
gTypeFound = true; |
294 |
> |
} |
295 |
> |
} |
296 |
> |
if (!gTypeFound) { |
297 |
> |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
298 |
> |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
299 |
> |
} |
300 |
> |
} |
301 |
> |
#else |
302 |
> |
|
303 |
> |
vector<RealType> groupCutoff(nGroups_, 0.0); |
304 |
> |
groupToGtype.resize(nGroups_); |
305 |
> |
|
306 |
> |
cerr << "nGroups = " << nGroups_ << "\n"; |
307 |
> |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
308 |
> |
|
309 |
> |
groupCutoff[cg1] = 0.0; |
310 |
> |
vector<int> atomList = getAtomsInGroupRow(cg1); |
311 |
> |
|
312 |
> |
for (vector<int>::iterator ia = atomList.begin(); |
313 |
> |
ia != atomList.end(); ++ia) { |
314 |
> |
int atom1 = (*ia); |
315 |
> |
atid = idents[atom1]; |
316 |
> |
if (atypeCutoff[atid] > groupCutoff[cg1]) { |
317 |
> |
groupCutoff[cg1] = atypeCutoff[atid]; |
318 |
> |
} |
319 |
> |
} |
320 |
> |
|
321 |
> |
bool gTypeFound = false; |
322 |
> |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
323 |
> |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
324 |
> |
groupToGtype[cg1] = gt; |
325 |
> |
gTypeFound = true; |
326 |
> |
} |
327 |
> |
} |
328 |
> |
if (!gTypeFound) { |
329 |
> |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
330 |
> |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
331 |
> |
} |
332 |
> |
} |
333 |
|
#endif |
334 |
+ |
|
335 |
+ |
cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; |
336 |
+ |
// Now we find the maximum group cutoff value present in the simulation |
337 |
+ |
|
338 |
+ |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
339 |
+ |
|
340 |
+ |
#ifdef IS_MPI |
341 |
+ |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); |
342 |
+ |
#endif |
343 |
+ |
|
344 |
+ |
RealType tradRcut = groupMax; |
345 |
+ |
|
346 |
+ |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
347 |
+ |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
348 |
+ |
RealType thisRcut; |
349 |
+ |
switch(cutoffPolicy_) { |
350 |
+ |
case TRADITIONAL: |
351 |
+ |
thisRcut = tradRcut; |
352 |
+ |
break; |
353 |
+ |
case MIX: |
354 |
+ |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
355 |
+ |
break; |
356 |
+ |
case MAX: |
357 |
+ |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
358 |
+ |
break; |
359 |
+ |
default: |
360 |
+ |
sprintf(painCave.errMsg, |
361 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
362 |
+ |
"hit an unknown cutoff policy!\n"); |
363 |
+ |
painCave.severity = OPENMD_ERROR; |
364 |
+ |
painCave.isFatal = 1; |
365 |
+ |
simError(); |
366 |
+ |
break; |
367 |
+ |
} |
368 |
+ |
|
369 |
+ |
pair<int,int> key = make_pair(i,j); |
370 |
+ |
gTypeCutoffMap[key].first = thisRcut; |
371 |
+ |
|
372 |
+ |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
373 |
+ |
|
374 |
+ |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
375 |
+ |
|
376 |
+ |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
377 |
+ |
|
378 |
+ |
// sanity check |
379 |
+ |
|
380 |
+ |
if (userChoseCutoff_) { |
381 |
+ |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
382 |
+ |
sprintf(painCave.errMsg, |
383 |
+ |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
384 |
+ |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
385 |
+ |
painCave.severity = OPENMD_ERROR; |
386 |
+ |
painCave.isFatal = 1; |
387 |
+ |
simError(); |
388 |
+ |
} |
389 |
+ |
} |
390 |
+ |
} |
391 |
+ |
} |
392 |
|
} |
393 |
+ |
|
394 |
+ |
|
395 |
+ |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
396 |
+ |
int i, j; |
397 |
+ |
#ifdef IS_MPI |
398 |
+ |
i = groupRowToGtype[cg1]; |
399 |
+ |
j = groupColToGtype[cg2]; |
400 |
+ |
#else |
401 |
+ |
i = groupToGtype[cg1]; |
402 |
+ |
j = groupToGtype[cg2]; |
403 |
+ |
#endif |
404 |
+ |
return gTypeCutoffMap[make_pair(i,j)]; |
405 |
+ |
} |
406 |
+ |
|
407 |
+ |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
408 |
+ |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
409 |
+ |
if (toposForAtom[atom1][j] == atom2) |
410 |
+ |
return topoDist[atom1][j]; |
411 |
+ |
} |
412 |
+ |
return 0; |
413 |
+ |
} |
414 |
+ |
|
415 |
+ |
void ForceMatrixDecomposition::zeroWorkArrays() { |
416 |
+ |
pairwisePot = 0.0; |
417 |
+ |
embeddingPot = 0.0; |
418 |
+ |
|
419 |
+ |
#ifdef IS_MPI |
420 |
+ |
if (storageLayout_ & DataStorage::dslForce) { |
421 |
+ |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
422 |
+ |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
423 |
+ |
} |
424 |
+ |
|
425 |
+ |
if (storageLayout_ & DataStorage::dslTorque) { |
426 |
+ |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
427 |
+ |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
428 |
+ |
} |
429 |
|
|
430 |
+ |
fill(pot_row.begin(), pot_row.end(), |
431 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
432 |
|
|
433 |
+ |
fill(pot_col.begin(), pot_col.end(), |
434 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
435 |
|
|
436 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
437 |
+ |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); |
438 |
+ |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); |
439 |
+ |
} |
440 |
+ |
|
441 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
442 |
+ |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
443 |
+ |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
444 |
+ |
} |
445 |
+ |
|
446 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
447 |
+ |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); |
448 |
+ |
fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); |
449 |
+ |
} |
450 |
+ |
|
451 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
452 |
+ |
fill(atomRowData.functionalDerivative.begin(), |
453 |
+ |
atomRowData.functionalDerivative.end(), 0.0); |
454 |
+ |
fill(atomColData.functionalDerivative.begin(), |
455 |
+ |
atomColData.functionalDerivative.end(), 0.0); |
456 |
+ |
} |
457 |
+ |
|
458 |
+ |
#else |
459 |
+ |
|
460 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
461 |
+ |
fill(snap_->atomData.particlePot.begin(), |
462 |
+ |
snap_->atomData.particlePot.end(), 0.0); |
463 |
+ |
} |
464 |
+ |
|
465 |
+ |
if (storageLayout_ & DataStorage::dslDensity) { |
466 |
+ |
fill(snap_->atomData.density.begin(), |
467 |
+ |
snap_->atomData.density.end(), 0.0); |
468 |
+ |
} |
469 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
470 |
+ |
fill(snap_->atomData.functional.begin(), |
471 |
+ |
snap_->atomData.functional.end(), 0.0); |
472 |
+ |
} |
473 |
+ |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
474 |
+ |
fill(snap_->atomData.functionalDerivative.begin(), |
475 |
+ |
snap_->atomData.functionalDerivative.end(), 0.0); |
476 |
+ |
} |
477 |
+ |
#endif |
478 |
+ |
|
479 |
+ |
} |
480 |
+ |
|
481 |
+ |
|
482 |
|
void ForceMatrixDecomposition::distributeData() { |
483 |
|
snap_ = sman_->getCurrentSnapshot(); |
484 |
|
storageLayout_ = sman_->getStorageLayout(); |
514 |
|
#endif |
515 |
|
} |
516 |
|
|
517 |
+ |
/* collects information obtained during the pre-pair loop onto local |
518 |
+ |
* data structures. |
519 |
+ |
*/ |
520 |
|
void ForceMatrixDecomposition::collectIntermediateData() { |
521 |
|
snap_ = sman_->getCurrentSnapshot(); |
522 |
|
storageLayout_ = sman_->getStorageLayout(); |
528 |
|
snap_->atomData.density); |
529 |
|
|
530 |
|
int n = snap_->atomData.density.size(); |
531 |
< |
std::vector<RealType> rho_tmp(n, 0.0); |
531 |
> |
vector<RealType> rho_tmp(n, 0.0); |
532 |
|
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
533 |
|
for (int i = 0; i < n; i++) |
534 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
535 |
|
} |
536 |
|
#endif |
537 |
|
} |
538 |
< |
|
538 |
> |
|
539 |
> |
/* |
540 |
> |
* redistributes information obtained during the pre-pair loop out to |
541 |
> |
* row and column-indexed data structures |
542 |
> |
*/ |
543 |
|
void ForceMatrixDecomposition::distributeIntermediateData() { |
544 |
|
snap_ = sman_->getCurrentSnapshot(); |
545 |
|
storageLayout_ = sman_->getStorageLayout(); |
597 |
|
|
598 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
599 |
|
|
600 |
< |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
601 |
< |
vector<RealType> (nLocal_, 0.0)); |
600 |
> |
vector<potVec> pot_temp(nLocal_, |
601 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
602 |
> |
|
603 |
> |
// scatter/gather pot_row into the members of my column |
604 |
> |
|
605 |
> |
AtomCommPotRow->scatter(pot_row, pot_temp); |
606 |
> |
|
607 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
608 |
> |
pairwisePot += pot_temp[ii]; |
609 |
|
|
610 |
< |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
611 |
< |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
612 |
< |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
613 |
< |
pot_local[i] += pot_temp[i][ii]; |
614 |
< |
} |
615 |
< |
} |
610 |
> |
fill(pot_temp.begin(), pot_temp.end(), |
611 |
> |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
612 |
> |
|
613 |
> |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
614 |
> |
|
615 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
616 |
> |
pairwisePot += pot_temp[ii]; |
617 |
|
#endif |
618 |
+ |
|
619 |
|
} |
620 |
|
|
621 |
+ |
int ForceMatrixDecomposition::getNAtomsInRow() { |
622 |
+ |
#ifdef IS_MPI |
623 |
+ |
return nAtomsInRow_; |
624 |
+ |
#else |
625 |
+ |
return nLocal_; |
626 |
+ |
#endif |
627 |
+ |
} |
628 |
+ |
|
629 |
+ |
/** |
630 |
+ |
* returns the list of atoms belonging to this group. |
631 |
+ |
*/ |
632 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
633 |
+ |
#ifdef IS_MPI |
634 |
+ |
return groupListRow_[cg1]; |
635 |
+ |
#else |
636 |
+ |
return groupList_[cg1]; |
637 |
+ |
#endif |
638 |
+ |
} |
639 |
+ |
|
640 |
+ |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
641 |
+ |
#ifdef IS_MPI |
642 |
+ |
return groupListCol_[cg2]; |
643 |
+ |
#else |
644 |
+ |
return groupList_[cg2]; |
645 |
+ |
#endif |
646 |
+ |
} |
647 |
|
|
648 |
|
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
649 |
|
Vector3d d; |
685 |
|
snap_->wrapVector(d); |
686 |
|
return d; |
687 |
|
} |
688 |
+ |
|
689 |
+ |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
690 |
+ |
#ifdef IS_MPI |
691 |
+ |
return massFactorsRow[atom1]; |
692 |
+ |
#else |
693 |
+ |
return massFactors[atom1]; |
694 |
+ |
#endif |
695 |
+ |
} |
696 |
+ |
|
697 |
+ |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
698 |
+ |
#ifdef IS_MPI |
699 |
+ |
return massFactorsCol[atom2]; |
700 |
+ |
#else |
701 |
+ |
return massFactors[atom2]; |
702 |
+ |
#endif |
703 |
+ |
|
704 |
+ |
} |
705 |
|
|
706 |
|
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
707 |
|
Vector3d d; |
716 |
|
return d; |
717 |
|
} |
718 |
|
|
719 |
+ |
vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { |
720 |
+ |
return skipsForAtom[atom1]; |
721 |
+ |
} |
722 |
+ |
|
723 |
+ |
/** |
724 |
+ |
* There are a number of reasons to skip a pair or a |
725 |
+ |
* particle. Mostly we do this to exclude atoms who are involved in |
726 |
+ |
* short range interactions (bonds, bends, torsions), but we also |
727 |
+ |
* need to exclude some overcounted interactions that result from |
728 |
+ |
* the parallel decomposition. |
729 |
+ |
*/ |
730 |
+ |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
731 |
+ |
int unique_id_1, unique_id_2; |
732 |
+ |
|
733 |
+ |
#ifdef IS_MPI |
734 |
+ |
// in MPI, we have to look up the unique IDs for each atom |
735 |
+ |
unique_id_1 = AtomRowToGlobal[atom1]; |
736 |
+ |
unique_id_2 = AtomColToGlobal[atom2]; |
737 |
+ |
|
738 |
+ |
// this situation should only arise in MPI simulations |
739 |
+ |
if (unique_id_1 == unique_id_2) return true; |
740 |
+ |
|
741 |
+ |
// this prevents us from doing the pair on multiple processors |
742 |
+ |
if (unique_id_1 < unique_id_2) { |
743 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
744 |
+ |
} else { |
745 |
+ |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
746 |
+ |
} |
747 |
+ |
#else |
748 |
+ |
// in the normal loop, the atom numbers are unique |
749 |
+ |
unique_id_1 = atom1; |
750 |
+ |
unique_id_2 = atom2; |
751 |
+ |
#endif |
752 |
+ |
|
753 |
+ |
for (vector<int>::iterator i = skipsForAtom[atom1].begin(); |
754 |
+ |
i != skipsForAtom[atom1].end(); ++i) { |
755 |
+ |
if ( (*i) == unique_id_2 ) return true; |
756 |
+ |
} |
757 |
+ |
|
758 |
+ |
return false; |
759 |
+ |
} |
760 |
+ |
|
761 |
+ |
|
762 |
|
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
763 |
|
#ifdef IS_MPI |
764 |
|
atomRowData.force[atom1] += fg; |
776 |
|
} |
777 |
|
|
778 |
|
// filling interaction blocks with pointers |
779 |
< |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
780 |
< |
InteractionData idat; |
321 |
< |
|
779 |
> |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
780 |
> |
int atom1, int atom2) { |
781 |
|
#ifdef IS_MPI |
782 |
+ |
|
783 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
784 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
785 |
+ |
|
786 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
787 |
|
idat.A1 = &(atomRowData.aMat[atom1]); |
788 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
803 |
|
idat.rho2 = &(atomColData.density[atom2]); |
804 |
|
} |
805 |
|
|
806 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
807 |
+ |
idat.frho1 = &(atomRowData.functional[atom1]); |
808 |
+ |
idat.frho2 = &(atomColData.functional[atom2]); |
809 |
+ |
} |
810 |
+ |
|
811 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
812 |
|
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
813 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
814 |
|
} |
815 |
+ |
|
816 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
817 |
+ |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
818 |
+ |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
819 |
+ |
} |
820 |
+ |
|
821 |
|
#else |
822 |
+ |
|
823 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
824 |
+ |
ff_->getAtomType(idents[atom2]) ); |
825 |
+ |
|
826 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
827 |
|
idat.A1 = &(snap_->atomData.aMat[atom1]); |
828 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
838 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
839 |
|
} |
840 |
|
|
841 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
841 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
842 |
|
idat.rho1 = &(snap_->atomData.density[atom1]); |
843 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
844 |
|
} |
845 |
|
|
846 |
+ |
if (storageLayout_ & DataStorage::dslFunctional) { |
847 |
+ |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
848 |
+ |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
849 |
+ |
} |
850 |
+ |
|
851 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
852 |
|
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
853 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
854 |
|
} |
855 |
+ |
|
856 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
857 |
+ |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
858 |
+ |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
859 |
+ |
} |
860 |
+ |
|
861 |
|
#endif |
373 |
– |
return idat; |
862 |
|
} |
863 |
|
|
864 |
< |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
864 |
> |
|
865 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
866 |
> |
#ifdef IS_MPI |
867 |
> |
pot_row[atom1] += 0.5 * *(idat.pot); |
868 |
> |
pot_col[atom2] += 0.5 * *(idat.pot); |
869 |
|
|
870 |
< |
InteractionData idat; |
870 |
> |
atomRowData.force[atom1] += *(idat.f1); |
871 |
> |
atomColData.force[atom2] -= *(idat.f1); |
872 |
> |
#else |
873 |
> |
pairwisePot += *(idat.pot); |
874 |
> |
|
875 |
> |
snap_->atomData.force[atom1] += *(idat.f1); |
876 |
> |
snap_->atomData.force[atom2] -= *(idat.f1); |
877 |
> |
#endif |
878 |
> |
|
879 |
> |
} |
880 |
> |
|
881 |
> |
|
882 |
> |
void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, |
883 |
> |
int atom1, int atom2) { |
884 |
> |
// Still Missing:: skippedCharge fill must be added to DataStorage |
885 |
|
#ifdef IS_MPI |
886 |
+ |
idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
887 |
+ |
ff_->getAtomType(identsCol[atom2]) ); |
888 |
+ |
|
889 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
890 |
|
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
891 |
|
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
894 |
|
idat.t1 = &(atomRowData.torque[atom1]); |
895 |
|
idat.t2 = &(atomColData.torque[atom2]); |
896 |
|
} |
388 |
– |
if (storageLayout_ & DataStorage::dslForce) { |
389 |
– |
idat.t1 = &(atomRowData.force[atom1]); |
390 |
– |
idat.t2 = &(atomColData.force[atom2]); |
391 |
– |
} |
897 |
|
#else |
898 |
+ |
idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
899 |
+ |
ff_->getAtomType(idents[atom2]) ); |
900 |
+ |
|
901 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
902 |
|
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
903 |
|
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
906 |
|
idat.t1 = &(snap_->atomData.torque[atom1]); |
907 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
908 |
|
} |
909 |
< |
if (storageLayout_ & DataStorage::dslForce) { |
402 |
< |
idat.t1 = &(snap_->atomData.force[atom1]); |
403 |
< |
idat.t2 = &(snap_->atomData.force[atom2]); |
404 |
< |
} |
405 |
< |
#endif |
406 |
< |
|
909 |
> |
#endif |
910 |
|
} |
911 |
|
|
912 |
< |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
913 |
< |
SelfData sdat; |
914 |
< |
// Still Missing atype, skippedCharge, potVec pot, |
915 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
916 |
< |
sdat.eFrame = &(snap_->atomData.electroFrame[atom1]); |
917 |
< |
} |
918 |
< |
|
919 |
< |
if (storageLayout_ & DataStorage::dslTorque) { |
417 |
< |
sdat.t = &(snap_->atomData.torque[atom1]); |
418 |
< |
} |
419 |
< |
|
420 |
< |
if (storageLayout_ & DataStorage::dslDensity) { |
421 |
< |
sdat.rho = &(snap_->atomData.density[atom1]); |
422 |
< |
} |
423 |
< |
|
424 |
< |
if (storageLayout_ & DataStorage::dslFunctional) { |
425 |
< |
sdat.frho = &(snap_->atomData.functional[atom1]); |
426 |
< |
} |
427 |
< |
|
428 |
< |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
429 |
< |
sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
430 |
< |
} |
912 |
> |
|
913 |
> |
void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { |
914 |
> |
#ifdef IS_MPI |
915 |
> |
pot_row[atom1] += 0.5 * *(idat.pot); |
916 |
> |
pot_col[atom2] += 0.5 * *(idat.pot); |
917 |
> |
#else |
918 |
> |
pairwisePot += *(idat.pot); |
919 |
> |
#endif |
920 |
|
|
432 |
– |
return sdat; |
921 |
|
} |
922 |
|
|
923 |
|
|
436 |
– |
|
924 |
|
/* |
925 |
|
* buildNeighborList |
926 |
|
* |
930 |
|
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
931 |
|
|
932 |
|
vector<pair<int, int> > neighborList; |
933 |
+ |
groupCutoffs cuts; |
934 |
|
#ifdef IS_MPI |
935 |
< |
CellListRow.clear(); |
936 |
< |
CellListCol.clear(); |
935 |
> |
cellListRow_.clear(); |
936 |
> |
cellListCol_.clear(); |
937 |
|
#else |
938 |
< |
CellList.clear(); |
938 |
> |
cellList_.clear(); |
939 |
|
#endif |
940 |
|
|
941 |
< |
// dangerous to not do error checking. |
454 |
< |
RealType skinThickness_ = info_->getSimParams()->getSkinThickness(); |
455 |
< |
RealType rCut_; |
456 |
< |
|
457 |
< |
RealType rList_ = (rCut_ + skinThickness_); |
941 |
> |
RealType rList_ = (largestRcut_ + skinThickness_); |
942 |
|
RealType rl2 = rList_ * rList_; |
943 |
|
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
944 |
|
Mat3x3d Hmat = snap_->getHmat(); |
945 |
|
Vector3d Hx = Hmat.getColumn(0); |
946 |
|
Vector3d Hy = Hmat.getColumn(1); |
947 |
|
Vector3d Hz = Hmat.getColumn(2); |
464 |
– |
Vector3i nCells; |
948 |
|
|
949 |
< |
nCells.x() = (int) ( Hx.length() )/ rList_; |
950 |
< |
nCells.y() = (int) ( Hy.length() )/ rList_; |
951 |
< |
nCells.z() = (int) ( Hz.length() )/ rList_; |
949 |
> |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
950 |
> |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
951 |
> |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
952 |
|
|
953 |
|
Mat3x3d invHmat = snap_->getInvHmat(); |
954 |
|
Vector3d rs, scaled, dr; |
955 |
|
Vector3i whichCell; |
956 |
|
int cellIndex; |
957 |
+ |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
958 |
|
|
959 |
|
#ifdef IS_MPI |
960 |
+ |
cellListRow_.resize(nCtot); |
961 |
+ |
cellListCol_.resize(nCtot); |
962 |
+ |
#else |
963 |
+ |
cellList_.resize(nCtot); |
964 |
+ |
#endif |
965 |
+ |
|
966 |
+ |
#ifdef IS_MPI |
967 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
968 |
|
rs = cgRowData.position[i]; |
969 |
+ |
|
970 |
|
// scaled positions relative to the box vectors |
971 |
|
scaled = invHmat * rs; |
972 |
+ |
|
973 |
|
// wrap the vector back into the unit box by subtracting integer box |
974 |
|
// numbers |
975 |
< |
for (int j = 0; j < 3; j++) |
975 |
> |
for (int j = 0; j < 3; j++) { |
976 |
|
scaled[j] -= roundMe(scaled[j]); |
977 |
+ |
scaled[j] += 0.5; |
978 |
+ |
} |
979 |
|
|
980 |
|
// find xyz-indices of cell that cutoffGroup is in. |
981 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
982 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
983 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
981 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
982 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
983 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
984 |
|
|
985 |
|
// find single index of this cell: |
986 |
< |
cellIndex = Vlinear(whichCell, nCells); |
986 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
987 |
> |
|
988 |
|
// add this cutoff group to the list of groups in this cell; |
989 |
< |
CellListRow[cellIndex].push_back(i); |
989 |
> |
cellListRow_[cellIndex].push_back(i); |
990 |
|
} |
991 |
|
|
992 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
993 |
|
rs = cgColData.position[i]; |
994 |
+ |
|
995 |
|
// scaled positions relative to the box vectors |
996 |
|
scaled = invHmat * rs; |
997 |
+ |
|
998 |
|
// wrap the vector back into the unit box by subtracting integer box |
999 |
|
// numbers |
1000 |
< |
for (int j = 0; j < 3; j++) |
1000 |
> |
for (int j = 0; j < 3; j++) { |
1001 |
|
scaled[j] -= roundMe(scaled[j]); |
1002 |
+ |
scaled[j] += 0.5; |
1003 |
+ |
} |
1004 |
|
|
1005 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1006 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
1007 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
1008 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
1006 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1007 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1008 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1009 |
|
|
1010 |
|
// find single index of this cell: |
1011 |
< |
cellIndex = Vlinear(whichCell, nCells); |
1011 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1012 |
> |
|
1013 |
|
// add this cutoff group to the list of groups in this cell; |
1014 |
< |
CellListCol[cellIndex].push_back(i); |
1014 |
> |
cellListCol_[cellIndex].push_back(i); |
1015 |
|
} |
1016 |
|
#else |
1017 |
|
for (int i = 0; i < nGroups_; i++) { |
1018 |
|
rs = snap_->cgData.position[i]; |
1019 |
+ |
|
1020 |
|
// scaled positions relative to the box vectors |
1021 |
|
scaled = invHmat * rs; |
1022 |
+ |
|
1023 |
|
// wrap the vector back into the unit box by subtracting integer box |
1024 |
|
// numbers |
1025 |
< |
for (int j = 0; j < 3; j++) |
1025 |
> |
for (int j = 0; j < 3; j++) { |
1026 |
|
scaled[j] -= roundMe(scaled[j]); |
1027 |
+ |
scaled[j] += 0.5; |
1028 |
+ |
} |
1029 |
|
|
1030 |
|
// find xyz-indices of cell that cutoffGroup is in. |
1031 |
< |
whichCell.x() = nCells.x() * scaled.x(); |
1032 |
< |
whichCell.y() = nCells.y() * scaled.y(); |
1033 |
< |
whichCell.z() = nCells.z() * scaled.z(); |
1031 |
> |
whichCell.x() = nCells_.x() * scaled.x(); |
1032 |
> |
whichCell.y() = nCells_.y() * scaled.y(); |
1033 |
> |
whichCell.z() = nCells_.z() * scaled.z(); |
1034 |
|
|
1035 |
|
// find single index of this cell: |
1036 |
< |
cellIndex = Vlinear(whichCell, nCells); |
1036 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
1037 |
> |
|
1038 |
|
// add this cutoff group to the list of groups in this cell; |
1039 |
< |
CellList[cellIndex].push_back(i); |
1039 |
> |
cellList_[cellIndex].push_back(i); |
1040 |
|
} |
1041 |
|
#endif |
1042 |
|
|
1043 |
< |
|
1044 |
< |
|
1045 |
< |
for (int m1z = 0; m1z < nCells.z(); m1z++) { |
540 |
< |
for (int m1y = 0; m1y < nCells.y(); m1y++) { |
541 |
< |
for (int m1x = 0; m1x < nCells.x(); m1x++) { |
1043 |
> |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
1044 |
> |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
1045 |
> |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
1046 |
|
Vector3i m1v(m1x, m1y, m1z); |
1047 |
< |
int m1 = Vlinear(m1v, nCells); |
544 |
< |
for (int offset = 0; offset < nOffset_; offset++) { |
545 |
< |
Vector3i m2v = m1v + cellOffsets_[offset]; |
1047 |
> |
int m1 = Vlinear(m1v, nCells_); |
1048 |
|
|
1049 |
< |
if (m2v.x() >= nCells.x()) { |
1049 |
> |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
1050 |
> |
os != cellOffsets_.end(); ++os) { |
1051 |
> |
|
1052 |
> |
Vector3i m2v = m1v + (*os); |
1053 |
> |
|
1054 |
> |
if (m2v.x() >= nCells_.x()) { |
1055 |
|
m2v.x() = 0; |
1056 |
|
} else if (m2v.x() < 0) { |
1057 |
< |
m2v.x() = nCells.x() - 1; |
1057 |
> |
m2v.x() = nCells_.x() - 1; |
1058 |
|
} |
1059 |
< |
|
1060 |
< |
if (m2v.y() >= nCells.y()) { |
1059 |
> |
|
1060 |
> |
if (m2v.y() >= nCells_.y()) { |
1061 |
|
m2v.y() = 0; |
1062 |
|
} else if (m2v.y() < 0) { |
1063 |
< |
m2v.y() = nCells.y() - 1; |
1063 |
> |
m2v.y() = nCells_.y() - 1; |
1064 |
|
} |
1065 |
< |
|
1066 |
< |
if (m2v.z() >= nCells.z()) { |
1065 |
> |
|
1066 |
> |
if (m2v.z() >= nCells_.z()) { |
1067 |
|
m2v.z() = 0; |
1068 |
|
} else if (m2v.z() < 0) { |
1069 |
< |
m2v.z() = nCells.z() - 1; |
1069 |
> |
m2v.z() = nCells_.z() - 1; |
1070 |
|
} |
1071 |
+ |
|
1072 |
+ |
int m2 = Vlinear (m2v, nCells_); |
1073 |
|
|
565 |
– |
int m2 = Vlinear (m2v, nCells); |
566 |
– |
|
1074 |
|
#ifdef IS_MPI |
1075 |
< |
for (vector<int>::iterator j1 = CellListRow[m1].begin(); |
1076 |
< |
j1 != CellListRow[m1].end(); ++j1) { |
1077 |
< |
for (vector<int>::iterator j2 = CellListCol[m2].begin(); |
1078 |
< |
j2 != CellListCol[m2].end(); ++j2) { |
1075 |
> |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1076 |
> |
j1 != cellListRow_[m1].end(); ++j1) { |
1077 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1078 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
1079 |
|
|
1080 |
|
// Always do this if we're in different cells or if |
1081 |
|
// we're in the same cell and the global index of the |
1084 |
|
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
1085 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1086 |
|
snap_->wrapVector(dr); |
1087 |
< |
if (dr.lengthSquare() < rl2) { |
1087 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1088 |
> |
if (dr.lengthSquare() < cuts.third) { |
1089 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1090 |
|
} |
1091 |
|
} |
1092 |
|
} |
1093 |
|
} |
1094 |
|
#else |
1095 |
< |
for (vector<int>::iterator j1 = CellList[m1].begin(); |
1096 |
< |
j1 != CellList[m1].end(); ++j1) { |
1097 |
< |
for (vector<int>::iterator j2 = CellList[m2].begin(); |
1098 |
< |
j2 != CellList[m2].end(); ++j2) { |
1099 |
< |
|
1095 |
> |
|
1096 |
> |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
1097 |
> |
j1 != cellList_[m1].end(); ++j1) { |
1098 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
1099 |
> |
j2 != cellList_[m2].end(); ++j2) { |
1100 |
> |
|
1101 |
|
// Always do this if we're in different cells or if |
1102 |
|
// we're in the same cell and the global index of the |
1103 |
|
// j2 cutoff group is less than the j1 cutoff group |
1105 |
|
if (m2 != m1 || (*j2) < (*j1)) { |
1106 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1107 |
|
snap_->wrapVector(dr); |
1108 |
< |
if (dr.lengthSquare() < rl2) { |
1108 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1109 |
> |
if (dr.lengthSquare() < cuts.third) { |
1110 |
|
neighborList.push_back(make_pair((*j1), (*j2))); |
1111 |
|
} |
1112 |
|
} |
1117 |
|
} |
1118 |
|
} |
1119 |
|
} |
1120 |
+ |
|
1121 |
+ |
// save the local cutoff group positions for the check that is |
1122 |
+ |
// done on each loop: |
1123 |
+ |
saved_CG_positions_.clear(); |
1124 |
+ |
for (int i = 0; i < nGroups_; i++) |
1125 |
+ |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1126 |
+ |
|
1127 |
|
return neighborList; |
1128 |
|
} |
1129 |
|
} //end namespace OpenMD |