ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1893
Committed: Wed Jun 19 17:19:07 2013 UTC (11 years, 10 months ago) by gezelter
File size: 54005 byte(s)
Log Message:
Some performance improvements

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 chuckv 1538 */
42 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
43 gezelter 1539 #include "math/SquareMatrix3.hpp"
44 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
45     #include "brains/SnapshotManager.hpp"
46 gezelter 1570 #include "brains/PairList.hpp"
47 chuckv 1538
48 gezelter 1541 using namespace std;
49 gezelter 1539 namespace OpenMD {
50 chuckv 1538
51 gezelter 1593 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52    
53     // In a parallel computation, row and colum scans must visit all
54     // surrounding cells (not just the 14 upper triangular blocks that
55     // are used when the processor can see all pairs)
56     #ifdef IS_MPI
57 gezelter 1612 cellOffsets_.clear();
58     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61     cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 gezelter 1593 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 gezelter 1612 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71     cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72     cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73     cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74     cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75     cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76     cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77     cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78     cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 gezelter 1593 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 gezelter 1612 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81     cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82     cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83     cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84     cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 gezelter 1593 #endif
86     }
87    
88    
89 gezelter 1544 /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
93 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
94 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
95     storageLayout_ = sman_->getStorageLayout();
96 gezelter 1571 ff_ = info_->getForceField();
97 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
98 gezelter 1723
99 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
100 gezelter 1569 // gather the information for atomtype IDs (atids):
101 gezelter 1583 idents = info_->getIdentArray();
102 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103     cgLocalToGlobal = info_->getGlobalGroupIndices();
104     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 gezelter 1586
106 gezelter 1581 massFactors = info_->getMassFactors();
107 gezelter 1584
108 gezelter 1587 PairList* excludes = info_->getExcludedInteractions();
109     PairList* oneTwo = info_->getOneTwoInteractions();
110     PairList* oneThree = info_->getOneThreeInteractions();
111     PairList* oneFour = info_->getOneFourInteractions();
112 gezelter 1723
113     if (needVelocities_)
114     snap_->cgData.setStorageLayout(DataStorage::dslPosition |
115     DataStorage::dslVelocity);
116     else
117     snap_->cgData.setStorageLayout(DataStorage::dslPosition);
118    
119 gezelter 1567 #ifdef IS_MPI
120    
121 gezelter 1593 MPI::Intracomm row = rowComm.getComm();
122     MPI::Intracomm col = colComm.getComm();
123 chuckv 1538
124 gezelter 1593 AtomPlanIntRow = new Plan<int>(row, nLocal_);
125     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
126     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
127     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
128     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
129 gezelter 1541
130 gezelter 1593 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
131     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
132     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
133     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
134     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
135 gezelter 1551
136 gezelter 1593 cgPlanIntRow = new Plan<int>(row, nGroups_);
137     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
138     cgPlanIntColumn = new Plan<int>(col, nGroups_);
139     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
140 gezelter 1567
141 gezelter 1593 nAtomsInRow_ = AtomPlanIntRow->getSize();
142     nAtomsInCol_ = AtomPlanIntColumn->getSize();
143     nGroupsInRow_ = cgPlanIntRow->getSize();
144     nGroupsInCol_ = cgPlanIntColumn->getSize();
145    
146 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
147 gezelter 1567 atomRowData.resize(nAtomsInRow_);
148 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
149 gezelter 1567 atomColData.resize(nAtomsInCol_);
150 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
151 gezelter 1567 cgRowData.resize(nGroupsInRow_);
152 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
153 gezelter 1567 cgColData.resize(nGroupsInCol_);
154 gezelter 1723 if (needVelocities_)
155     // we only need column velocities if we need them.
156     cgColData.setStorageLayout(DataStorage::dslPosition |
157     DataStorage::dslVelocity);
158     else
159     cgColData.setStorageLayout(DataStorage::dslPosition);
160    
161 gezelter 1577 identsRow.resize(nAtomsInRow_);
162     identsCol.resize(nAtomsInCol_);
163 gezelter 1549
164 gezelter 1593 AtomPlanIntRow->gather(idents, identsRow);
165     AtomPlanIntColumn->gather(idents, identsCol);
166 gezelter 1549
167 gezelter 1589 // allocate memory for the parallel objects
168 gezelter 1591 atypesRow.resize(nAtomsInRow_);
169     atypesCol.resize(nAtomsInCol_);
170    
171     for (int i = 0; i < nAtomsInRow_; i++)
172     atypesRow[i] = ff_->getAtomType(identsRow[i]);
173     for (int i = 0; i < nAtomsInCol_; i++)
174     atypesCol[i] = ff_->getAtomType(identsCol[i]);
175    
176 gezelter 1589 pot_row.resize(nAtomsInRow_);
177     pot_col.resize(nAtomsInCol_);
178    
179 gezelter 1760 expot_row.resize(nAtomsInRow_);
180     expot_col.resize(nAtomsInCol_);
181    
182 gezelter 1591 AtomRowToGlobal.resize(nAtomsInRow_);
183     AtomColToGlobal.resize(nAtomsInCol_);
184 gezelter 1593 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
185     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
186    
187 gezelter 1591 cgRowToGlobal.resize(nGroupsInRow_);
188     cgColToGlobal.resize(nGroupsInCol_);
189 gezelter 1593 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
190     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
191 gezelter 1541
192 gezelter 1591 massFactorsRow.resize(nAtomsInRow_);
193     massFactorsCol.resize(nAtomsInCol_);
194 gezelter 1593 AtomPlanRealRow->gather(massFactors, massFactorsRow);
195     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
196 gezelter 1569
197     groupListRow_.clear();
198 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
199 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
200     int gid = cgRowToGlobal[i];
201     for (int j = 0; j < nAtomsInRow_; j++) {
202     int aid = AtomRowToGlobal[j];
203     if (globalGroupMembership[aid] == gid)
204     groupListRow_[i].push_back(j);
205     }
206     }
207    
208     groupListCol_.clear();
209 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
210 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
211     int gid = cgColToGlobal[i];
212     for (int j = 0; j < nAtomsInCol_; j++) {
213     int aid = AtomColToGlobal[j];
214     if (globalGroupMembership[aid] == gid)
215     groupListCol_[i].push_back(j);
216     }
217     }
218    
219 gezelter 1587 excludesForAtom.clear();
220     excludesForAtom.resize(nAtomsInRow_);
221 gezelter 1579 toposForAtom.clear();
222     toposForAtom.resize(nAtomsInRow_);
223     topoDist.clear();
224     topoDist.resize(nAtomsInRow_);
225 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
226 gezelter 1571 int iglob = AtomRowToGlobal[i];
227 gezelter 1579
228 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
229 gezelter 1579 int jglob = AtomColToGlobal[j];
230    
231 gezelter 1587 if (excludes->hasPair(iglob, jglob))
232     excludesForAtom[i].push_back(j);
233 gezelter 1579
234 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
235 gezelter 1579 toposForAtom[i].push_back(j);
236     topoDist[i].push_back(1);
237     } else {
238 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
239 gezelter 1579 toposForAtom[i].push_back(j);
240     topoDist[i].push_back(2);
241     } else {
242 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
243 gezelter 1579 toposForAtom[i].push_back(j);
244     topoDist[i].push_back(3);
245     }
246     }
247 gezelter 1570 }
248     }
249     }
250    
251 gezelter 1613 #else
252 gezelter 1587 excludesForAtom.clear();
253     excludesForAtom.resize(nLocal_);
254 gezelter 1579 toposForAtom.clear();
255     toposForAtom.resize(nLocal_);
256     topoDist.clear();
257     topoDist.resize(nLocal_);
258 gezelter 1569
259 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
260     int iglob = AtomLocalToGlobal[i];
261 gezelter 1579
262 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
263 gezelter 1579 int jglob = AtomLocalToGlobal[j];
264    
265 gezelter 1616 if (excludes->hasPair(iglob, jglob))
266 gezelter 1587 excludesForAtom[i].push_back(j);
267 gezelter 1579
268 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
269 gezelter 1579 toposForAtom[i].push_back(j);
270     topoDist[i].push_back(1);
271     } else {
272 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
273 gezelter 1579 toposForAtom[i].push_back(j);
274     topoDist[i].push_back(2);
275     } else {
276 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
277 gezelter 1579 toposForAtom[i].push_back(j);
278     topoDist[i].push_back(3);
279     }
280     }
281 gezelter 1570 }
282     }
283 gezelter 1579 }
284 gezelter 1613 #endif
285    
286     // allocate memory for the parallel objects
287     atypesLocal.resize(nLocal_);
288    
289     for (int i = 0; i < nLocal_; i++)
290     atypesLocal[i] = ff_->getAtomType(idents[i]);
291    
292     groupList_.clear();
293     groupList_.resize(nGroups_);
294     for (int i = 0; i < nGroups_; i++) {
295     int gid = cgLocalToGlobal[i];
296     for (int j = 0; j < nLocal_; j++) {
297     int aid = AtomLocalToGlobal[j];
298     if (globalGroupMembership[aid] == gid) {
299     groupList_[i].push_back(j);
300     }
301     }
302     }
303    
304    
305 gezelter 1579 createGtypeCutoffMap();
306 gezelter 1587
307 gezelter 1576 }
308    
309     void ForceMatrixDecomposition::createGtypeCutoffMap() {
310 gezelter 1586
311 gezelter 1576 RealType tol = 1e-6;
312 gezelter 1592 largestRcut_ = 0.0;
313 gezelter 1576 int atid;
314     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
315 gezelter 1592
316 gezelter 1587 map<int, RealType> atypeCutoff;
317 gezelter 1583
318 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
319     at != atypes.end(); ++at){
320 gezelter 1576 atid = (*at)->getIdent();
321 gezelter 1587 if (userChoseCutoff_)
322 gezelter 1583 atypeCutoff[atid] = userCutoff_;
323 gezelter 1592 else
324 gezelter 1583 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
325 gezelter 1570 }
326 gezelter 1592
327 gezelter 1576 vector<RealType> gTypeCutoffs;
328     // first we do a single loop over the cutoff groups to find the
329     // largest cutoff for any atypes present in this group.
330     #ifdef IS_MPI
331     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
332 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
333 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
334     vector<int> atomListRow = getAtomsInGroupRow(cg1);
335     for (vector<int>::iterator ia = atomListRow.begin();
336     ia != atomListRow.end(); ++ia) {
337     int atom1 = (*ia);
338     atid = identsRow[atom1];
339     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
340     groupCutoffRow[cg1] = atypeCutoff[atid];
341     }
342     }
343    
344     bool gTypeFound = false;
345     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
346     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
347     groupRowToGtype[cg1] = gt;
348     gTypeFound = true;
349     }
350     }
351     if (!gTypeFound) {
352     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
353     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
354     }
355    
356     }
357     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
358 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
359 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
360     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
361     for (vector<int>::iterator jb = atomListCol.begin();
362     jb != atomListCol.end(); ++jb) {
363     int atom2 = (*jb);
364     atid = identsCol[atom2];
365     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
366     groupCutoffCol[cg2] = atypeCutoff[atid];
367     }
368     }
369     bool gTypeFound = false;
370     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
371     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
372     groupColToGtype[cg2] = gt;
373     gTypeFound = true;
374     }
375     }
376     if (!gTypeFound) {
377     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
378     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
379     }
380     }
381     #else
382 gezelter 1579
383 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
384 gezelter 1579 groupToGtype.resize(nGroups_);
385 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
386     groupCutoff[cg1] = 0.0;
387     vector<int> atomList = getAtomsInGroupRow(cg1);
388     for (vector<int>::iterator ia = atomList.begin();
389     ia != atomList.end(); ++ia) {
390     int atom1 = (*ia);
391 gezelter 1583 atid = idents[atom1];
392 gezelter 1592 if (atypeCutoff[atid] > groupCutoff[cg1])
393 gezelter 1576 groupCutoff[cg1] = atypeCutoff[atid];
394     }
395 gezelter 1592
396 gezelter 1576 bool gTypeFound = false;
397 gezelter 1767 for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) {
398 gezelter 1576 if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
399     groupToGtype[cg1] = gt;
400     gTypeFound = true;
401     }
402     }
403 gezelter 1592 if (!gTypeFound) {
404 gezelter 1576 gTypeCutoffs.push_back( groupCutoff[cg1] );
405     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
406     }
407     }
408     #endif
409    
410     // Now we find the maximum group cutoff value present in the simulation
411    
412 gezelter 1590 RealType groupMax = *max_element(gTypeCutoffs.begin(),
413     gTypeCutoffs.end());
414 gezelter 1576
415     #ifdef IS_MPI
416 gezelter 1590 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
417     MPI::MAX);
418 gezelter 1576 #endif
419    
420     RealType tradRcut = groupMax;
421    
422 gezelter 1767 for (unsigned int i = 0; i < gTypeCutoffs.size(); i++) {
423     for (unsigned int j = 0; j < gTypeCutoffs.size(); j++) {
424 gezelter 1576 RealType thisRcut;
425     switch(cutoffPolicy_) {
426     case TRADITIONAL:
427     thisRcut = tradRcut;
428 gezelter 1579 break;
429 gezelter 1576 case MIX:
430     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
431 gezelter 1579 break;
432 gezelter 1576 case MAX:
433     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
434 gezelter 1579 break;
435 gezelter 1576 default:
436     sprintf(painCave.errMsg,
437     "ForceMatrixDecomposition::createGtypeCutoffMap "
438     "hit an unknown cutoff policy!\n");
439     painCave.severity = OPENMD_ERROR;
440     painCave.isFatal = 1;
441 gezelter 1579 simError();
442     break;
443 gezelter 1576 }
444    
445     pair<int,int> key = make_pair(i,j);
446     gTypeCutoffMap[key].first = thisRcut;
447     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
448     gTypeCutoffMap[key].second = thisRcut*thisRcut;
449     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
450     // sanity check
451    
452     if (userChoseCutoff_) {
453     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
454     sprintf(painCave.errMsg,
455     "ForceMatrixDecomposition::createGtypeCutoffMap "
456 gezelter 1583 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
457 gezelter 1576 painCave.severity = OPENMD_ERROR;
458     painCave.isFatal = 1;
459     simError();
460     }
461     }
462     }
463     }
464 gezelter 1539 }
465 gezelter 1576
466     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
467 gezelter 1579 int i, j;
468 gezelter 1576 #ifdef IS_MPI
469     i = groupRowToGtype[cg1];
470     j = groupColToGtype[cg2];
471     #else
472     i = groupToGtype[cg1];
473     j = groupToGtype[cg2];
474 gezelter 1579 #endif
475 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
476     }
477    
478 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
479 gezelter 1767 for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) {
480 gezelter 1579 if (toposForAtom[atom1][j] == atom2)
481     return topoDist[atom1][j];
482 gezelter 1893 }
483 gezelter 1579 return 0;
484     }
485 gezelter 1576
486 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
487 gezelter 1583 pairwisePot = 0.0;
488     embeddingPot = 0.0;
489 gezelter 1760 excludedPot = 0.0;
490 gezelter 1761 excludedSelfPot = 0.0;
491 gezelter 1575
492     #ifdef IS_MPI
493     if (storageLayout_ & DataStorage::dslForce) {
494     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
495     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
496     }
497    
498     if (storageLayout_ & DataStorage::dslTorque) {
499     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
500     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
501     }
502    
503     fill(pot_row.begin(), pot_row.end(),
504     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
505    
506     fill(pot_col.begin(), pot_col.end(),
507 gezelter 1583 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
508 gezelter 1575
509 gezelter 1760 fill(expot_row.begin(), expot_row.end(),
510     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
511    
512     fill(expot_col.begin(), expot_col.end(),
513     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
514    
515 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
516 gezelter 1590 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
517     0.0);
518     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
519     0.0);
520 gezelter 1575 }
521    
522     if (storageLayout_ & DataStorage::dslDensity) {
523     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
524     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
525     }
526    
527     if (storageLayout_ & DataStorage::dslFunctional) {
528 gezelter 1590 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
529     0.0);
530     fill(atomColData.functional.begin(), atomColData.functional.end(),
531     0.0);
532 gezelter 1575 }
533    
534     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
535     fill(atomRowData.functionalDerivative.begin(),
536     atomRowData.functionalDerivative.end(), 0.0);
537     fill(atomColData.functionalDerivative.begin(),
538     atomColData.functionalDerivative.end(), 0.0);
539     }
540    
541 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
542 gezelter 1587 fill(atomRowData.skippedCharge.begin(),
543     atomRowData.skippedCharge.end(), 0.0);
544     fill(atomColData.skippedCharge.begin(),
545     atomColData.skippedCharge.end(), 0.0);
546 gezelter 1586 }
547    
548 gezelter 1721 if (storageLayout_ & DataStorage::dslFlucQForce) {
549     fill(atomRowData.flucQFrc.begin(),
550     atomRowData.flucQFrc.end(), 0.0);
551     fill(atomColData.flucQFrc.begin(),
552     atomColData.flucQFrc.end(), 0.0);
553     }
554    
555 gezelter 1713 if (storageLayout_ & DataStorage::dslElectricField) {
556     fill(atomRowData.electricField.begin(),
557     atomRowData.electricField.end(), V3Zero);
558     fill(atomColData.electricField.begin(),
559     atomColData.electricField.end(), V3Zero);
560     }
561 gezelter 1721
562 gezelter 1590 #endif
563     // even in parallel, we need to zero out the local arrays:
564    
565 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
566     fill(snap_->atomData.particlePot.begin(),
567     snap_->atomData.particlePot.end(), 0.0);
568     }
569    
570     if (storageLayout_ & DataStorage::dslDensity) {
571     fill(snap_->atomData.density.begin(),
572     snap_->atomData.density.end(), 0.0);
573     }
574 gezelter 1706
575 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
576     fill(snap_->atomData.functional.begin(),
577     snap_->atomData.functional.end(), 0.0);
578     }
579 gezelter 1706
580 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
581     fill(snap_->atomData.functionalDerivative.begin(),
582     snap_->atomData.functionalDerivative.end(), 0.0);
583     }
584 gezelter 1706
585 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
586     fill(snap_->atomData.skippedCharge.begin(),
587     snap_->atomData.skippedCharge.end(), 0.0);
588     }
589 gezelter 1713
590     if (storageLayout_ & DataStorage::dslElectricField) {
591     fill(snap_->atomData.electricField.begin(),
592     snap_->atomData.electricField.end(), V3Zero);
593     }
594 gezelter 1575 }
595    
596    
597 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
598 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
599     storageLayout_ = sman_->getStorageLayout();
600 chuckv 1538 #ifdef IS_MPI
601 gezelter 1540
602 gezelter 1539 // gather up the atomic positions
603 gezelter 1593 AtomPlanVectorRow->gather(snap_->atomData.position,
604 gezelter 1551 atomRowData.position);
605 gezelter 1593 AtomPlanVectorColumn->gather(snap_->atomData.position,
606 gezelter 1551 atomColData.position);
607 gezelter 1539
608     // gather up the cutoff group positions
609 gezelter 1593
610     cgPlanVectorRow->gather(snap_->cgData.position,
611 gezelter 1551 cgRowData.position);
612 gezelter 1593
613     cgPlanVectorColumn->gather(snap_->cgData.position,
614 gezelter 1551 cgColData.position);
615 gezelter 1593
616 gezelter 1723
617    
618     if (needVelocities_) {
619     // gather up the atomic velocities
620     AtomPlanVectorColumn->gather(snap_->atomData.velocity,
621     atomColData.velocity);
622    
623     cgPlanVectorColumn->gather(snap_->cgData.velocity,
624     cgColData.velocity);
625     }
626    
627 gezelter 1539
628     // if needed, gather the atomic rotation matrices
629 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
630 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
631 gezelter 1551 atomRowData.aMat);
632 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
633 gezelter 1551 atomColData.aMat);
634 gezelter 1539 }
635 gezelter 1879
636     // if needed, gather the atomic eletrostatic information
637     if (storageLayout_ & DataStorage::dslDipole) {
638     AtomPlanVectorRow->gather(snap_->atomData.dipole,
639     atomRowData.dipole);
640     AtomPlanVectorColumn->gather(snap_->atomData.dipole,
641     atomColData.dipole);
642 gezelter 1539 }
643 gezelter 1590
644 gezelter 1879 if (storageLayout_ & DataStorage::dslQuadrupole) {
645     AtomPlanMatrixRow->gather(snap_->atomData.quadrupole,
646     atomRowData.quadrupole);
647     AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole,
648     atomColData.quadrupole);
649     }
650    
651 gezelter 1713 // if needed, gather the atomic fluctuating charge values
652     if (storageLayout_ & DataStorage::dslFlucQPosition) {
653     AtomPlanRealRow->gather(snap_->atomData.flucQPos,
654     atomRowData.flucQPos);
655     AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
656     atomColData.flucQPos);
657     }
658    
659 gezelter 1539 #endif
660     }
661    
662 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
663     * data structures.
664     */
665 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
666 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
667     storageLayout_ = sman_->getStorageLayout();
668 gezelter 1539 #ifdef IS_MPI
669    
670 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
671    
672 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.density,
673 gezelter 1551 snap_->atomData.density);
674    
675     int n = snap_->atomData.density.size();
676 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
677 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
678 gezelter 1539 for (int i = 0; i < n; i++)
679 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
680 gezelter 1539 }
681 gezelter 1713
682 gezelter 1879 // this isn't necessary if we don't have polarizable atoms, but
683     // we'll leave it here for now.
684 gezelter 1713 if (storageLayout_ & DataStorage::dslElectricField) {
685    
686     AtomPlanVectorRow->scatter(atomRowData.electricField,
687     snap_->atomData.electricField);
688    
689     int n = snap_->atomData.electricField.size();
690     vector<Vector3d> field_tmp(n, V3Zero);
691 gezelter 1879 AtomPlanVectorColumn->scatter(atomColData.electricField,
692     field_tmp);
693 gezelter 1713 for (int i = 0; i < n; i++)
694     snap_->atomData.electricField[i] += field_tmp[i];
695     }
696 chuckv 1538 #endif
697 gezelter 1539 }
698 gezelter 1575
699     /*
700     * redistributes information obtained during the pre-pair loop out to
701     * row and column-indexed data structures
702     */
703 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
704 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
705     storageLayout_ = sman_->getStorageLayout();
706 chuckv 1538 #ifdef IS_MPI
707 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
708 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functional,
709 gezelter 1551 atomRowData.functional);
710 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functional,
711 gezelter 1551 atomColData.functional);
712 gezelter 1539 }
713    
714 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
715 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
716 gezelter 1551 atomRowData.functionalDerivative);
717 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
718 gezelter 1551 atomColData.functionalDerivative);
719 gezelter 1539 }
720 chuckv 1538 #endif
721     }
722 gezelter 1539
723    
724 gezelter 1549 void ForceMatrixDecomposition::collectData() {
725 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
726     storageLayout_ = sman_->getStorageLayout();
727     #ifdef IS_MPI
728     int n = snap_->atomData.force.size();
729 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
730 gezelter 1541
731 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
732 gezelter 1541 for (int i = 0; i < n; i++) {
733 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
734 gezelter 1541 frc_tmp[i] = 0.0;
735     }
736 gezelter 1540
737 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
738     for (int i = 0; i < n; i++) {
739 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
740 gezelter 1593 }
741 gezelter 1590
742 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
743 gezelter 1541
744 gezelter 1587 int nt = snap_->atomData.torque.size();
745 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
746 gezelter 1541
747 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
748 gezelter 1587 for (int i = 0; i < nt; i++) {
749 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
750 gezelter 1541 trq_tmp[i] = 0.0;
751     }
752 gezelter 1540
753 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
754 gezelter 1587 for (int i = 0; i < nt; i++)
755 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
756 gezelter 1540 }
757 gezelter 1587
758     if (storageLayout_ & DataStorage::dslSkippedCharge) {
759    
760     int ns = snap_->atomData.skippedCharge.size();
761     vector<RealType> skch_tmp(ns, 0.0);
762    
763 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
764 gezelter 1587 for (int i = 0; i < ns; i++) {
765 gezelter 1590 snap_->atomData.skippedCharge[i] += skch_tmp[i];
766 gezelter 1587 skch_tmp[i] = 0.0;
767     }
768    
769 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
770 gezelter 1613 for (int i = 0; i < ns; i++)
771 gezelter 1587 snap_->atomData.skippedCharge[i] += skch_tmp[i];
772 gezelter 1613
773 gezelter 1587 }
774 gezelter 1540
775 gezelter 1713 if (storageLayout_ & DataStorage::dslFlucQForce) {
776    
777     int nq = snap_->atomData.flucQFrc.size();
778     vector<RealType> fqfrc_tmp(nq, 0.0);
779    
780     AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
781     for (int i = 0; i < nq; i++) {
782     snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
783     fqfrc_tmp[i] = 0.0;
784     }
785    
786     AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
787     for (int i = 0; i < nq; i++)
788     snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
789    
790     }
791    
792 gezelter 1879 if (storageLayout_ & DataStorage::dslElectricField) {
793    
794     int nef = snap_->atomData.electricField.size();
795     vector<Vector3d> efield_tmp(nef, V3Zero);
796    
797     AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp);
798     for (int i = 0; i < nef; i++) {
799     snap_->atomData.electricField[i] += efield_tmp[i];
800     efield_tmp[i] = 0.0;
801     }
802    
803     AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp);
804     for (int i = 0; i < nef; i++)
805     snap_->atomData.electricField[i] += efield_tmp[i];
806     }
807    
808    
809 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
810 gezelter 1544
811 gezelter 1575 vector<potVec> pot_temp(nLocal_,
812     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
813 gezelter 1760 vector<potVec> expot_temp(nLocal_,
814     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
815 gezelter 1575
816     // scatter/gather pot_row into the members of my column
817    
818 gezelter 1593 AtomPlanPotRow->scatter(pot_row, pot_temp);
819 gezelter 1760 AtomPlanPotRow->scatter(expot_row, expot_temp);
820 gezelter 1575
821 gezelter 1760 for (int ii = 0; ii < pot_temp.size(); ii++ )
822 gezelter 1583 pairwisePot += pot_temp[ii];
823 gezelter 1760
824     for (int ii = 0; ii < expot_temp.size(); ii++ )
825     excludedPot += expot_temp[ii];
826 gezelter 1723
827     if (storageLayout_ & DataStorage::dslParticlePot) {
828     // This is the pairwise contribution to the particle pot. The
829     // embedding contribution is added in each of the low level
830     // non-bonded routines. In single processor, this is done in
831     // unpackInteractionData, not in collectData.
832     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
833     for (int i = 0; i < nLocal_; i++) {
834     // factor of two is because the total potential terms are divided
835     // by 2 in parallel due to row/ column scatter
836     snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
837     }
838     }
839     }
840    
841 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
842     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
843 gezelter 1760 fill(expot_temp.begin(), expot_temp.end(),
844     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
845 gezelter 1575
846 gezelter 1593 AtomPlanPotColumn->scatter(pot_col, pot_temp);
847 gezelter 1760 AtomPlanPotColumn->scatter(expot_col, expot_temp);
848 gezelter 1575
849     for (int ii = 0; ii < pot_temp.size(); ii++ )
850 gezelter 1583 pairwisePot += pot_temp[ii];
851 gezelter 1723
852 gezelter 1760 for (int ii = 0; ii < expot_temp.size(); ii++ )
853     excludedPot += expot_temp[ii];
854    
855 gezelter 1723 if (storageLayout_ & DataStorage::dslParticlePot) {
856     // This is the pairwise contribution to the particle pot. The
857     // embedding contribution is added in each of the low level
858     // non-bonded routines. In single processor, this is done in
859     // unpackInteractionData, not in collectData.
860     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
861     for (int i = 0; i < nLocal_; i++) {
862     // factor of two is because the total potential terms are divided
863     // by 2 in parallel due to row/ column scatter
864     snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii);
865     }
866     }
867     }
868 gezelter 1601
869 gezelter 1723 if (storageLayout_ & DataStorage::dslParticlePot) {
870     int npp = snap_->atomData.particlePot.size();
871     vector<RealType> ppot_temp(npp, 0.0);
872    
873     // This is the direct or embedding contribution to the particle
874     // pot.
875    
876     AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp);
877     for (int i = 0; i < npp; i++) {
878     snap_->atomData.particlePot[i] += ppot_temp[i];
879     }
880    
881     fill(ppot_temp.begin(), ppot_temp.end(), 0.0);
882    
883     AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp);
884     for (int i = 0; i < npp; i++) {
885     snap_->atomData.particlePot[i] += ppot_temp[i];
886     }
887     }
888    
889 gezelter 1601 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
890     RealType ploc1 = pairwisePot[ii];
891     RealType ploc2 = 0.0;
892     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
893     pairwisePot[ii] = ploc2;
894     }
895    
896 gezelter 1760 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
897     RealType ploc1 = excludedPot[ii];
898     RealType ploc2 = 0.0;
899     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
900     excludedPot[ii] = ploc2;
901     }
902    
903 gezelter 1723 // Here be dragons.
904     MPI::Intracomm col = colComm.getComm();
905 gezelter 1613
906 gezelter 1723 col.Allreduce(MPI::IN_PLACE,
907     &snap_->frameData.conductiveHeatFlux[0], 3,
908     MPI::REALTYPE, MPI::SUM);
909    
910    
911 gezelter 1539 #endif
912 gezelter 1583
913 chuckv 1538 }
914 gezelter 1551
915 gezelter 1756 /**
916     * Collects information obtained during the post-pair (and embedding
917     * functional) loops onto local data structures.
918     */
919     void ForceMatrixDecomposition::collectSelfData() {
920     snap_ = sman_->getCurrentSnapshot();
921     storageLayout_ = sman_->getStorageLayout();
922    
923     #ifdef IS_MPI
924     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
925     RealType ploc1 = embeddingPot[ii];
926     RealType ploc2 = 0.0;
927     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
928     embeddingPot[ii] = ploc2;
929     }
930 gezelter 1761 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
931     RealType ploc1 = excludedSelfPot[ii];
932     RealType ploc2 = 0.0;
933     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
934     excludedSelfPot[ii] = ploc2;
935     }
936 gezelter 1756 #endif
937    
938     }
939    
940    
941    
942 gezelter 1893 int& ForceMatrixDecomposition::getNAtomsInRow() {
943 gezelter 1570 #ifdef IS_MPI
944     return nAtomsInRow_;
945     #else
946     return nLocal_;
947     #endif
948     }
949    
950 gezelter 1569 /**
951     * returns the list of atoms belonging to this group.
952     */
953 gezelter 1893 vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
954 gezelter 1569 #ifdef IS_MPI
955     return groupListRow_[cg1];
956     #else
957     return groupList_[cg1];
958     #endif
959     }
960    
961 gezelter 1893 vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
962 gezelter 1569 #ifdef IS_MPI
963     return groupListCol_[cg2];
964     #else
965     return groupList_[cg2];
966     #endif
967     }
968 chuckv 1538
969 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
970     Vector3d d;
971    
972     #ifdef IS_MPI
973     d = cgColData.position[cg2] - cgRowData.position[cg1];
974     #else
975     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
976     #endif
977    
978 gezelter 1879 if (usePeriodicBoundaryConditions_) {
979     snap_->wrapVector(d);
980     }
981 gezelter 1551 return d;
982     }
983    
984 gezelter 1893 Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){
985 gezelter 1723 #ifdef IS_MPI
986     return cgColData.velocity[cg2];
987     #else
988     return snap_->cgData.velocity[cg2];
989     #endif
990     }
991 gezelter 1551
992 gezelter 1893 Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){
993 gezelter 1723 #ifdef IS_MPI
994     return atomColData.velocity[atom2];
995     #else
996     return snap_->atomData.velocity[atom2];
997     #endif
998     }
999    
1000    
1001 gezelter 1551 Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
1002    
1003     Vector3d d;
1004    
1005     #ifdef IS_MPI
1006     d = cgRowData.position[cg1] - atomRowData.position[atom1];
1007     #else
1008     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
1009     #endif
1010 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1011     snap_->wrapVector(d);
1012     }
1013 gezelter 1551 return d;
1014     }
1015    
1016     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
1017     Vector3d d;
1018    
1019     #ifdef IS_MPI
1020     d = cgColData.position[cg2] - atomColData.position[atom2];
1021     #else
1022     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
1023     #endif
1024 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1025     snap_->wrapVector(d);
1026     }
1027 gezelter 1551 return d;
1028     }
1029 gezelter 1569
1030 gezelter 1893 RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) {
1031 gezelter 1569 #ifdef IS_MPI
1032     return massFactorsRow[atom1];
1033     #else
1034 gezelter 1581 return massFactors[atom1];
1035 gezelter 1569 #endif
1036     }
1037    
1038 gezelter 1893 RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
1039 gezelter 1569 #ifdef IS_MPI
1040     return massFactorsCol[atom2];
1041     #else
1042 gezelter 1581 return massFactors[atom2];
1043 gezelter 1569 #endif
1044    
1045     }
1046 gezelter 1551
1047     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
1048     Vector3d d;
1049    
1050     #ifdef IS_MPI
1051     d = atomColData.position[atom2] - atomRowData.position[atom1];
1052     #else
1053     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
1054     #endif
1055 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1056     snap_->wrapVector(d);
1057     }
1058 gezelter 1551 return d;
1059     }
1060    
1061 gezelter 1893 vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
1062 gezelter 1587 return excludesForAtom[atom1];
1063 gezelter 1570 }
1064    
1065     /**
1066 gezelter 1587 * We need to exclude some overcounted interactions that result from
1067 gezelter 1575 * the parallel decomposition.
1068 gezelter 1570 */
1069 gezelter 1756 bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) {
1070 gezelter 1796 int unique_id_1, unique_id_2;
1071 gezelter 1616
1072 gezelter 1570 #ifdef IS_MPI
1073     // in MPI, we have to look up the unique IDs for each atom
1074     unique_id_1 = AtomRowToGlobal[atom1];
1075     unique_id_2 = AtomColToGlobal[atom2];
1076 gezelter 1796 // group1 = cgRowToGlobal[cg1];
1077     // group2 = cgColToGlobal[cg2];
1078 gezelter 1616 #else
1079     unique_id_1 = AtomLocalToGlobal[atom1];
1080     unique_id_2 = AtomLocalToGlobal[atom2];
1081 gezelter 1796 int group1 = cgLocalToGlobal[cg1];
1082     int group2 = cgLocalToGlobal[cg2];
1083 gezelter 1616 #endif
1084 gezelter 1570
1085     if (unique_id_1 == unique_id_2) return true;
1086 gezelter 1616
1087     #ifdef IS_MPI
1088 gezelter 1570 // this prevents us from doing the pair on multiple processors
1089     if (unique_id_1 < unique_id_2) {
1090     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
1091     } else {
1092 gezelter 1616 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
1093 gezelter 1570 }
1094 gezelter 1756 #endif
1095    
1096     #ifndef IS_MPI
1097     if (group1 == group2) {
1098     if (unique_id_1 < unique_id_2) return true;
1099     }
1100 gezelter 1587 #endif
1101 gezelter 1616
1102 gezelter 1587 return false;
1103     }
1104    
1105     /**
1106     * We need to handle the interactions for atoms who are involved in
1107     * the same rigid body as well as some short range interactions
1108     * (bonds, bends, torsions) differently from other interactions.
1109     * We'll still visit the pairwise routines, but with a flag that
1110     * tells those routines to exclude the pair from direct long range
1111     * interactions. Some indirect interactions (notably reaction
1112     * field) must still be handled for these pairs.
1113     */
1114     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
1115 gezelter 1613
1116     // excludesForAtom was constructed to use row/column indices in the MPI
1117     // version, and to use local IDs in the non-MPI version:
1118 gezelter 1570
1119 gezelter 1587 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
1120     i != excludesForAtom[atom1].end(); ++i) {
1121 gezelter 1616 if ( (*i) == atom2 ) return true;
1122 gezelter 1583 }
1123 gezelter 1579
1124 gezelter 1583 return false;
1125 gezelter 1570 }
1126    
1127    
1128 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
1129     #ifdef IS_MPI
1130     atomRowData.force[atom1] += fg;
1131     #else
1132     snap_->atomData.force[atom1] += fg;
1133     #endif
1134     }
1135    
1136     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
1137     #ifdef IS_MPI
1138     atomColData.force[atom2] += fg;
1139     #else
1140     snap_->atomData.force[atom2] += fg;
1141     #endif
1142     }
1143    
1144     // filling interaction blocks with pointers
1145 gezelter 1582 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
1146 gezelter 1587 int atom1, int atom2) {
1147    
1148     idat.excluded = excludeAtomPair(atom1, atom2);
1149    
1150 gezelter 1551 #ifdef IS_MPI
1151 gezelter 1591 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1152     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1153     // ff_->getAtomType(identsCol[atom2]) );
1154 gezelter 1571
1155 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
1156 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
1157     idat.A2 = &(atomColData.aMat[atom2]);
1158 gezelter 1551 }
1159 gezelter 1567
1160 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
1161 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
1162     idat.t2 = &(atomColData.torque[atom2]);
1163 gezelter 1551 }
1164    
1165 gezelter 1879 if (storageLayout_ & DataStorage::dslDipole) {
1166     idat.dipole1 = &(atomRowData.dipole[atom1]);
1167     idat.dipole2 = &(atomColData.dipole[atom2]);
1168     }
1169    
1170     if (storageLayout_ & DataStorage::dslQuadrupole) {
1171     idat.quadrupole1 = &(atomRowData.quadrupole[atom1]);
1172     idat.quadrupole2 = &(atomColData.quadrupole[atom2]);
1173     }
1174    
1175 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
1176 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
1177     idat.rho2 = &(atomColData.density[atom2]);
1178 gezelter 1551 }
1179    
1180 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
1181     idat.frho1 = &(atomRowData.functional[atom1]);
1182     idat.frho2 = &(atomColData.functional[atom2]);
1183     }
1184    
1185 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1186 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1187     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1188 gezelter 1551 }
1189 gezelter 1570
1190 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
1191     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1192     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1193     }
1194    
1195 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1196     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1197     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1198     }
1199    
1200 gezelter 1721 if (storageLayout_ & DataStorage::dslFlucQPosition) {
1201     idat.flucQ1 = &(atomRowData.flucQPos[atom1]);
1202     idat.flucQ2 = &(atomColData.flucQPos[atom2]);
1203     }
1204    
1205 gezelter 1562 #else
1206 gezelter 1688
1207 gezelter 1591 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1208 gezelter 1571
1209 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
1210     idat.A1 = &(snap_->atomData.aMat[atom1]);
1211     idat.A2 = &(snap_->atomData.aMat[atom2]);
1212     }
1213    
1214     if (storageLayout_ & DataStorage::dslTorque) {
1215     idat.t1 = &(snap_->atomData.torque[atom1]);
1216     idat.t2 = &(snap_->atomData.torque[atom2]);
1217     }
1218    
1219 gezelter 1879 if (storageLayout_ & DataStorage::dslDipole) {
1220     idat.dipole1 = &(snap_->atomData.dipole[atom1]);
1221     idat.dipole2 = &(snap_->atomData.dipole[atom2]);
1222     }
1223    
1224     if (storageLayout_ & DataStorage::dslQuadrupole) {
1225     idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]);
1226     idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]);
1227     }
1228    
1229 gezelter 1583 if (storageLayout_ & DataStorage::dslDensity) {
1230 gezelter 1562 idat.rho1 = &(snap_->atomData.density[atom1]);
1231     idat.rho2 = &(snap_->atomData.density[atom2]);
1232     }
1233    
1234 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
1235     idat.frho1 = &(snap_->atomData.functional[atom1]);
1236     idat.frho2 = &(snap_->atomData.functional[atom2]);
1237     }
1238    
1239 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1240     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1241     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1242     }
1243 gezelter 1575
1244     if (storageLayout_ & DataStorage::dslParticlePot) {
1245     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1246     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1247     }
1248    
1249 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1250     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1251     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1252     }
1253 gezelter 1721
1254     if (storageLayout_ & DataStorage::dslFlucQPosition) {
1255     idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]);
1256     idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]);
1257     }
1258    
1259 gezelter 1551 #endif
1260     }
1261 gezelter 1567
1262 gezelter 1575
1263 gezelter 1582 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1264 gezelter 1575 #ifdef IS_MPI
1265 gezelter 1668 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1266     pot_col[atom2] += RealType(0.5) * *(idat.pot);
1267 gezelter 1760 expot_row[atom1] += RealType(0.5) * *(idat.excludedPot);
1268     expot_col[atom2] += RealType(0.5) * *(idat.excludedPot);
1269 gezelter 1575
1270     atomRowData.force[atom1] += *(idat.f1);
1271     atomColData.force[atom2] -= *(idat.f1);
1272 gezelter 1713
1273 gezelter 1721 if (storageLayout_ & DataStorage::dslFlucQForce) {
1274 jmichalk 1736 atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1275     atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1276 gezelter 1721 }
1277    
1278     if (storageLayout_ & DataStorage::dslElectricField) {
1279     atomRowData.electricField[atom1] += *(idat.eField1);
1280     atomColData.electricField[atom2] += *(idat.eField2);
1281     }
1282    
1283 gezelter 1575 #else
1284 gezelter 1583 pairwisePot += *(idat.pot);
1285 gezelter 1760 excludedPot += *(idat.excludedPot);
1286 gezelter 1583
1287 gezelter 1575 snap_->atomData.force[atom1] += *(idat.f1);
1288     snap_->atomData.force[atom2] -= *(idat.f1);
1289 gezelter 1713
1290     if (idat.doParticlePot) {
1291 gezelter 1723 // This is the pairwise contribution to the particle pot. The
1292     // embedding contribution is added in each of the low level
1293     // non-bonded routines. In parallel, this calculation is done
1294     // in collectData, not in unpackInteractionData.
1295 gezelter 1713 snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1296 gezelter 1723 snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw);
1297 gezelter 1713 }
1298 gezelter 1721
1299     if (storageLayout_ & DataStorage::dslFlucQForce) {
1300 jmichalk 1736 snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1);
1301 gezelter 1721 snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2);
1302     }
1303    
1304     if (storageLayout_ & DataStorage::dslElectricField) {
1305     snap_->atomData.electricField[atom1] += *(idat.eField1);
1306     snap_->atomData.electricField[atom2] += *(idat.eField2);
1307     }
1308    
1309 gezelter 1575 #endif
1310 gezelter 1586
1311 gezelter 1575 }
1312    
1313 gezelter 1562 /*
1314     * buildNeighborList
1315     *
1316     * first element of pair is row-indexed CutoffGroup
1317     * second element of pair is column-indexed CutoffGroup
1318     */
1319 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1320    
1321     vector<pair<int, int> > neighborList;
1322 gezelter 1576 groupCutoffs cuts;
1323 gezelter 1587 bool doAllPairs = false;
1324    
1325 gezelter 1879 RealType rList_ = (largestRcut_ + skinThickness_);
1326     Snapshot* snap_ = sman_->getCurrentSnapshot();
1327     Mat3x3d box;
1328     Mat3x3d invBox;
1329    
1330     Vector3d rs, scaled, dr;
1331     Vector3i whichCell;
1332     int cellIndex;
1333    
1334 gezelter 1567 #ifdef IS_MPI
1335 gezelter 1568 cellListRow_.clear();
1336     cellListCol_.clear();
1337 gezelter 1567 #else
1338 gezelter 1568 cellList_.clear();
1339 gezelter 1567 #endif
1340 gezelter 1879
1341     if (!usePeriodicBoundaryConditions_) {
1342     box = snap_->getBoundingBox();
1343     invBox = snap_->getInvBoundingBox();
1344     } else {
1345     box = snap_->getHmat();
1346     invBox = snap_->getInvHmat();
1347     }
1348    
1349     Vector3d boxX = box.getColumn(0);
1350     Vector3d boxY = box.getColumn(1);
1351     Vector3d boxZ = box.getColumn(2);
1352    
1353     nCells_.x() = (int) ( boxX.length() )/ rList_;
1354     nCells_.y() = (int) ( boxY.length() )/ rList_;
1355     nCells_.z() = (int) ( boxZ.length() )/ rList_;
1356    
1357 gezelter 1587 // handle small boxes where the cell offsets can end up repeating cells
1358    
1359     if (nCells_.x() < 3) doAllPairs = true;
1360     if (nCells_.y() < 3) doAllPairs = true;
1361     if (nCells_.z() < 3) doAllPairs = true;
1362 gezelter 1879
1363 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1364 gezelter 1879
1365 gezelter 1567 #ifdef IS_MPI
1366 gezelter 1579 cellListRow_.resize(nCtot);
1367     cellListCol_.resize(nCtot);
1368     #else
1369     cellList_.resize(nCtot);
1370     #endif
1371 gezelter 1879
1372 gezelter 1587 if (!doAllPairs) {
1373 gezelter 1579 #ifdef IS_MPI
1374 gezelter 1879
1375 gezelter 1587 for (int i = 0; i < nGroupsInRow_; i++) {
1376     rs = cgRowData.position[i];
1377    
1378     // scaled positions relative to the box vectors
1379 gezelter 1879 scaled = invBox * rs;
1380 gezelter 1587
1381     // wrap the vector back into the unit box by subtracting integer box
1382     // numbers
1383     for (int j = 0; j < 3; j++) {
1384     scaled[j] -= roundMe(scaled[j]);
1385     scaled[j] += 0.5;
1386 gezelter 1772 // Handle the special case when an object is exactly on the
1387     // boundary (a scaled coordinate of 1.0 is the same as
1388     // scaled coordinate of 0.0)
1389     if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1390 gezelter 1587 }
1391    
1392     // find xyz-indices of cell that cutoffGroup is in.
1393     whichCell.x() = nCells_.x() * scaled.x();
1394     whichCell.y() = nCells_.y() * scaled.y();
1395     whichCell.z() = nCells_.z() * scaled.z();
1396    
1397     // find single index of this cell:
1398     cellIndex = Vlinear(whichCell, nCells_);
1399    
1400     // add this cutoff group to the list of groups in this cell;
1401     cellListRow_[cellIndex].push_back(i);
1402 gezelter 1581 }
1403 gezelter 1587 for (int i = 0; i < nGroupsInCol_; i++) {
1404     rs = cgColData.position[i];
1405    
1406     // scaled positions relative to the box vectors
1407 gezelter 1879 scaled = invBox * rs;
1408 gezelter 1587
1409     // wrap the vector back into the unit box by subtracting integer box
1410     // numbers
1411     for (int j = 0; j < 3; j++) {
1412     scaled[j] -= roundMe(scaled[j]);
1413     scaled[j] += 0.5;
1414 gezelter 1772 // Handle the special case when an object is exactly on the
1415     // boundary (a scaled coordinate of 1.0 is the same as
1416     // scaled coordinate of 0.0)
1417     if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1418 gezelter 1587 }
1419    
1420     // find xyz-indices of cell that cutoffGroup is in.
1421     whichCell.x() = nCells_.x() * scaled.x();
1422     whichCell.y() = nCells_.y() * scaled.y();
1423     whichCell.z() = nCells_.z() * scaled.z();
1424    
1425     // find single index of this cell:
1426     cellIndex = Vlinear(whichCell, nCells_);
1427    
1428     // add this cutoff group to the list of groups in this cell;
1429     cellListCol_[cellIndex].push_back(i);
1430 gezelter 1581 }
1431 gezelter 1879
1432 gezelter 1567 #else
1433 gezelter 1587 for (int i = 0; i < nGroups_; i++) {
1434     rs = snap_->cgData.position[i];
1435    
1436     // scaled positions relative to the box vectors
1437 gezelter 1879 scaled = invBox * rs;
1438 gezelter 1587
1439     // wrap the vector back into the unit box by subtracting integer box
1440     // numbers
1441     for (int j = 0; j < 3; j++) {
1442     scaled[j] -= roundMe(scaled[j]);
1443     scaled[j] += 0.5;
1444 gezelter 1771 // Handle the special case when an object is exactly on the
1445     // boundary (a scaled coordinate of 1.0 is the same as
1446     // scaled coordinate of 0.0)
1447     if (scaled[j] >= 1.0) scaled[j] -= 1.0;
1448 gezelter 1587 }
1449    
1450     // find xyz-indices of cell that cutoffGroup is in.
1451     whichCell.x() = nCells_.x() * scaled.x();
1452     whichCell.y() = nCells_.y() * scaled.y();
1453     whichCell.z() = nCells_.z() * scaled.z();
1454    
1455     // find single index of this cell:
1456 gezelter 1593 cellIndex = Vlinear(whichCell, nCells_);
1457 gezelter 1587
1458     // add this cutoff group to the list of groups in this cell;
1459     cellList_[cellIndex].push_back(i);
1460 gezelter 1581 }
1461 gezelter 1612
1462 gezelter 1567 #endif
1463    
1464 gezelter 1587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1465     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1466     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1467     Vector3i m1v(m1x, m1y, m1z);
1468     int m1 = Vlinear(m1v, nCells_);
1469 gezelter 1568
1470 gezelter 1587 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1471     os != cellOffsets_.end(); ++os) {
1472    
1473     Vector3i m2v = m1v + (*os);
1474 gezelter 1612
1475    
1476 gezelter 1587 if (m2v.x() >= nCells_.x()) {
1477     m2v.x() = 0;
1478     } else if (m2v.x() < 0) {
1479     m2v.x() = nCells_.x() - 1;
1480     }
1481    
1482     if (m2v.y() >= nCells_.y()) {
1483     m2v.y() = 0;
1484     } else if (m2v.y() < 0) {
1485     m2v.y() = nCells_.y() - 1;
1486     }
1487    
1488     if (m2v.z() >= nCells_.z()) {
1489     m2v.z() = 0;
1490     } else if (m2v.z() < 0) {
1491     m2v.z() = nCells_.z() - 1;
1492     }
1493 gezelter 1612
1494 gezelter 1587 int m2 = Vlinear (m2v, nCells_);
1495    
1496 gezelter 1567 #ifdef IS_MPI
1497 gezelter 1587 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1498     j1 != cellListRow_[m1].end(); ++j1) {
1499     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1500     j2 != cellListCol_[m2].end(); ++j2) {
1501    
1502 gezelter 1612 // In parallel, we need to visit *all* pairs of row
1503     // & column indicies and will divide labor in the
1504     // force evaluation later.
1505 gezelter 1593 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1506 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1507     snap_->wrapVector(dr);
1508     }
1509 gezelter 1593 cuts = getGroupCutoffs( (*j1), (*j2) );
1510     if (dr.lengthSquare() < cuts.third) {
1511     neighborList.push_back(make_pair((*j1), (*j2)));
1512     }
1513 gezelter 1562 }
1514     }
1515 gezelter 1567 #else
1516 gezelter 1587 for (vector<int>::iterator j1 = cellList_[m1].begin();
1517     j1 != cellList_[m1].end(); ++j1) {
1518     for (vector<int>::iterator j2 = cellList_[m2].begin();
1519     j2 != cellList_[m2].end(); ++j2) {
1520 gezelter 1616
1521 gezelter 1587 // Always do this if we're in different cells or if
1522 gezelter 1616 // we're in the same cell and the global index of
1523     // the j2 cutoff group is greater than or equal to
1524     // the j1 cutoff group. Note that Rappaport's code
1525     // has a "less than" conditional here, but that
1526     // deals with atom-by-atom computation. OpenMD
1527     // allows atoms within a single cutoff group to
1528     // interact with each other.
1529    
1530     if (m2 != m1 || (*j2) >= (*j1) ) {
1531    
1532 gezelter 1587 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1533 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1534     snap_->wrapVector(dr);
1535     }
1536 gezelter 1587 cuts = getGroupCutoffs( (*j1), (*j2) );
1537     if (dr.lengthSquare() < cuts.third) {
1538     neighborList.push_back(make_pair((*j1), (*j2)));
1539     }
1540 gezelter 1567 }
1541     }
1542     }
1543 gezelter 1587 #endif
1544 gezelter 1567 }
1545 gezelter 1562 }
1546     }
1547     }
1548 gezelter 1587 } else {
1549     // branch to do all cutoff group pairs
1550     #ifdef IS_MPI
1551     for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1552 gezelter 1616 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1553 gezelter 1587 dr = cgColData.position[j2] - cgRowData.position[j1];
1554 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1555     snap_->wrapVector(dr);
1556     }
1557 gezelter 1587 cuts = getGroupCutoffs( j1, j2 );
1558     if (dr.lengthSquare() < cuts.third) {
1559     neighborList.push_back(make_pair(j1, j2));
1560     }
1561     }
1562 gezelter 1616 }
1563 gezelter 1587 #else
1564 gezelter 1616 // include all groups here.
1565     for (int j1 = 0; j1 < nGroups_; j1++) {
1566     // include self group interactions j2 == j1
1567     for (int j2 = j1; j2 < nGroups_; j2++) {
1568 gezelter 1587 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1569 gezelter 1879 if (usePeriodicBoundaryConditions_) {
1570     snap_->wrapVector(dr);
1571     }
1572 gezelter 1587 cuts = getGroupCutoffs( j1, j2 );
1573     if (dr.lengthSquare() < cuts.third) {
1574     neighborList.push_back(make_pair(j1, j2));
1575     }
1576 gezelter 1616 }
1577     }
1578 gezelter 1587 #endif
1579 gezelter 1562 }
1580 gezelter 1587
1581 gezelter 1568 // save the local cutoff group positions for the check that is
1582     // done on each loop:
1583     saved_CG_positions_.clear();
1584     for (int i = 0; i < nGroups_; i++)
1585     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1586 gezelter 1587
1587 gezelter 1567 return neighborList;
1588 gezelter 1562 }
1589 gezelter 1539 } //end namespace OpenMD