ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1713
Committed: Sat May 19 14:21:02 2012 UTC (12 years, 11 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 44861 byte(s)
Log Message:
adding communication and parallel support for fluctuating charges and
polarizability 

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 chuckv 1538 */
42 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
43 gezelter 1539 #include "math/SquareMatrix3.hpp"
44 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
45     #include "brains/SnapshotManager.hpp"
46 gezelter 1570 #include "brains/PairList.hpp"
47 chuckv 1538
48 gezelter 1541 using namespace std;
49 gezelter 1539 namespace OpenMD {
50 chuckv 1538
51 gezelter 1593 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) {
52    
53     // In a parallel computation, row and colum scans must visit all
54     // surrounding cells (not just the 14 upper triangular blocks that
55     // are used when the processor can see all pairs)
56     #ifdef IS_MPI
57 gezelter 1612 cellOffsets_.clear();
58     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
59     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
60     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
61     cellOffsets_.push_back( Vector3i(-1, 0,-1) );
62     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
63     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
64     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
65     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
66     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
67 gezelter 1593 cellOffsets_.push_back( Vector3i(-1,-1, 0) );
68     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
69     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
70 gezelter 1612 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
71     cellOffsets_.push_back( Vector3i( 0, 0, 0) );
72     cellOffsets_.push_back( Vector3i( 1, 0, 0) );
73     cellOffsets_.push_back( Vector3i(-1, 1, 0) );
74     cellOffsets_.push_back( Vector3i( 0, 1, 0) );
75     cellOffsets_.push_back( Vector3i( 1, 1, 0) );
76     cellOffsets_.push_back( Vector3i(-1,-1, 1) );
77     cellOffsets_.push_back( Vector3i( 0,-1, 1) );
78     cellOffsets_.push_back( Vector3i( 1,-1, 1) );
79 gezelter 1593 cellOffsets_.push_back( Vector3i(-1, 0, 1) );
80 gezelter 1612 cellOffsets_.push_back( Vector3i( 0, 0, 1) );
81     cellOffsets_.push_back( Vector3i( 1, 0, 1) );
82     cellOffsets_.push_back( Vector3i(-1, 1, 1) );
83     cellOffsets_.push_back( Vector3i( 0, 1, 1) );
84     cellOffsets_.push_back( Vector3i( 1, 1, 1) );
85 gezelter 1593 #endif
86     }
87    
88    
89 gezelter 1544 /**
90     * distributeInitialData is essentially a copy of the older fortran
91     * SimulationSetup
92     */
93 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
94 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
95     storageLayout_ = sman_->getStorageLayout();
96 gezelter 1571 ff_ = info_->getForceField();
97 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
98 gezelter 1587
99 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
100 gezelter 1569 // gather the information for atomtype IDs (atids):
101 gezelter 1583 idents = info_->getIdentArray();
102 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
103     cgLocalToGlobal = info_->getGlobalGroupIndices();
104     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
105 gezelter 1586
106 gezelter 1581 massFactors = info_->getMassFactors();
107 gezelter 1584
108 gezelter 1587 PairList* excludes = info_->getExcludedInteractions();
109     PairList* oneTwo = info_->getOneTwoInteractions();
110     PairList* oneThree = info_->getOneThreeInteractions();
111     PairList* oneFour = info_->getOneFourInteractions();
112 gezelter 1569
113 gezelter 1567 #ifdef IS_MPI
114    
115 gezelter 1593 MPI::Intracomm row = rowComm.getComm();
116     MPI::Intracomm col = colComm.getComm();
117 chuckv 1538
118 gezelter 1593 AtomPlanIntRow = new Plan<int>(row, nLocal_);
119     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
120     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
121     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
122     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
123 gezelter 1541
124 gezelter 1593 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
125     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
126     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
127     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
128     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
129 gezelter 1551
130 gezelter 1593 cgPlanIntRow = new Plan<int>(row, nGroups_);
131     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
132     cgPlanIntColumn = new Plan<int>(col, nGroups_);
133     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
134 gezelter 1567
135 gezelter 1593 nAtomsInRow_ = AtomPlanIntRow->getSize();
136     nAtomsInCol_ = AtomPlanIntColumn->getSize();
137     nGroupsInRow_ = cgPlanIntRow->getSize();
138     nGroupsInCol_ = cgPlanIntColumn->getSize();
139    
140 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
141 gezelter 1567 atomRowData.resize(nAtomsInRow_);
142 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
143 gezelter 1567 atomColData.resize(nAtomsInCol_);
144 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
145 gezelter 1567 cgRowData.resize(nGroupsInRow_);
146 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
147 gezelter 1567 cgColData.resize(nGroupsInCol_);
148 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
149 gezelter 1575
150 gezelter 1577 identsRow.resize(nAtomsInRow_);
151     identsCol.resize(nAtomsInCol_);
152 gezelter 1549
153 gezelter 1593 AtomPlanIntRow->gather(idents, identsRow);
154     AtomPlanIntColumn->gather(idents, identsCol);
155 gezelter 1549
156 gezelter 1589 // allocate memory for the parallel objects
157 gezelter 1591 atypesRow.resize(nAtomsInRow_);
158     atypesCol.resize(nAtomsInCol_);
159    
160     for (int i = 0; i < nAtomsInRow_; i++)
161     atypesRow[i] = ff_->getAtomType(identsRow[i]);
162     for (int i = 0; i < nAtomsInCol_; i++)
163     atypesCol[i] = ff_->getAtomType(identsCol[i]);
164    
165 gezelter 1589 pot_row.resize(nAtomsInRow_);
166     pot_col.resize(nAtomsInCol_);
167    
168 gezelter 1591 AtomRowToGlobal.resize(nAtomsInRow_);
169     AtomColToGlobal.resize(nAtomsInCol_);
170 gezelter 1593 AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
171     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
172    
173 gezelter 1591 cgRowToGlobal.resize(nGroupsInRow_);
174     cgColToGlobal.resize(nGroupsInCol_);
175 gezelter 1593 cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 gezelter 1541
178 gezelter 1591 massFactorsRow.resize(nAtomsInRow_);
179     massFactorsCol.resize(nAtomsInCol_);
180 gezelter 1593 AtomPlanRealRow->gather(massFactors, massFactorsRow);
181     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
182 gezelter 1569
183     groupListRow_.clear();
184 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
185 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
186     int gid = cgRowToGlobal[i];
187     for (int j = 0; j < nAtomsInRow_; j++) {
188     int aid = AtomRowToGlobal[j];
189     if (globalGroupMembership[aid] == gid)
190     groupListRow_[i].push_back(j);
191     }
192     }
193    
194     groupListCol_.clear();
195 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
196 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
197     int gid = cgColToGlobal[i];
198     for (int j = 0; j < nAtomsInCol_; j++) {
199     int aid = AtomColToGlobal[j];
200     if (globalGroupMembership[aid] == gid)
201     groupListCol_[i].push_back(j);
202     }
203     }
204    
205 gezelter 1587 excludesForAtom.clear();
206     excludesForAtom.resize(nAtomsInRow_);
207 gezelter 1579 toposForAtom.clear();
208     toposForAtom.resize(nAtomsInRow_);
209     topoDist.clear();
210     topoDist.resize(nAtomsInRow_);
211 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
212 gezelter 1571 int iglob = AtomRowToGlobal[i];
213 gezelter 1579
214 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
215 gezelter 1579 int jglob = AtomColToGlobal[j];
216    
217 gezelter 1587 if (excludes->hasPair(iglob, jglob))
218     excludesForAtom[i].push_back(j);
219 gezelter 1579
220 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
221 gezelter 1579 toposForAtom[i].push_back(j);
222     topoDist[i].push_back(1);
223     } else {
224 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
225 gezelter 1579 toposForAtom[i].push_back(j);
226     topoDist[i].push_back(2);
227     } else {
228 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
229 gezelter 1579 toposForAtom[i].push_back(j);
230     topoDist[i].push_back(3);
231     }
232     }
233 gezelter 1570 }
234     }
235     }
236    
237 gezelter 1613 #else
238 gezelter 1587 excludesForAtom.clear();
239     excludesForAtom.resize(nLocal_);
240 gezelter 1579 toposForAtom.clear();
241     toposForAtom.resize(nLocal_);
242     topoDist.clear();
243     topoDist.resize(nLocal_);
244 gezelter 1569
245 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
246     int iglob = AtomLocalToGlobal[i];
247 gezelter 1579
248 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
249 gezelter 1579 int jglob = AtomLocalToGlobal[j];
250    
251 gezelter 1616 if (excludes->hasPair(iglob, jglob))
252 gezelter 1587 excludesForAtom[i].push_back(j);
253 gezelter 1579
254 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
255 gezelter 1579 toposForAtom[i].push_back(j);
256     topoDist[i].push_back(1);
257     } else {
258 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
259 gezelter 1579 toposForAtom[i].push_back(j);
260     topoDist[i].push_back(2);
261     } else {
262 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
263 gezelter 1579 toposForAtom[i].push_back(j);
264     topoDist[i].push_back(3);
265     }
266     }
267 gezelter 1570 }
268     }
269 gezelter 1579 }
270 gezelter 1613 #endif
271    
272     // allocate memory for the parallel objects
273     atypesLocal.resize(nLocal_);
274    
275     for (int i = 0; i < nLocal_; i++)
276     atypesLocal[i] = ff_->getAtomType(idents[i]);
277    
278     groupList_.clear();
279     groupList_.resize(nGroups_);
280     for (int i = 0; i < nGroups_; i++) {
281     int gid = cgLocalToGlobal[i];
282     for (int j = 0; j < nLocal_; j++) {
283     int aid = AtomLocalToGlobal[j];
284     if (globalGroupMembership[aid] == gid) {
285     groupList_[i].push_back(j);
286     }
287     }
288     }
289    
290    
291 gezelter 1579 createGtypeCutoffMap();
292 gezelter 1587
293 gezelter 1576 }
294    
295     void ForceMatrixDecomposition::createGtypeCutoffMap() {
296 gezelter 1586
297 gezelter 1576 RealType tol = 1e-6;
298 gezelter 1592 largestRcut_ = 0.0;
299 gezelter 1576 RealType rc;
300     int atid;
301     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
302 gezelter 1592
303 gezelter 1587 map<int, RealType> atypeCutoff;
304 gezelter 1583
305 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
306     at != atypes.end(); ++at){
307 gezelter 1576 atid = (*at)->getIdent();
308 gezelter 1587 if (userChoseCutoff_)
309 gezelter 1583 atypeCutoff[atid] = userCutoff_;
310 gezelter 1592 else
311 gezelter 1583 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
312 gezelter 1570 }
313 gezelter 1592
314 gezelter 1576 vector<RealType> gTypeCutoffs;
315     // first we do a single loop over the cutoff groups to find the
316     // largest cutoff for any atypes present in this group.
317     #ifdef IS_MPI
318     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
319 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
320 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
321     vector<int> atomListRow = getAtomsInGroupRow(cg1);
322     for (vector<int>::iterator ia = atomListRow.begin();
323     ia != atomListRow.end(); ++ia) {
324     int atom1 = (*ia);
325     atid = identsRow[atom1];
326     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
327     groupCutoffRow[cg1] = atypeCutoff[atid];
328     }
329     }
330    
331     bool gTypeFound = false;
332     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
333     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
334     groupRowToGtype[cg1] = gt;
335     gTypeFound = true;
336     }
337     }
338     if (!gTypeFound) {
339     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
340     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
341     }
342    
343     }
344     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
345 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
346 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
347     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
348     for (vector<int>::iterator jb = atomListCol.begin();
349     jb != atomListCol.end(); ++jb) {
350     int atom2 = (*jb);
351     atid = identsCol[atom2];
352     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
353     groupCutoffCol[cg2] = atypeCutoff[atid];
354     }
355     }
356     bool gTypeFound = false;
357     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
358     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
359     groupColToGtype[cg2] = gt;
360     gTypeFound = true;
361     }
362     }
363     if (!gTypeFound) {
364     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
365     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
366     }
367     }
368     #else
369 gezelter 1579
370 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
371 gezelter 1579 groupToGtype.resize(nGroups_);
372 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
373     groupCutoff[cg1] = 0.0;
374     vector<int> atomList = getAtomsInGroupRow(cg1);
375     for (vector<int>::iterator ia = atomList.begin();
376     ia != atomList.end(); ++ia) {
377     int atom1 = (*ia);
378 gezelter 1583 atid = idents[atom1];
379 gezelter 1592 if (atypeCutoff[atid] > groupCutoff[cg1])
380 gezelter 1576 groupCutoff[cg1] = atypeCutoff[atid];
381     }
382 gezelter 1592
383 gezelter 1576 bool gTypeFound = false;
384     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
385     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
386     groupToGtype[cg1] = gt;
387     gTypeFound = true;
388     }
389     }
390 gezelter 1592 if (!gTypeFound) {
391 gezelter 1576 gTypeCutoffs.push_back( groupCutoff[cg1] );
392     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
393     }
394     }
395     #endif
396    
397     // Now we find the maximum group cutoff value present in the simulation
398    
399 gezelter 1590 RealType groupMax = *max_element(gTypeCutoffs.begin(),
400     gTypeCutoffs.end());
401 gezelter 1576
402     #ifdef IS_MPI
403 gezelter 1590 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
404     MPI::MAX);
405 gezelter 1576 #endif
406    
407     RealType tradRcut = groupMax;
408    
409     for (int i = 0; i < gTypeCutoffs.size(); i++) {
410 gezelter 1579 for (int j = 0; j < gTypeCutoffs.size(); j++) {
411 gezelter 1576 RealType thisRcut;
412     switch(cutoffPolicy_) {
413     case TRADITIONAL:
414     thisRcut = tradRcut;
415 gezelter 1579 break;
416 gezelter 1576 case MIX:
417     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
418 gezelter 1579 break;
419 gezelter 1576 case MAX:
420     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
421 gezelter 1579 break;
422 gezelter 1576 default:
423     sprintf(painCave.errMsg,
424     "ForceMatrixDecomposition::createGtypeCutoffMap "
425     "hit an unknown cutoff policy!\n");
426     painCave.severity = OPENMD_ERROR;
427     painCave.isFatal = 1;
428 gezelter 1579 simError();
429     break;
430 gezelter 1576 }
431    
432     pair<int,int> key = make_pair(i,j);
433     gTypeCutoffMap[key].first = thisRcut;
434     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
435     gTypeCutoffMap[key].second = thisRcut*thisRcut;
436     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
437     // sanity check
438    
439     if (userChoseCutoff_) {
440     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
441     sprintf(painCave.errMsg,
442     "ForceMatrixDecomposition::createGtypeCutoffMap "
443 gezelter 1583 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
444 gezelter 1576 painCave.severity = OPENMD_ERROR;
445     painCave.isFatal = 1;
446     simError();
447     }
448     }
449     }
450     }
451 gezelter 1539 }
452 gezelter 1576
453    
454     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
455 gezelter 1579 int i, j;
456 gezelter 1576 #ifdef IS_MPI
457     i = groupRowToGtype[cg1];
458     j = groupColToGtype[cg2];
459     #else
460     i = groupToGtype[cg1];
461     j = groupToGtype[cg2];
462 gezelter 1579 #endif
463 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
464     }
465    
466 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
467     for (int j = 0; j < toposForAtom[atom1].size(); j++) {
468     if (toposForAtom[atom1][j] == atom2)
469     return topoDist[atom1][j];
470     }
471     return 0;
472     }
473 gezelter 1576
474 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
475 gezelter 1583 pairwisePot = 0.0;
476     embeddingPot = 0.0;
477 gezelter 1575
478     #ifdef IS_MPI
479     if (storageLayout_ & DataStorage::dslForce) {
480     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
481     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
482     }
483    
484     if (storageLayout_ & DataStorage::dslTorque) {
485     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
486     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
487     }
488    
489     fill(pot_row.begin(), pot_row.end(),
490     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
491    
492     fill(pot_col.begin(), pot_col.end(),
493 gezelter 1583 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
494 gezelter 1575
495     if (storageLayout_ & DataStorage::dslParticlePot) {
496 gezelter 1590 fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
497     0.0);
498     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
499     0.0);
500 gezelter 1575 }
501    
502     if (storageLayout_ & DataStorage::dslDensity) {
503     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
504     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
505     }
506    
507     if (storageLayout_ & DataStorage::dslFunctional) {
508 gezelter 1590 fill(atomRowData.functional.begin(), atomRowData.functional.end(),
509     0.0);
510     fill(atomColData.functional.begin(), atomColData.functional.end(),
511     0.0);
512 gezelter 1575 }
513    
514     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
515     fill(atomRowData.functionalDerivative.begin(),
516     atomRowData.functionalDerivative.end(), 0.0);
517     fill(atomColData.functionalDerivative.begin(),
518     atomColData.functionalDerivative.end(), 0.0);
519     }
520    
521 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
522 gezelter 1587 fill(atomRowData.skippedCharge.begin(),
523     atomRowData.skippedCharge.end(), 0.0);
524     fill(atomColData.skippedCharge.begin(),
525     atomColData.skippedCharge.end(), 0.0);
526 gezelter 1586 }
527    
528 gezelter 1713 if (storageLayout_ & DataStorage::dslElectricField) {
529     fill(atomRowData.electricField.begin(),
530     atomRowData.electricField.end(), V3Zero);
531     fill(atomColData.electricField.begin(),
532     atomColData.electricField.end(), V3Zero);
533     }
534     if (storageLayout_ & DataStorage::dslFlucQForce) {
535     fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(),
536     0.0);
537     fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(),
538     0.0);
539     }
540    
541 gezelter 1590 #endif
542     // even in parallel, we need to zero out the local arrays:
543    
544 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
545     fill(snap_->atomData.particlePot.begin(),
546     snap_->atomData.particlePot.end(), 0.0);
547     }
548    
549     if (storageLayout_ & DataStorage::dslDensity) {
550     fill(snap_->atomData.density.begin(),
551     snap_->atomData.density.end(), 0.0);
552     }
553 gezelter 1706
554 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
555     fill(snap_->atomData.functional.begin(),
556     snap_->atomData.functional.end(), 0.0);
557     }
558 gezelter 1706
559 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
560     fill(snap_->atomData.functionalDerivative.begin(),
561     snap_->atomData.functionalDerivative.end(), 0.0);
562     }
563 gezelter 1706
564 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
565     fill(snap_->atomData.skippedCharge.begin(),
566     snap_->atomData.skippedCharge.end(), 0.0);
567     }
568 gezelter 1713
569     if (storageLayout_ & DataStorage::dslElectricField) {
570     fill(snap_->atomData.electricField.begin(),
571     snap_->atomData.electricField.end(), V3Zero);
572     }
573 gezelter 1575 }
574    
575    
576 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
577 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
578     storageLayout_ = sman_->getStorageLayout();
579 chuckv 1538 #ifdef IS_MPI
580 gezelter 1540
581 gezelter 1539 // gather up the atomic positions
582 gezelter 1593 AtomPlanVectorRow->gather(snap_->atomData.position,
583 gezelter 1551 atomRowData.position);
584 gezelter 1593 AtomPlanVectorColumn->gather(snap_->atomData.position,
585 gezelter 1551 atomColData.position);
586 gezelter 1539
587     // gather up the cutoff group positions
588 gezelter 1593
589     cgPlanVectorRow->gather(snap_->cgData.position,
590 gezelter 1551 cgRowData.position);
591 gezelter 1593
592     cgPlanVectorColumn->gather(snap_->cgData.position,
593 gezelter 1551 cgColData.position);
594 gezelter 1593
595 gezelter 1539
596     // if needed, gather the atomic rotation matrices
597 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
598 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.aMat,
599 gezelter 1551 atomRowData.aMat);
600 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
601 gezelter 1551 atomColData.aMat);
602 gezelter 1539 }
603    
604     // if needed, gather the atomic eletrostatic frames
605 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
606 gezelter 1593 AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
607 gezelter 1551 atomRowData.electroFrame);
608 gezelter 1593 AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
609 gezelter 1551 atomColData.electroFrame);
610 gezelter 1539 }
611 gezelter 1590
612 gezelter 1713 // if needed, gather the atomic fluctuating charge values
613     if (storageLayout_ & DataStorage::dslFlucQPosition) {
614     AtomPlanRealRow->gather(snap_->atomData.flucQPos,
615     atomRowData.flucQPos);
616     AtomPlanRealColumn->gather(snap_->atomData.flucQPos,
617     atomColData.flucQPos);
618     }
619    
620 gezelter 1539 #endif
621     }
622    
623 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
624     * data structures.
625     */
626 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
627 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
628     storageLayout_ = sman_->getStorageLayout();
629 gezelter 1539 #ifdef IS_MPI
630    
631 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
632    
633 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.density,
634 gezelter 1551 snap_->atomData.density);
635    
636     int n = snap_->atomData.density.size();
637 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
638 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
639 gezelter 1539 for (int i = 0; i < n; i++)
640 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
641 gezelter 1539 }
642 gezelter 1713
643     if (storageLayout_ & DataStorage::dslElectricField) {
644    
645     AtomPlanVectorRow->scatter(atomRowData.electricField,
646     snap_->atomData.electricField);
647    
648     int n = snap_->atomData.electricField.size();
649     vector<Vector3d> field_tmp(n, V3Zero);
650     AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp);
651     for (int i = 0; i < n; i++)
652     snap_->atomData.electricField[i] += field_tmp[i];
653     }
654 chuckv 1538 #endif
655 gezelter 1539 }
656 gezelter 1575
657     /*
658     * redistributes information obtained during the pre-pair loop out to
659     * row and column-indexed data structures
660     */
661 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
662 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
663     storageLayout_ = sman_->getStorageLayout();
664 chuckv 1538 #ifdef IS_MPI
665 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
666 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functional,
667 gezelter 1551 atomRowData.functional);
668 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functional,
669 gezelter 1551 atomColData.functional);
670 gezelter 1539 }
671    
672 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
673 gezelter 1593 AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
674 gezelter 1551 atomRowData.functionalDerivative);
675 gezelter 1593 AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
676 gezelter 1551 atomColData.functionalDerivative);
677 gezelter 1539 }
678 chuckv 1538 #endif
679     }
680 gezelter 1539
681    
682 gezelter 1549 void ForceMatrixDecomposition::collectData() {
683 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
684     storageLayout_ = sman_->getStorageLayout();
685     #ifdef IS_MPI
686     int n = snap_->atomData.force.size();
687 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
688 gezelter 1541
689 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
690 gezelter 1541 for (int i = 0; i < n; i++) {
691 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
692 gezelter 1541 frc_tmp[i] = 0.0;
693     }
694 gezelter 1540
695 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
696     for (int i = 0; i < n; i++) {
697 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
698 gezelter 1593 }
699 gezelter 1590
700 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
701 gezelter 1541
702 gezelter 1587 int nt = snap_->atomData.torque.size();
703 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
704 gezelter 1541
705 gezelter 1593 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
706 gezelter 1587 for (int i = 0; i < nt; i++) {
707 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
708 gezelter 1541 trq_tmp[i] = 0.0;
709     }
710 gezelter 1540
711 gezelter 1593 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
712 gezelter 1587 for (int i = 0; i < nt; i++)
713 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
714 gezelter 1540 }
715 gezelter 1587
716     if (storageLayout_ & DataStorage::dslSkippedCharge) {
717    
718     int ns = snap_->atomData.skippedCharge.size();
719     vector<RealType> skch_tmp(ns, 0.0);
720    
721 gezelter 1593 AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
722 gezelter 1587 for (int i = 0; i < ns; i++) {
723 gezelter 1590 snap_->atomData.skippedCharge[i] += skch_tmp[i];
724 gezelter 1587 skch_tmp[i] = 0.0;
725     }
726    
727 gezelter 1593 AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
728 gezelter 1613 for (int i = 0; i < ns; i++)
729 gezelter 1587 snap_->atomData.skippedCharge[i] += skch_tmp[i];
730 gezelter 1613
731 gezelter 1587 }
732 gezelter 1540
733 gezelter 1713 if (storageLayout_ & DataStorage::dslFlucQForce) {
734    
735     int nq = snap_->atomData.flucQFrc.size();
736     vector<RealType> fqfrc_tmp(nq, 0.0);
737    
738     AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp);
739     for (int i = 0; i < nq; i++) {
740     snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
741     fqfrc_tmp[i] = 0.0;
742     }
743    
744     AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp);
745     for (int i = 0; i < nq; i++)
746     snap_->atomData.flucQFrc[i] += fqfrc_tmp[i];
747    
748     }
749    
750 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
751 gezelter 1544
752 gezelter 1575 vector<potVec> pot_temp(nLocal_,
753     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
754    
755     // scatter/gather pot_row into the members of my column
756    
757 gezelter 1593 AtomPlanPotRow->scatter(pot_row, pot_temp);
758 gezelter 1575
759     for (int ii = 0; ii < pot_temp.size(); ii++ )
760 gezelter 1583 pairwisePot += pot_temp[ii];
761 gezelter 1540
762 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
763     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
764    
765 gezelter 1593 AtomPlanPotColumn->scatter(pot_col, pot_temp);
766 gezelter 1575
767     for (int ii = 0; ii < pot_temp.size(); ii++ )
768 gezelter 1583 pairwisePot += pot_temp[ii];
769 gezelter 1601
770     for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
771     RealType ploc1 = pairwisePot[ii];
772     RealType ploc2 = 0.0;
773     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
774     pairwisePot[ii] = ploc2;
775     }
776    
777 gezelter 1613 for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) {
778     RealType ploc1 = embeddingPot[ii];
779     RealType ploc2 = 0.0;
780     MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM);
781     embeddingPot[ii] = ploc2;
782     }
783    
784 gezelter 1539 #endif
785 gezelter 1583
786 chuckv 1538 }
787 gezelter 1551
788 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
789     #ifdef IS_MPI
790     return nAtomsInRow_;
791     #else
792     return nLocal_;
793     #endif
794     }
795    
796 gezelter 1569 /**
797     * returns the list of atoms belonging to this group.
798     */
799     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
800     #ifdef IS_MPI
801     return groupListRow_[cg1];
802     #else
803     return groupList_[cg1];
804     #endif
805     }
806    
807     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
808     #ifdef IS_MPI
809     return groupListCol_[cg2];
810     #else
811     return groupList_[cg2];
812     #endif
813     }
814 chuckv 1538
815 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
816     Vector3d d;
817    
818     #ifdef IS_MPI
819     d = cgColData.position[cg2] - cgRowData.position[cg1];
820     #else
821     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
822     #endif
823    
824     snap_->wrapVector(d);
825     return d;
826     }
827    
828    
829     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
830    
831     Vector3d d;
832    
833     #ifdef IS_MPI
834     d = cgRowData.position[cg1] - atomRowData.position[atom1];
835     #else
836     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
837     #endif
838    
839     snap_->wrapVector(d);
840     return d;
841     }
842    
843     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
844     Vector3d d;
845    
846     #ifdef IS_MPI
847     d = cgColData.position[cg2] - atomColData.position[atom2];
848     #else
849     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
850     #endif
851    
852     snap_->wrapVector(d);
853     return d;
854     }
855 gezelter 1569
856     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
857     #ifdef IS_MPI
858     return massFactorsRow[atom1];
859     #else
860 gezelter 1581 return massFactors[atom1];
861 gezelter 1569 #endif
862     }
863    
864     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
865     #ifdef IS_MPI
866     return massFactorsCol[atom2];
867     #else
868 gezelter 1581 return massFactors[atom2];
869 gezelter 1569 #endif
870    
871     }
872 gezelter 1551
873     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
874     Vector3d d;
875    
876     #ifdef IS_MPI
877     d = atomColData.position[atom2] - atomRowData.position[atom1];
878     #else
879     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
880     #endif
881    
882     snap_->wrapVector(d);
883     return d;
884     }
885    
886 gezelter 1587 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
887     return excludesForAtom[atom1];
888 gezelter 1570 }
889    
890     /**
891 gezelter 1587 * We need to exclude some overcounted interactions that result from
892 gezelter 1575 * the parallel decomposition.
893 gezelter 1570 */
894     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
895     int unique_id_1, unique_id_2;
896 gezelter 1616
897 gezelter 1570 #ifdef IS_MPI
898     // in MPI, we have to look up the unique IDs for each atom
899     unique_id_1 = AtomRowToGlobal[atom1];
900     unique_id_2 = AtomColToGlobal[atom2];
901 gezelter 1616 #else
902     unique_id_1 = AtomLocalToGlobal[atom1];
903     unique_id_2 = AtomLocalToGlobal[atom2];
904     #endif
905 gezelter 1570
906     if (unique_id_1 == unique_id_2) return true;
907 gezelter 1616
908     #ifdef IS_MPI
909 gezelter 1570 // this prevents us from doing the pair on multiple processors
910     if (unique_id_1 < unique_id_2) {
911     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
912     } else {
913 gezelter 1616 if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
914 gezelter 1570 }
915 gezelter 1587 #endif
916 gezelter 1616
917 gezelter 1587 return false;
918     }
919    
920     /**
921     * We need to handle the interactions for atoms who are involved in
922     * the same rigid body as well as some short range interactions
923     * (bonds, bends, torsions) differently from other interactions.
924     * We'll still visit the pairwise routines, but with a flag that
925     * tells those routines to exclude the pair from direct long range
926     * interactions. Some indirect interactions (notably reaction
927     * field) must still be handled for these pairs.
928     */
929     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
930 gezelter 1613
931     // excludesForAtom was constructed to use row/column indices in the MPI
932     // version, and to use local IDs in the non-MPI version:
933 gezelter 1570
934 gezelter 1587 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
935     i != excludesForAtom[atom1].end(); ++i) {
936 gezelter 1616 if ( (*i) == atom2 ) return true;
937 gezelter 1583 }
938 gezelter 1579
939 gezelter 1583 return false;
940 gezelter 1570 }
941    
942    
943 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
944     #ifdef IS_MPI
945     atomRowData.force[atom1] += fg;
946     #else
947     snap_->atomData.force[atom1] += fg;
948     #endif
949     }
950    
951     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
952     #ifdef IS_MPI
953     atomColData.force[atom2] += fg;
954     #else
955     snap_->atomData.force[atom2] += fg;
956     #endif
957     }
958    
959     // filling interaction blocks with pointers
960 gezelter 1582 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
961 gezelter 1587 int atom1, int atom2) {
962    
963     idat.excluded = excludeAtomPair(atom1, atom2);
964    
965 gezelter 1551 #ifdef IS_MPI
966 gezelter 1591 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
967     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
968     // ff_->getAtomType(identsCol[atom2]) );
969 gezelter 1571
970 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
971 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
972     idat.A2 = &(atomColData.aMat[atom2]);
973 gezelter 1551 }
974 gezelter 1567
975 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
976 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
977     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
978 gezelter 1551 }
979    
980     if (storageLayout_ & DataStorage::dslTorque) {
981 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
982     idat.t2 = &(atomColData.torque[atom2]);
983 gezelter 1551 }
984    
985     if (storageLayout_ & DataStorage::dslDensity) {
986 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
987     idat.rho2 = &(atomColData.density[atom2]);
988 gezelter 1551 }
989    
990 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
991     idat.frho1 = &(atomRowData.functional[atom1]);
992     idat.frho2 = &(atomColData.functional[atom2]);
993     }
994    
995 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
996 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
997     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
998 gezelter 1551 }
999 gezelter 1570
1000 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
1001     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1002     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1003     }
1004    
1005 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1006     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1007     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1008     }
1009    
1010 gezelter 1562 #else
1011 gezelter 1688
1012 gezelter 1571
1013 gezelter 1688 // cerr << "atoms = " << atom1 << " " << atom2 << "\n";
1014     // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n";
1015     // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n";
1016    
1017 gezelter 1591 idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]);
1018     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1019     // ff_->getAtomType(idents[atom2]) );
1020 gezelter 1571
1021 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
1022     idat.A1 = &(snap_->atomData.aMat[atom1]);
1023     idat.A2 = &(snap_->atomData.aMat[atom2]);
1024     }
1025    
1026     if (storageLayout_ & DataStorage::dslElectroFrame) {
1027     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1028     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1029     }
1030    
1031     if (storageLayout_ & DataStorage::dslTorque) {
1032     idat.t1 = &(snap_->atomData.torque[atom1]);
1033     idat.t2 = &(snap_->atomData.torque[atom2]);
1034     }
1035    
1036 gezelter 1583 if (storageLayout_ & DataStorage::dslDensity) {
1037 gezelter 1562 idat.rho1 = &(snap_->atomData.density[atom1]);
1038     idat.rho2 = &(snap_->atomData.density[atom2]);
1039     }
1040    
1041 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
1042     idat.frho1 = &(snap_->atomData.functional[atom1]);
1043     idat.frho2 = &(snap_->atomData.functional[atom2]);
1044     }
1045    
1046 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
1047     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1048     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1049     }
1050 gezelter 1575
1051     if (storageLayout_ & DataStorage::dslParticlePot) {
1052     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1053     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1054     }
1055    
1056 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
1057     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1058     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1059     }
1060 gezelter 1551 #endif
1061     }
1062 gezelter 1567
1063 gezelter 1575
1064 gezelter 1582 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1065 gezelter 1575 #ifdef IS_MPI
1066 gezelter 1668 pot_row[atom1] += RealType(0.5) * *(idat.pot);
1067     pot_col[atom2] += RealType(0.5) * *(idat.pot);
1068 gezelter 1575
1069     atomRowData.force[atom1] += *(idat.f1);
1070     atomColData.force[atom2] -= *(idat.f1);
1071 gezelter 1713
1072     // should particle pot be done here also?
1073 gezelter 1575 #else
1074 gezelter 1583 pairwisePot += *(idat.pot);
1075    
1076 gezelter 1575 snap_->atomData.force[atom1] += *(idat.f1);
1077     snap_->atomData.force[atom2] -= *(idat.f1);
1078 gezelter 1713
1079     if (idat.doParticlePot) {
1080     snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw);
1081     snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw);
1082     }
1083    
1084 gezelter 1575 #endif
1085 gezelter 1586
1086 gezelter 1575 }
1087    
1088 gezelter 1562 /*
1089     * buildNeighborList
1090     *
1091     * first element of pair is row-indexed CutoffGroup
1092     * second element of pair is column-indexed CutoffGroup
1093     */
1094 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1095    
1096     vector<pair<int, int> > neighborList;
1097 gezelter 1576 groupCutoffs cuts;
1098 gezelter 1587 bool doAllPairs = false;
1099    
1100 gezelter 1567 #ifdef IS_MPI
1101 gezelter 1568 cellListRow_.clear();
1102     cellListCol_.clear();
1103 gezelter 1567 #else
1104 gezelter 1568 cellList_.clear();
1105 gezelter 1567 #endif
1106 gezelter 1562
1107 gezelter 1576 RealType rList_ = (largestRcut_ + skinThickness_);
1108 gezelter 1567 RealType rl2 = rList_ * rList_;
1109     Snapshot* snap_ = sman_->getCurrentSnapshot();
1110 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
1111     Vector3d Hx = Hmat.getColumn(0);
1112     Vector3d Hy = Hmat.getColumn(1);
1113     Vector3d Hz = Hmat.getColumn(2);
1114    
1115 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
1116     nCells_.y() = (int) ( Hy.length() )/ rList_;
1117     nCells_.z() = (int) ( Hz.length() )/ rList_;
1118 gezelter 1562
1119 gezelter 1587 // handle small boxes where the cell offsets can end up repeating cells
1120    
1121     if (nCells_.x() < 3) doAllPairs = true;
1122     if (nCells_.y() < 3) doAllPairs = true;
1123     if (nCells_.z() < 3) doAllPairs = true;
1124    
1125 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
1126     Vector3d rs, scaled, dr;
1127     Vector3i whichCell;
1128     int cellIndex;
1129 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1130 gezelter 1567
1131     #ifdef IS_MPI
1132 gezelter 1579 cellListRow_.resize(nCtot);
1133     cellListCol_.resize(nCtot);
1134     #else
1135     cellList_.resize(nCtot);
1136     #endif
1137 gezelter 1582
1138 gezelter 1587 if (!doAllPairs) {
1139 gezelter 1579 #ifdef IS_MPI
1140 gezelter 1581
1141 gezelter 1587 for (int i = 0; i < nGroupsInRow_; i++) {
1142     rs = cgRowData.position[i];
1143    
1144     // scaled positions relative to the box vectors
1145     scaled = invHmat * rs;
1146    
1147     // wrap the vector back into the unit box by subtracting integer box
1148     // numbers
1149     for (int j = 0; j < 3; j++) {
1150     scaled[j] -= roundMe(scaled[j]);
1151     scaled[j] += 0.5;
1152     }
1153    
1154     // find xyz-indices of cell that cutoffGroup is in.
1155     whichCell.x() = nCells_.x() * scaled.x();
1156     whichCell.y() = nCells_.y() * scaled.y();
1157     whichCell.z() = nCells_.z() * scaled.z();
1158    
1159     // find single index of this cell:
1160     cellIndex = Vlinear(whichCell, nCells_);
1161    
1162     // add this cutoff group to the list of groups in this cell;
1163     cellListRow_[cellIndex].push_back(i);
1164 gezelter 1581 }
1165 gezelter 1587 for (int i = 0; i < nGroupsInCol_; i++) {
1166     rs = cgColData.position[i];
1167    
1168     // scaled positions relative to the box vectors
1169     scaled = invHmat * rs;
1170    
1171     // wrap the vector back into the unit box by subtracting integer box
1172     // numbers
1173     for (int j = 0; j < 3; j++) {
1174     scaled[j] -= roundMe(scaled[j]);
1175     scaled[j] += 0.5;
1176     }
1177    
1178     // find xyz-indices of cell that cutoffGroup is in.
1179     whichCell.x() = nCells_.x() * scaled.x();
1180     whichCell.y() = nCells_.y() * scaled.y();
1181     whichCell.z() = nCells_.z() * scaled.z();
1182    
1183     // find single index of this cell:
1184     cellIndex = Vlinear(whichCell, nCells_);
1185    
1186     // add this cutoff group to the list of groups in this cell;
1187     cellListCol_[cellIndex].push_back(i);
1188 gezelter 1581 }
1189 gezelter 1612
1190 gezelter 1567 #else
1191 gezelter 1587 for (int i = 0; i < nGroups_; i++) {
1192     rs = snap_->cgData.position[i];
1193    
1194     // scaled positions relative to the box vectors
1195     scaled = invHmat * rs;
1196    
1197     // wrap the vector back into the unit box by subtracting integer box
1198     // numbers
1199     for (int j = 0; j < 3; j++) {
1200     scaled[j] -= roundMe(scaled[j]);
1201     scaled[j] += 0.5;
1202     }
1203    
1204     // find xyz-indices of cell that cutoffGroup is in.
1205     whichCell.x() = nCells_.x() * scaled.x();
1206     whichCell.y() = nCells_.y() * scaled.y();
1207     whichCell.z() = nCells_.z() * scaled.z();
1208    
1209     // find single index of this cell:
1210 gezelter 1593 cellIndex = Vlinear(whichCell, nCells_);
1211 gezelter 1587
1212     // add this cutoff group to the list of groups in this cell;
1213     cellList_[cellIndex].push_back(i);
1214 gezelter 1581 }
1215 gezelter 1612
1216 gezelter 1567 #endif
1217    
1218 gezelter 1587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1219     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1220     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1221     Vector3i m1v(m1x, m1y, m1z);
1222     int m1 = Vlinear(m1v, nCells_);
1223 gezelter 1568
1224 gezelter 1587 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1225     os != cellOffsets_.end(); ++os) {
1226    
1227     Vector3i m2v = m1v + (*os);
1228 gezelter 1612
1229    
1230 gezelter 1587 if (m2v.x() >= nCells_.x()) {
1231     m2v.x() = 0;
1232     } else if (m2v.x() < 0) {
1233     m2v.x() = nCells_.x() - 1;
1234     }
1235    
1236     if (m2v.y() >= nCells_.y()) {
1237     m2v.y() = 0;
1238     } else if (m2v.y() < 0) {
1239     m2v.y() = nCells_.y() - 1;
1240     }
1241    
1242     if (m2v.z() >= nCells_.z()) {
1243     m2v.z() = 0;
1244     } else if (m2v.z() < 0) {
1245     m2v.z() = nCells_.z() - 1;
1246     }
1247 gezelter 1612
1248 gezelter 1587 int m2 = Vlinear (m2v, nCells_);
1249    
1250 gezelter 1567 #ifdef IS_MPI
1251 gezelter 1587 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1252     j1 != cellListRow_[m1].end(); ++j1) {
1253     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1254     j2 != cellListCol_[m2].end(); ++j2) {
1255    
1256 gezelter 1612 // In parallel, we need to visit *all* pairs of row
1257     // & column indicies and will divide labor in the
1258     // force evaluation later.
1259 gezelter 1593 dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1260     snap_->wrapVector(dr);
1261     cuts = getGroupCutoffs( (*j1), (*j2) );
1262     if (dr.lengthSquare() < cuts.third) {
1263     neighborList.push_back(make_pair((*j1), (*j2)));
1264     }
1265 gezelter 1562 }
1266     }
1267 gezelter 1567 #else
1268 gezelter 1587 for (vector<int>::iterator j1 = cellList_[m1].begin();
1269     j1 != cellList_[m1].end(); ++j1) {
1270     for (vector<int>::iterator j2 = cellList_[m2].begin();
1271     j2 != cellList_[m2].end(); ++j2) {
1272 gezelter 1616
1273 gezelter 1587 // Always do this if we're in different cells or if
1274 gezelter 1616 // we're in the same cell and the global index of
1275     // the j2 cutoff group is greater than or equal to
1276     // the j1 cutoff group. Note that Rappaport's code
1277     // has a "less than" conditional here, but that
1278     // deals with atom-by-atom computation. OpenMD
1279     // allows atoms within a single cutoff group to
1280     // interact with each other.
1281    
1282    
1283    
1284     if (m2 != m1 || (*j2) >= (*j1) ) {
1285    
1286 gezelter 1587 dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1287     snap_->wrapVector(dr);
1288     cuts = getGroupCutoffs( (*j1), (*j2) );
1289     if (dr.lengthSquare() < cuts.third) {
1290     neighborList.push_back(make_pair((*j1), (*j2)));
1291     }
1292 gezelter 1567 }
1293     }
1294     }
1295 gezelter 1587 #endif
1296 gezelter 1567 }
1297 gezelter 1562 }
1298     }
1299     }
1300 gezelter 1587 } else {
1301     // branch to do all cutoff group pairs
1302     #ifdef IS_MPI
1303     for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1304 gezelter 1616 for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1305 gezelter 1587 dr = cgColData.position[j2] - cgRowData.position[j1];
1306     snap_->wrapVector(dr);
1307     cuts = getGroupCutoffs( j1, j2 );
1308     if (dr.lengthSquare() < cuts.third) {
1309     neighborList.push_back(make_pair(j1, j2));
1310     }
1311     }
1312 gezelter 1616 }
1313 gezelter 1587 #else
1314 gezelter 1616 // include all groups here.
1315     for (int j1 = 0; j1 < nGroups_; j1++) {
1316     // include self group interactions j2 == j1
1317     for (int j2 = j1; j2 < nGroups_; j2++) {
1318 gezelter 1587 dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1319     snap_->wrapVector(dr);
1320     cuts = getGroupCutoffs( j1, j2 );
1321     if (dr.lengthSquare() < cuts.third) {
1322     neighborList.push_back(make_pair(j1, j2));
1323     }
1324 gezelter 1616 }
1325     }
1326 gezelter 1587 #endif
1327 gezelter 1562 }
1328 gezelter 1587
1329 gezelter 1568 // save the local cutoff group positions for the check that is
1330     // done on each loop:
1331     saved_CG_positions_.clear();
1332     for (int i = 0; i < nGroups_; i++)
1333     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1334 gezelter 1587
1335 gezelter 1567 return neighborList;
1336 gezelter 1562 }
1337 gezelter 1539 } //end namespace OpenMD