ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1575
Committed: Fri Jun 3 21:39:49 2011 UTC (13 years, 10 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 31421 byte(s)
Log Message:
more parallel fixes

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 chuckv 1538
47 gezelter 1541 using namespace std;
48 gezelter 1539 namespace OpenMD {
49 chuckv 1538
50 gezelter 1544 /**
51     * distributeInitialData is essentially a copy of the older fortran
52     * SimulationSetup
53     */
54    
55 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
56 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
57     storageLayout_ = sman_->getStorageLayout();
58 gezelter 1571 ff_ = info_->getForceField();
59 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
60     nGroups_ = snap_->getNumberOfCutoffGroups();
61 chuckv 1538
62 gezelter 1569 // gather the information for atomtype IDs (atids):
63 gezelter 1571 identsLocal = info_->getIdentArray();
64 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65     cgLocalToGlobal = info_->getGlobalGroupIndices();
66     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67     vector<RealType> massFactorsLocal = info_->getMassFactors();
68 gezelter 1570 PairList excludes = info_->getExcludedInteractions();
69     PairList oneTwo = info_->getOneTwoInteractions();
70     PairList oneThree = info_->getOneThreeInteractions();
71     PairList oneFour = info_->getOneFourInteractions();
72 gezelter 1569
73 gezelter 1567 #ifdef IS_MPI
74    
75     AtomCommIntRow = new Communicator<Row,int>(nLocal_);
76     AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
77     AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
78     AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
79 gezelter 1575 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
80 chuckv 1538
81 gezelter 1567 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
82     AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
83     AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
84     AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
85 gezelter 1575 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
86 gezelter 1541
87 gezelter 1567 cgCommIntRow = new Communicator<Row,int>(nGroups_);
88     cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
89     cgCommIntColumn = new Communicator<Column,int>(nGroups_);
90     cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
91 gezelter 1551
92 gezelter 1567 nAtomsInRow_ = AtomCommIntRow->getSize();
93     nAtomsInCol_ = AtomCommIntColumn->getSize();
94     nGroupsInRow_ = cgCommIntRow->getSize();
95     nGroupsInCol_ = cgCommIntColumn->getSize();
96    
97 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
98 gezelter 1567 atomRowData.resize(nAtomsInRow_);
99 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
100 gezelter 1567 atomColData.resize(nAtomsInCol_);
101 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
102 gezelter 1567 cgRowData.resize(nGroupsInRow_);
103 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
104 gezelter 1567 cgColData.resize(nGroupsInCol_);
105 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
106 gezelter 1575
107 gezelter 1567 identsRow.reserve(nAtomsInRow_);
108     identsCol.reserve(nAtomsInCol_);
109 gezelter 1549
110     AtomCommIntRow->gather(identsLocal, identsRow);
111     AtomCommIntColumn->gather(identsLocal, identsCol);
112    
113     AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
114     AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
115    
116     cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
117     cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
118 gezelter 1541
119 gezelter 1569 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
120     AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
121    
122     groupListRow_.clear();
123     groupListRow_.reserve(nGroupsInRow_);
124     for (int i = 0; i < nGroupsInRow_; i++) {
125     int gid = cgRowToGlobal[i];
126     for (int j = 0; j < nAtomsInRow_; j++) {
127     int aid = AtomRowToGlobal[j];
128     if (globalGroupMembership[aid] == gid)
129     groupListRow_[i].push_back(j);
130     }
131     }
132    
133     groupListCol_.clear();
134     groupListCol_.reserve(nGroupsInCol_);
135     for (int i = 0; i < nGroupsInCol_; i++) {
136     int gid = cgColToGlobal[i];
137     for (int j = 0; j < nAtomsInCol_; j++) {
138     int aid = AtomColToGlobal[j];
139     if (globalGroupMembership[aid] == gid)
140     groupListCol_[i].push_back(j);
141     }
142     }
143    
144 gezelter 1570 skipsForRowAtom.clear();
145     skipsForRowAtom.reserve(nAtomsInRow_);
146     for (int i = 0; i < nAtomsInRow_; i++) {
147 gezelter 1571 int iglob = AtomRowToGlobal[i];
148 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
149 gezelter 1571 int jglob = AtomColToGlobal[j];
150 gezelter 1570 if (excludes.hasPair(iglob, jglob))
151     skipsForRowAtom[i].push_back(j);
152     }
153     }
154    
155     toposForRowAtom.clear();
156     toposForRowAtom.reserve(nAtomsInRow_);
157     for (int i = 0; i < nAtomsInRow_; i++) {
158 gezelter 1571 int iglob = AtomRowToGlobal[i];
159 gezelter 1570 int nTopos = 0;
160     for (int j = 0; j < nAtomsInCol_; j++) {
161 gezelter 1571 int jglob = AtomColToGlobal[j];
162 gezelter 1570 if (oneTwo.hasPair(iglob, jglob)) {
163     toposForRowAtom[i].push_back(j);
164     topoDistRow[i][nTopos] = 1;
165     nTopos++;
166     }
167     if (oneThree.hasPair(iglob, jglob)) {
168     toposForRowAtom[i].push_back(j);
169     topoDistRow[i][nTopos] = 2;
170     nTopos++;
171     }
172     if (oneFour.hasPair(iglob, jglob)) {
173     toposForRowAtom[i].push_back(j);
174     topoDistRow[i][nTopos] = 3;
175     nTopos++;
176     }
177     }
178     }
179    
180 gezelter 1569 #endif
181    
182     groupList_.clear();
183     groupList_.reserve(nGroups_);
184     for (int i = 0; i < nGroups_; i++) {
185     int gid = cgLocalToGlobal[i];
186     for (int j = 0; j < nLocal_; j++) {
187     int aid = AtomLocalToGlobal[j];
188     if (globalGroupMembership[aid] == gid)
189     groupList_[i].push_back(j);
190     }
191     }
192    
193 gezelter 1570 skipsForLocalAtom.clear();
194     skipsForLocalAtom.reserve(nLocal_);
195 gezelter 1569
196 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
197     int iglob = AtomLocalToGlobal[i];
198     for (int j = 0; j < nLocal_; j++) {
199     int jglob = AtomLocalToGlobal[j];
200     if (excludes.hasPair(iglob, jglob))
201     skipsForLocalAtom[i].push_back(j);
202     }
203     }
204    
205     toposForLocalAtom.clear();
206     toposForLocalAtom.reserve(nLocal_);
207     for (int i = 0; i < nLocal_; i++) {
208     int iglob = AtomLocalToGlobal[i];
209     int nTopos = 0;
210     for (int j = 0; j < nLocal_; j++) {
211     int jglob = AtomLocalToGlobal[j];
212     if (oneTwo.hasPair(iglob, jglob)) {
213     toposForLocalAtom[i].push_back(j);
214     topoDistLocal[i][nTopos] = 1;
215     nTopos++;
216     }
217     if (oneThree.hasPair(iglob, jglob)) {
218     toposForLocalAtom[i].push_back(j);
219     topoDistLocal[i][nTopos] = 2;
220     nTopos++;
221     }
222     if (oneFour.hasPair(iglob, jglob)) {
223     toposForLocalAtom[i].push_back(j);
224     topoDistLocal[i][nTopos] = 3;
225     nTopos++;
226     }
227     }
228     }
229 gezelter 1539 }
230 gezelter 1570
231 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
232    
233     for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
234     longRangePot_[j] = 0.0;
235     }
236    
237     #ifdef IS_MPI
238     if (storageLayout_ & DataStorage::dslForce) {
239     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
240     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
241     }
242    
243     if (storageLayout_ & DataStorage::dslTorque) {
244     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
245     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
246     }
247    
248     fill(pot_row.begin(), pot_row.end(),
249     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
250    
251     fill(pot_col.begin(), pot_col.end(),
252     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
253    
254     pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
255    
256     if (storageLayout_ & DataStorage::dslParticlePot) {
257     fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
258     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
259     }
260    
261     if (storageLayout_ & DataStorage::dslDensity) {
262     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
263     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
264     }
265    
266     if (storageLayout_ & DataStorage::dslFunctional) {
267     fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
268     fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
269     }
270    
271     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
272     fill(atomRowData.functionalDerivative.begin(),
273     atomRowData.functionalDerivative.end(), 0.0);
274     fill(atomColData.functionalDerivative.begin(),
275     atomColData.functionalDerivative.end(), 0.0);
276     }
277    
278     #else
279    
280     if (storageLayout_ & DataStorage::dslParticlePot) {
281     fill(snap_->atomData.particlePot.begin(),
282     snap_->atomData.particlePot.end(), 0.0);
283     }
284    
285     if (storageLayout_ & DataStorage::dslDensity) {
286     fill(snap_->atomData.density.begin(),
287     snap_->atomData.density.end(), 0.0);
288     }
289     if (storageLayout_ & DataStorage::dslFunctional) {
290     fill(snap_->atomData.functional.begin(),
291     snap_->atomData.functional.end(), 0.0);
292     }
293     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
294     fill(snap_->atomData.functionalDerivative.begin(),
295     snap_->atomData.functionalDerivative.end(), 0.0);
296     }
297     #endif
298    
299     }
300    
301    
302 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
303 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
304     storageLayout_ = sman_->getStorageLayout();
305 chuckv 1538 #ifdef IS_MPI
306 gezelter 1540
307 gezelter 1539 // gather up the atomic positions
308 gezelter 1551 AtomCommVectorRow->gather(snap_->atomData.position,
309     atomRowData.position);
310     AtomCommVectorColumn->gather(snap_->atomData.position,
311     atomColData.position);
312 gezelter 1539
313     // gather up the cutoff group positions
314 gezelter 1551 cgCommVectorRow->gather(snap_->cgData.position,
315     cgRowData.position);
316     cgCommVectorColumn->gather(snap_->cgData.position,
317     cgColData.position);
318 gezelter 1539
319     // if needed, gather the atomic rotation matrices
320 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
321     AtomCommMatrixRow->gather(snap_->atomData.aMat,
322     atomRowData.aMat);
323     AtomCommMatrixColumn->gather(snap_->atomData.aMat,
324     atomColData.aMat);
325 gezelter 1539 }
326    
327     // if needed, gather the atomic eletrostatic frames
328 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
329     AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
330     atomRowData.electroFrame);
331     AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
332     atomColData.electroFrame);
333 gezelter 1539 }
334     #endif
335     }
336    
337 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
338     * data structures.
339     */
340 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
341 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
342     storageLayout_ = sman_->getStorageLayout();
343 gezelter 1539 #ifdef IS_MPI
344    
345 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
346    
347     AtomCommRealRow->scatter(atomRowData.density,
348     snap_->atomData.density);
349    
350     int n = snap_->atomData.density.size();
351 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
352 gezelter 1551 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
353 gezelter 1539 for (int i = 0; i < n; i++)
354 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
355 gezelter 1539 }
356 chuckv 1538 #endif
357 gezelter 1539 }
358 gezelter 1575
359     /*
360     * redistributes information obtained during the pre-pair loop out to
361     * row and column-indexed data structures
362     */
363 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
364 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
365     storageLayout_ = sman_->getStorageLayout();
366 chuckv 1538 #ifdef IS_MPI
367 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
368     AtomCommRealRow->gather(snap_->atomData.functional,
369     atomRowData.functional);
370     AtomCommRealColumn->gather(snap_->atomData.functional,
371     atomColData.functional);
372 gezelter 1539 }
373    
374 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
375     AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
376     atomRowData.functionalDerivative);
377     AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
378     atomColData.functionalDerivative);
379 gezelter 1539 }
380 chuckv 1538 #endif
381     }
382 gezelter 1539
383    
384 gezelter 1549 void ForceMatrixDecomposition::collectData() {
385 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
386     storageLayout_ = sman_->getStorageLayout();
387     #ifdef IS_MPI
388     int n = snap_->atomData.force.size();
389 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
390 gezelter 1541
391 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
392 gezelter 1541 for (int i = 0; i < n; i++) {
393 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
394 gezelter 1541 frc_tmp[i] = 0.0;
395     }
396 gezelter 1540
397 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
398 gezelter 1540 for (int i = 0; i < n; i++)
399 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
400 gezelter 1540
401    
402 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
403 gezelter 1541
404 gezelter 1551 int nt = snap_->atomData.force.size();
405 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
406 gezelter 1541
407 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
408 gezelter 1541 for (int i = 0; i < n; i++) {
409 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
410 gezelter 1541 trq_tmp[i] = 0.0;
411     }
412 gezelter 1540
413 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
414 gezelter 1540 for (int i = 0; i < n; i++)
415 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
416 gezelter 1540 }
417    
418 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
419 gezelter 1544
420 gezelter 1575 vector<potVec> pot_temp(nLocal_,
421     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
422    
423     // scatter/gather pot_row into the members of my column
424    
425     AtomCommPotRow->scatter(pot_row, pot_temp);
426    
427     for (int ii = 0; ii < pot_temp.size(); ii++ )
428     pot_local += pot_temp[ii];
429 gezelter 1540
430 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
431     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
432    
433     AtomCommPotColumn->scatter(pot_col, pot_temp);
434    
435     for (int ii = 0; ii < pot_temp.size(); ii++ )
436     pot_local += pot_temp[ii];
437    
438 gezelter 1539 #endif
439 chuckv 1538 }
440 gezelter 1551
441 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
442     #ifdef IS_MPI
443     return nAtomsInRow_;
444     #else
445     return nLocal_;
446     #endif
447     }
448    
449 gezelter 1569 /**
450     * returns the list of atoms belonging to this group.
451     */
452     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
453     #ifdef IS_MPI
454     return groupListRow_[cg1];
455     #else
456     return groupList_[cg1];
457     #endif
458     }
459    
460     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
461     #ifdef IS_MPI
462     return groupListCol_[cg2];
463     #else
464     return groupList_[cg2];
465     #endif
466     }
467 chuckv 1538
468 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
469     Vector3d d;
470    
471     #ifdef IS_MPI
472     d = cgColData.position[cg2] - cgRowData.position[cg1];
473     #else
474     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
475     #endif
476    
477     snap_->wrapVector(d);
478     return d;
479     }
480    
481    
482     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
483    
484     Vector3d d;
485    
486     #ifdef IS_MPI
487     d = cgRowData.position[cg1] - atomRowData.position[atom1];
488     #else
489     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
490     #endif
491    
492     snap_->wrapVector(d);
493     return d;
494     }
495    
496     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
497     Vector3d d;
498    
499     #ifdef IS_MPI
500     d = cgColData.position[cg2] - atomColData.position[atom2];
501     #else
502     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
503     #endif
504    
505     snap_->wrapVector(d);
506     return d;
507     }
508 gezelter 1569
509     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
510     #ifdef IS_MPI
511     return massFactorsRow[atom1];
512     #else
513     return massFactorsLocal[atom1];
514     #endif
515     }
516    
517     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
518     #ifdef IS_MPI
519     return massFactorsCol[atom2];
520     #else
521     return massFactorsLocal[atom2];
522     #endif
523    
524     }
525 gezelter 1551
526     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
527     Vector3d d;
528    
529     #ifdef IS_MPI
530     d = atomColData.position[atom2] - atomRowData.position[atom1];
531     #else
532     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
533     #endif
534    
535     snap_->wrapVector(d);
536     return d;
537     }
538    
539 gezelter 1570 vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
540     #ifdef IS_MPI
541     return skipsForRowAtom[atom1];
542     #else
543     return skipsForLocalAtom[atom1];
544     #endif
545     }
546    
547     /**
548 gezelter 1575 * There are a number of reasons to skip a pair or a
549     * particle. Mostly we do this to exclude atoms who are involved in
550     * short range interactions (bonds, bends, torsions), but we also
551     * need to exclude some overcounted interactions that result from
552     * the parallel decomposition.
553 gezelter 1570 */
554     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
555     int unique_id_1, unique_id_2;
556    
557     #ifdef IS_MPI
558     // in MPI, we have to look up the unique IDs for each atom
559     unique_id_1 = AtomRowToGlobal[atom1];
560     unique_id_2 = AtomColToGlobal[atom2];
561    
562     // this situation should only arise in MPI simulations
563     if (unique_id_1 == unique_id_2) return true;
564    
565     // this prevents us from doing the pair on multiple processors
566     if (unique_id_1 < unique_id_2) {
567     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
568     } else {
569     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
570     }
571     #else
572     // in the normal loop, the atom numbers are unique
573     unique_id_1 = atom1;
574     unique_id_2 = atom2;
575     #endif
576    
577     #ifdef IS_MPI
578     for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
579     i != skipsForRowAtom[atom1].end(); ++i) {
580     if ( (*i) == unique_id_2 ) return true;
581     }
582     #else
583     for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
584     i != skipsForLocalAtom[atom1].end(); ++i) {
585     if ( (*i) == unique_id_2 ) return true;
586     }
587     #endif
588     }
589    
590     int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
591    
592     #ifdef IS_MPI
593     for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
594     if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
595     }
596     #else
597     for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
598     if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
599     }
600     #endif
601    
602     // zero is default for unconnected (i.e. normal) pair interactions
603     return 0;
604     }
605    
606 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
607     #ifdef IS_MPI
608     atomRowData.force[atom1] += fg;
609     #else
610     snap_->atomData.force[atom1] += fg;
611     #endif
612     }
613    
614     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
615     #ifdef IS_MPI
616     atomColData.force[atom2] += fg;
617     #else
618     snap_->atomData.force[atom2] += fg;
619     #endif
620     }
621    
622     // filling interaction blocks with pointers
623     InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
624 gezelter 1567 InteractionData idat;
625 gezelter 1551
626     #ifdef IS_MPI
627 gezelter 1571
628     idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
629     ff_->getAtomType(identsCol[atom2]) );
630    
631 gezelter 1575
632 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
633 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
634     idat.A2 = &(atomColData.aMat[atom2]);
635 gezelter 1551 }
636 gezelter 1567
637 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
638 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
639     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
640 gezelter 1551 }
641    
642     if (storageLayout_ & DataStorage::dslTorque) {
643 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
644     idat.t2 = &(atomColData.torque[atom2]);
645 gezelter 1551 }
646    
647     if (storageLayout_ & DataStorage::dslDensity) {
648 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
649     idat.rho2 = &(atomColData.density[atom2]);
650 gezelter 1551 }
651    
652 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
653     idat.frho1 = &(atomRowData.functional[atom1]);
654     idat.frho2 = &(atomColData.functional[atom2]);
655     }
656    
657 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
658 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
659     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
660 gezelter 1551 }
661 gezelter 1570
662 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
663     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
664     idat.particlePot2 = &(atomColData.particlePot[atom2]);
665     }
666    
667 gezelter 1562 #else
668 gezelter 1571
669     idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
670     ff_->getAtomType(identsLocal[atom2]) );
671    
672 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
673     idat.A1 = &(snap_->atomData.aMat[atom1]);
674     idat.A2 = &(snap_->atomData.aMat[atom2]);
675     }
676    
677     if (storageLayout_ & DataStorage::dslElectroFrame) {
678     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
679     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
680     }
681    
682     if (storageLayout_ & DataStorage::dslTorque) {
683     idat.t1 = &(snap_->atomData.torque[atom1]);
684     idat.t2 = &(snap_->atomData.torque[atom2]);
685     }
686    
687     if (storageLayout_ & DataStorage::dslDensity) {
688     idat.rho1 = &(snap_->atomData.density[atom1]);
689     idat.rho2 = &(snap_->atomData.density[atom2]);
690     }
691    
692 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
693     idat.frho1 = &(snap_->atomData.functional[atom1]);
694     idat.frho2 = &(snap_->atomData.functional[atom2]);
695     }
696    
697 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
698     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
699     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
700     }
701 gezelter 1575
702     if (storageLayout_ & DataStorage::dslParticlePot) {
703     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
704     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
705     }
706    
707 gezelter 1551 #endif
708 gezelter 1567 return idat;
709 gezelter 1551 }
710 gezelter 1567
711 gezelter 1575
712     void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {
713     #ifdef IS_MPI
714     pot_row[atom1] += 0.5 * *(idat.pot);
715     pot_col[atom2] += 0.5 * *(idat.pot);
716    
717     atomRowData.force[atom1] += *(idat.f1);
718     atomColData.force[atom2] -= *(idat.f1);
719     #else
720     longRangePot_ += *(idat.pot);
721    
722     snap_->atomData.force[atom1] += *(idat.f1);
723     snap_->atomData.force[atom2] -= *(idat.f1);
724     #endif
725    
726     }
727    
728    
729 gezelter 1551 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
730 gezelter 1567
731 gezelter 1562 InteractionData idat;
732     #ifdef IS_MPI
733 gezelter 1571 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
734     ff_->getAtomType(identsCol[atom2]) );
735    
736 gezelter 1562 if (storageLayout_ & DataStorage::dslElectroFrame) {
737     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
738     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
739     }
740     if (storageLayout_ & DataStorage::dslTorque) {
741     idat.t1 = &(atomRowData.torque[atom1]);
742     idat.t2 = &(atomColData.torque[atom2]);
743     }
744 gezelter 1567 #else
745 gezelter 1571 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
746     ff_->getAtomType(identsLocal[atom2]) );
747    
748 gezelter 1567 if (storageLayout_ & DataStorage::dslElectroFrame) {
749     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
750     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
751     }
752     if (storageLayout_ & DataStorage::dslTorque) {
753     idat.t1 = &(snap_->atomData.torque[atom1]);
754     idat.t2 = &(snap_->atomData.torque[atom2]);
755     }
756 gezelter 1571 #endif
757 gezelter 1551 }
758 gezelter 1567
759 gezelter 1562 /*
760     * buildNeighborList
761     *
762     * first element of pair is row-indexed CutoffGroup
763     * second element of pair is column-indexed CutoffGroup
764     */
765 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
766    
767     vector<pair<int, int> > neighborList;
768     #ifdef IS_MPI
769 gezelter 1568 cellListRow_.clear();
770     cellListCol_.clear();
771 gezelter 1567 #else
772 gezelter 1568 cellList_.clear();
773 gezelter 1567 #endif
774 gezelter 1562
775 gezelter 1567 // dangerous to not do error checking.
776     RealType rCut_;
777    
778     RealType rList_ = (rCut_ + skinThickness_);
779     RealType rl2 = rList_ * rList_;
780     Snapshot* snap_ = sman_->getCurrentSnapshot();
781 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
782     Vector3d Hx = Hmat.getColumn(0);
783     Vector3d Hy = Hmat.getColumn(1);
784     Vector3d Hz = Hmat.getColumn(2);
785    
786 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
787     nCells_.y() = (int) ( Hy.length() )/ rList_;
788     nCells_.z() = (int) ( Hz.length() )/ rList_;
789 gezelter 1562
790 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
791     Vector3d rs, scaled, dr;
792     Vector3i whichCell;
793     int cellIndex;
794    
795     #ifdef IS_MPI
796     for (int i = 0; i < nGroupsInRow_; i++) {
797 gezelter 1562 rs = cgRowData.position[i];
798 gezelter 1567 // scaled positions relative to the box vectors
799     scaled = invHmat * rs;
800     // wrap the vector back into the unit box by subtracting integer box
801     // numbers
802     for (int j = 0; j < 3; j++)
803     scaled[j] -= roundMe(scaled[j]);
804    
805     // find xyz-indices of cell that cutoffGroup is in.
806 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
807     whichCell.y() = nCells_.y() * scaled.y();
808     whichCell.z() = nCells_.z() * scaled.z();
809 gezelter 1567
810     // find single index of this cell:
811 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
812 gezelter 1567 // add this cutoff group to the list of groups in this cell;
813 gezelter 1568 cellListRow_[cellIndex].push_back(i);
814 gezelter 1562 }
815    
816 gezelter 1567 for (int i = 0; i < nGroupsInCol_; i++) {
817     rs = cgColData.position[i];
818     // scaled positions relative to the box vectors
819     scaled = invHmat * rs;
820     // wrap the vector back into the unit box by subtracting integer box
821     // numbers
822     for (int j = 0; j < 3; j++)
823     scaled[j] -= roundMe(scaled[j]);
824    
825     // find xyz-indices of cell that cutoffGroup is in.
826 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
827     whichCell.y() = nCells_.y() * scaled.y();
828     whichCell.z() = nCells_.z() * scaled.z();
829 gezelter 1567
830     // find single index of this cell:
831 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
832 gezelter 1567 // add this cutoff group to the list of groups in this cell;
833 gezelter 1568 cellListCol_[cellIndex].push_back(i);
834 gezelter 1562 }
835 gezelter 1567 #else
836     for (int i = 0; i < nGroups_; i++) {
837     rs = snap_->cgData.position[i];
838     // scaled positions relative to the box vectors
839     scaled = invHmat * rs;
840     // wrap the vector back into the unit box by subtracting integer box
841     // numbers
842     for (int j = 0; j < 3; j++)
843     scaled[j] -= roundMe(scaled[j]);
844    
845     // find xyz-indices of cell that cutoffGroup is in.
846 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
847     whichCell.y() = nCells_.y() * scaled.y();
848     whichCell.z() = nCells_.z() * scaled.z();
849 gezelter 1567
850     // find single index of this cell:
851 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
852 gezelter 1567 // add this cutoff group to the list of groups in this cell;
853 gezelter 1568 cellList_[cellIndex].push_back(i);
854 gezelter 1567 }
855     #endif
856    
857 gezelter 1568 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
858     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
859     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
860 gezelter 1562 Vector3i m1v(m1x, m1y, m1z);
861 gezelter 1568 int m1 = Vlinear(m1v, nCells_);
862 gezelter 1562
863 gezelter 1568 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
864     os != cellOffsets_.end(); ++os) {
865    
866     Vector3i m2v = m1v + (*os);
867    
868     if (m2v.x() >= nCells_.x()) {
869 gezelter 1562 m2v.x() = 0;
870     } else if (m2v.x() < 0) {
871 gezelter 1568 m2v.x() = nCells_.x() - 1;
872 gezelter 1562 }
873 gezelter 1568
874     if (m2v.y() >= nCells_.y()) {
875 gezelter 1562 m2v.y() = 0;
876     } else if (m2v.y() < 0) {
877 gezelter 1568 m2v.y() = nCells_.y() - 1;
878 gezelter 1562 }
879 gezelter 1568
880     if (m2v.z() >= nCells_.z()) {
881 gezelter 1567 m2v.z() = 0;
882     } else if (m2v.z() < 0) {
883 gezelter 1568 m2v.z() = nCells_.z() - 1;
884 gezelter 1567 }
885 gezelter 1568
886     int m2 = Vlinear (m2v, nCells_);
887 gezelter 1567
888     #ifdef IS_MPI
889 gezelter 1568 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
890     j1 != cellListRow_[m1].end(); ++j1) {
891     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
892     j2 != cellListCol_[m2].end(); ++j2) {
893 gezelter 1567
894     // Always do this if we're in different cells or if
895     // we're in the same cell and the global index of the
896     // j2 cutoff group is less than the j1 cutoff group
897    
898     if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
899     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
900     snap_->wrapVector(dr);
901     if (dr.lengthSquare() < rl2) {
902     neighborList.push_back(make_pair((*j1), (*j2)));
903 gezelter 1562 }
904     }
905     }
906     }
907 gezelter 1567 #else
908 gezelter 1568 for (vector<int>::iterator j1 = cellList_[m1].begin();
909     j1 != cellList_[m1].end(); ++j1) {
910     for (vector<int>::iterator j2 = cellList_[m2].begin();
911     j2 != cellList_[m2].end(); ++j2) {
912 gezelter 1567
913     // Always do this if we're in different cells or if
914     // we're in the same cell and the global index of the
915     // j2 cutoff group is less than the j1 cutoff group
916    
917     if (m2 != m1 || (*j2) < (*j1)) {
918     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
919     snap_->wrapVector(dr);
920     if (dr.lengthSquare() < rl2) {
921     neighborList.push_back(make_pair((*j1), (*j2)));
922     }
923     }
924     }
925     }
926     #endif
927 gezelter 1562 }
928     }
929     }
930     }
931 gezelter 1568
932     // save the local cutoff group positions for the check that is
933     // done on each loop:
934     saved_CG_positions_.clear();
935     for (int i = 0; i < nGroups_; i++)
936     saved_CG_positions_.push_back(snap_->cgData.position[i]);
937    
938 gezelter 1567 return neighborList;
939 gezelter 1562 }
940 gezelter 1539 } //end namespace OpenMD