ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1571
Committed: Fri May 27 16:45:44 2011 UTC (13 years, 11 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 27805 byte(s)
Log Message:
Added Atypes to new C++ force decomposition.

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 chuckv 1538
47 gezelter 1541 using namespace std;
48 gezelter 1539 namespace OpenMD {
49 chuckv 1538
50 gezelter 1544 /**
51     * distributeInitialData is essentially a copy of the older fortran
52     * SimulationSetup
53     */
54    
55 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
56 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
57     storageLayout_ = sman_->getStorageLayout();
58 gezelter 1571 ff_ = info_->getForceField();
59 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
60     nGroups_ = snap_->getNumberOfCutoffGroups();
61 chuckv 1538
62 gezelter 1569 // gather the information for atomtype IDs (atids):
63 gezelter 1571 identsLocal = info_->getIdentArray();
64 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65     cgLocalToGlobal = info_->getGlobalGroupIndices();
66     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67     vector<RealType> massFactorsLocal = info_->getMassFactors();
68 gezelter 1570 PairList excludes = info_->getExcludedInteractions();
69     PairList oneTwo = info_->getOneTwoInteractions();
70     PairList oneThree = info_->getOneThreeInteractions();
71     PairList oneFour = info_->getOneFourInteractions();
72 gezelter 1569 vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
73    
74 gezelter 1567 #ifdef IS_MPI
75    
76     AtomCommIntRow = new Communicator<Row,int>(nLocal_);
77     AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78     AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79     AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 chuckv 1538
81 gezelter 1567 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
82     AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
83     AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
84     AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
85 gezelter 1541
86 gezelter 1567 cgCommIntRow = new Communicator<Row,int>(nGroups_);
87     cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
88     cgCommIntColumn = new Communicator<Column,int>(nGroups_);
89     cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
90 gezelter 1551
91 gezelter 1567 nAtomsInRow_ = AtomCommIntRow->getSize();
92     nAtomsInCol_ = AtomCommIntColumn->getSize();
93     nGroupsInRow_ = cgCommIntRow->getSize();
94     nGroupsInCol_ = cgCommIntColumn->getSize();
95    
96 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
97 gezelter 1567 atomRowData.resize(nAtomsInRow_);
98 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
99 gezelter 1567 atomColData.resize(nAtomsInCol_);
100 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
101 gezelter 1567 cgRowData.resize(nGroupsInRow_);
102 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
103 gezelter 1567 cgColData.resize(nGroupsInCol_);
104 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
105 gezelter 1549
106 gezelter 1544 vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
107 gezelter 1567 vector<RealType> (nAtomsInRow_, 0.0));
108 gezelter 1544 vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
109 gezelter 1567 vector<RealType> (nAtomsInCol_, 0.0));
110 gezelter 1549
111 gezelter 1567 identsRow.reserve(nAtomsInRow_);
112     identsCol.reserve(nAtomsInCol_);
113 gezelter 1549
114     AtomCommIntRow->gather(identsLocal, identsRow);
115     AtomCommIntColumn->gather(identsLocal, identsCol);
116    
117     AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
118     AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
119    
120     cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
121     cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
122 gezelter 1541
123 gezelter 1569 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
124     AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
125    
126     groupListRow_.clear();
127     groupListRow_.reserve(nGroupsInRow_);
128     for (int i = 0; i < nGroupsInRow_; i++) {
129     int gid = cgRowToGlobal[i];
130     for (int j = 0; j < nAtomsInRow_; j++) {
131     int aid = AtomRowToGlobal[j];
132     if (globalGroupMembership[aid] == gid)
133     groupListRow_[i].push_back(j);
134     }
135     }
136    
137     groupListCol_.clear();
138     groupListCol_.reserve(nGroupsInCol_);
139     for (int i = 0; i < nGroupsInCol_; i++) {
140     int gid = cgColToGlobal[i];
141     for (int j = 0; j < nAtomsInCol_; j++) {
142     int aid = AtomColToGlobal[j];
143     if (globalGroupMembership[aid] == gid)
144     groupListCol_[i].push_back(j);
145     }
146     }
147    
148 gezelter 1570 skipsForRowAtom.clear();
149     skipsForRowAtom.reserve(nAtomsInRow_);
150     for (int i = 0; i < nAtomsInRow_; i++) {
151 gezelter 1571 int iglob = AtomRowToGlobal[i];
152 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
153 gezelter 1571 int jglob = AtomColToGlobal[j];
154 gezelter 1570 if (excludes.hasPair(iglob, jglob))
155     skipsForRowAtom[i].push_back(j);
156     }
157     }
158    
159     toposForRowAtom.clear();
160     toposForRowAtom.reserve(nAtomsInRow_);
161     for (int i = 0; i < nAtomsInRow_; i++) {
162 gezelter 1571 int iglob = AtomRowToGlobal[i];
163 gezelter 1570 int nTopos = 0;
164     for (int j = 0; j < nAtomsInCol_; j++) {
165 gezelter 1571 int jglob = AtomColToGlobal[j];
166 gezelter 1570 if (oneTwo.hasPair(iglob, jglob)) {
167     toposForRowAtom[i].push_back(j);
168     topoDistRow[i][nTopos] = 1;
169     nTopos++;
170     }
171     if (oneThree.hasPair(iglob, jglob)) {
172     toposForRowAtom[i].push_back(j);
173     topoDistRow[i][nTopos] = 2;
174     nTopos++;
175     }
176     if (oneFour.hasPair(iglob, jglob)) {
177     toposForRowAtom[i].push_back(j);
178     topoDistRow[i][nTopos] = 3;
179     nTopos++;
180     }
181     }
182     }
183    
184 gezelter 1569 #endif
185    
186     groupList_.clear();
187     groupList_.reserve(nGroups_);
188     for (int i = 0; i < nGroups_; i++) {
189     int gid = cgLocalToGlobal[i];
190     for (int j = 0; j < nLocal_; j++) {
191     int aid = AtomLocalToGlobal[j];
192     if (globalGroupMembership[aid] == gid)
193     groupList_[i].push_back(j);
194     }
195     }
196    
197 gezelter 1570 skipsForLocalAtom.clear();
198     skipsForLocalAtom.reserve(nLocal_);
199 gezelter 1569
200 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
201     int iglob = AtomLocalToGlobal[i];
202     for (int j = 0; j < nLocal_; j++) {
203     int jglob = AtomLocalToGlobal[j];
204     if (excludes.hasPair(iglob, jglob))
205     skipsForLocalAtom[i].push_back(j);
206     }
207     }
208    
209     toposForLocalAtom.clear();
210     toposForLocalAtom.reserve(nLocal_);
211     for (int i = 0; i < nLocal_; i++) {
212     int iglob = AtomLocalToGlobal[i];
213     int nTopos = 0;
214     for (int j = 0; j < nLocal_; j++) {
215     int jglob = AtomLocalToGlobal[j];
216     if (oneTwo.hasPair(iglob, jglob)) {
217     toposForLocalAtom[i].push_back(j);
218     topoDistLocal[i][nTopos] = 1;
219     nTopos++;
220     }
221     if (oneThree.hasPair(iglob, jglob)) {
222     toposForLocalAtom[i].push_back(j);
223     topoDistLocal[i][nTopos] = 2;
224     nTopos++;
225     }
226     if (oneFour.hasPair(iglob, jglob)) {
227     toposForLocalAtom[i].push_back(j);
228     topoDistLocal[i][nTopos] = 3;
229     nTopos++;
230     }
231     }
232     }
233 gezelter 1539 }
234 gezelter 1570
235 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
236 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
237     storageLayout_ = sman_->getStorageLayout();
238 chuckv 1538 #ifdef IS_MPI
239 gezelter 1540
240 gezelter 1539 // gather up the atomic positions
241 gezelter 1551 AtomCommVectorRow->gather(snap_->atomData.position,
242     atomRowData.position);
243     AtomCommVectorColumn->gather(snap_->atomData.position,
244     atomColData.position);
245 gezelter 1539
246     // gather up the cutoff group positions
247 gezelter 1551 cgCommVectorRow->gather(snap_->cgData.position,
248     cgRowData.position);
249     cgCommVectorColumn->gather(snap_->cgData.position,
250     cgColData.position);
251 gezelter 1539
252     // if needed, gather the atomic rotation matrices
253 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
254     AtomCommMatrixRow->gather(snap_->atomData.aMat,
255     atomRowData.aMat);
256     AtomCommMatrixColumn->gather(snap_->atomData.aMat,
257     atomColData.aMat);
258 gezelter 1539 }
259    
260     // if needed, gather the atomic eletrostatic frames
261 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
262     AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
263     atomRowData.electroFrame);
264     AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
265     atomColData.electroFrame);
266 gezelter 1539 }
267     #endif
268     }
269    
270 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
271 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
272     storageLayout_ = sman_->getStorageLayout();
273 gezelter 1539 #ifdef IS_MPI
274    
275 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
276    
277     AtomCommRealRow->scatter(atomRowData.density,
278     snap_->atomData.density);
279    
280     int n = snap_->atomData.density.size();
281 gezelter 1541 std::vector<RealType> rho_tmp(n, 0.0);
282 gezelter 1551 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
283 gezelter 1539 for (int i = 0; i < n; i++)
284 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
285 gezelter 1539 }
286 chuckv 1538 #endif
287 gezelter 1539 }
288    
289 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
290 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
291     storageLayout_ = sman_->getStorageLayout();
292 chuckv 1538 #ifdef IS_MPI
293 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
294     AtomCommRealRow->gather(snap_->atomData.functional,
295     atomRowData.functional);
296     AtomCommRealColumn->gather(snap_->atomData.functional,
297     atomColData.functional);
298 gezelter 1539 }
299    
300 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
301     AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
302     atomRowData.functionalDerivative);
303     AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
304     atomColData.functionalDerivative);
305 gezelter 1539 }
306 chuckv 1538 #endif
307     }
308 gezelter 1539
309    
310 gezelter 1549 void ForceMatrixDecomposition::collectData() {
311 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
312     storageLayout_ = sman_->getStorageLayout();
313     #ifdef IS_MPI
314     int n = snap_->atomData.force.size();
315 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
316 gezelter 1541
317 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
318 gezelter 1541 for (int i = 0; i < n; i++) {
319 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
320 gezelter 1541 frc_tmp[i] = 0.0;
321     }
322 gezelter 1540
323 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
324 gezelter 1540 for (int i = 0; i < n; i++)
325 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
326 gezelter 1540
327    
328 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
329 gezelter 1541
330 gezelter 1551 int nt = snap_->atomData.force.size();
331 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
332 gezelter 1541
333 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
334 gezelter 1541 for (int i = 0; i < n; i++) {
335 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
336 gezelter 1541 trq_tmp[i] = 0.0;
337     }
338 gezelter 1540
339 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
340 gezelter 1540 for (int i = 0; i < n; i++)
341 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
342 gezelter 1540 }
343    
344 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
345 gezelter 1544
346     vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
347 gezelter 1567 vector<RealType> (nLocal_, 0.0));
348 gezelter 1540
349 gezelter 1544 for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
350 gezelter 1549 AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
351 gezelter 1541 for (int ii = 0; ii < pot_temp[i].size(); ii++ ) {
352     pot_local[i] += pot_temp[i][ii];
353     }
354     }
355 gezelter 1539 #endif
356 chuckv 1538 }
357 gezelter 1551
358 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
359     #ifdef IS_MPI
360     return nAtomsInRow_;
361     #else
362     return nLocal_;
363     #endif
364     }
365    
366 gezelter 1569 /**
367     * returns the list of atoms belonging to this group.
368     */
369     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
370     #ifdef IS_MPI
371     return groupListRow_[cg1];
372     #else
373     return groupList_[cg1];
374     #endif
375     }
376    
377     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
378     #ifdef IS_MPI
379     return groupListCol_[cg2];
380     #else
381     return groupList_[cg2];
382     #endif
383     }
384 chuckv 1538
385 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
386     Vector3d d;
387    
388     #ifdef IS_MPI
389     d = cgColData.position[cg2] - cgRowData.position[cg1];
390     #else
391     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
392     #endif
393    
394     snap_->wrapVector(d);
395     return d;
396     }
397    
398    
399     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
400    
401     Vector3d d;
402    
403     #ifdef IS_MPI
404     d = cgRowData.position[cg1] - atomRowData.position[atom1];
405     #else
406     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
407     #endif
408    
409     snap_->wrapVector(d);
410     return d;
411     }
412    
413     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
414     Vector3d d;
415    
416     #ifdef IS_MPI
417     d = cgColData.position[cg2] - atomColData.position[atom2];
418     #else
419     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
420     #endif
421    
422     snap_->wrapVector(d);
423     return d;
424     }
425 gezelter 1569
426     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
427     #ifdef IS_MPI
428     return massFactorsRow[atom1];
429     #else
430     return massFactorsLocal[atom1];
431     #endif
432     }
433    
434     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
435     #ifdef IS_MPI
436     return massFactorsCol[atom2];
437     #else
438     return massFactorsLocal[atom2];
439     #endif
440    
441     }
442 gezelter 1551
443     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
444     Vector3d d;
445    
446     #ifdef IS_MPI
447     d = atomColData.position[atom2] - atomRowData.position[atom1];
448     #else
449     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
450     #endif
451    
452     snap_->wrapVector(d);
453     return d;
454     }
455    
456 gezelter 1570 vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) {
457     #ifdef IS_MPI
458     return skipsForRowAtom[atom1];
459     #else
460     return skipsForLocalAtom[atom1];
461     #endif
462     }
463    
464     /**
465     * there are a number of reasons to skip a pair or a particle mostly
466     * we do this to exclude atoms who are involved in short range
467     * interactions (bonds, bends, torsions), but we also need to
468     * exclude some overcounted interactions that result from the
469     * parallel decomposition.
470     */
471     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
472     int unique_id_1, unique_id_2;
473    
474     #ifdef IS_MPI
475     // in MPI, we have to look up the unique IDs for each atom
476     unique_id_1 = AtomRowToGlobal[atom1];
477     unique_id_2 = AtomColToGlobal[atom2];
478    
479     // this situation should only arise in MPI simulations
480     if (unique_id_1 == unique_id_2) return true;
481    
482     // this prevents us from doing the pair on multiple processors
483     if (unique_id_1 < unique_id_2) {
484     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
485     } else {
486     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
487     }
488     #else
489     // in the normal loop, the atom numbers are unique
490     unique_id_1 = atom1;
491     unique_id_2 = atom2;
492     #endif
493    
494     #ifdef IS_MPI
495     for (vector<int>::iterator i = skipsForRowAtom[atom1].begin();
496     i != skipsForRowAtom[atom1].end(); ++i) {
497     if ( (*i) == unique_id_2 ) return true;
498     }
499     #else
500     for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin();
501     i != skipsForLocalAtom[atom1].end(); ++i) {
502     if ( (*i) == unique_id_2 ) return true;
503     }
504     #endif
505     }
506    
507     int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) {
508    
509     #ifdef IS_MPI
510     for (int i = 0; i < toposForRowAtom[atom1].size(); i++) {
511     if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i];
512     }
513     #else
514     for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) {
515     if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i];
516     }
517     #endif
518    
519     // zero is default for unconnected (i.e. normal) pair interactions
520     return 0;
521     }
522    
523 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
524     #ifdef IS_MPI
525     atomRowData.force[atom1] += fg;
526     #else
527     snap_->atomData.force[atom1] += fg;
528     #endif
529     }
530    
531     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
532     #ifdef IS_MPI
533     atomColData.force[atom2] += fg;
534     #else
535     snap_->atomData.force[atom2] += fg;
536     #endif
537     }
538    
539     // filling interaction blocks with pointers
540     InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
541 gezelter 1567 InteractionData idat;
542 gezelter 1551
543     #ifdef IS_MPI
544 gezelter 1571
545     idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
546     ff_->getAtomType(identsCol[atom2]) );
547    
548 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
549 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
550     idat.A2 = &(atomColData.aMat[atom2]);
551 gezelter 1551 }
552 gezelter 1567
553 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
554 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
555     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
556 gezelter 1551 }
557    
558     if (storageLayout_ & DataStorage::dslTorque) {
559 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
560     idat.t2 = &(atomColData.torque[atom2]);
561 gezelter 1551 }
562    
563     if (storageLayout_ & DataStorage::dslDensity) {
564 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
565     idat.rho2 = &(atomColData.density[atom2]);
566 gezelter 1551 }
567    
568     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
569 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
570     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
571 gezelter 1551 }
572 gezelter 1570
573 gezelter 1562 #else
574 gezelter 1571
575     idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
576     ff_->getAtomType(identsLocal[atom2]) );
577    
578 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
579     idat.A1 = &(snap_->atomData.aMat[atom1]);
580     idat.A2 = &(snap_->atomData.aMat[atom2]);
581     }
582    
583     if (storageLayout_ & DataStorage::dslElectroFrame) {
584     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
585     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
586     }
587    
588     if (storageLayout_ & DataStorage::dslTorque) {
589     idat.t1 = &(snap_->atomData.torque[atom1]);
590     idat.t2 = &(snap_->atomData.torque[atom2]);
591     }
592    
593     if (storageLayout_ & DataStorage::dslDensity) {
594     idat.rho1 = &(snap_->atomData.density[atom1]);
595     idat.rho2 = &(snap_->atomData.density[atom2]);
596     }
597    
598     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
599     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
600     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
601     }
602 gezelter 1551 #endif
603 gezelter 1567 return idat;
604 gezelter 1551 }
605 gezelter 1567
606 gezelter 1551 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
607 gezelter 1567
608 gezelter 1562 InteractionData idat;
609     #ifdef IS_MPI
610 gezelter 1571 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
611     ff_->getAtomType(identsCol[atom2]) );
612    
613 gezelter 1562 if (storageLayout_ & DataStorage::dslElectroFrame) {
614     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
615     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
616     }
617     if (storageLayout_ & DataStorage::dslTorque) {
618     idat.t1 = &(atomRowData.torque[atom1]);
619     idat.t2 = &(atomColData.torque[atom2]);
620     }
621 gezelter 1567 if (storageLayout_ & DataStorage::dslForce) {
622     idat.t1 = &(atomRowData.force[atom1]);
623     idat.t2 = &(atomColData.force[atom2]);
624     }
625     #else
626 gezelter 1571 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
627     ff_->getAtomType(identsLocal[atom2]) );
628    
629 gezelter 1567 if (storageLayout_ & DataStorage::dslElectroFrame) {
630     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
631     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
632     }
633     if (storageLayout_ & DataStorage::dslTorque) {
634     idat.t1 = &(snap_->atomData.torque[atom1]);
635     idat.t2 = &(snap_->atomData.torque[atom2]);
636     }
637     if (storageLayout_ & DataStorage::dslForce) {
638     idat.t1 = &(snap_->atomData.force[atom1]);
639     idat.t2 = &(snap_->atomData.force[atom2]);
640     }
641 gezelter 1571 #endif
642 gezelter 1551 }
643 gezelter 1567
644 gezelter 1562 /*
645     * buildNeighborList
646     *
647     * first element of pair is row-indexed CutoffGroup
648     * second element of pair is column-indexed CutoffGroup
649     */
650 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
651    
652     vector<pair<int, int> > neighborList;
653     #ifdef IS_MPI
654 gezelter 1568 cellListRow_.clear();
655     cellListCol_.clear();
656 gezelter 1567 #else
657 gezelter 1568 cellList_.clear();
658 gezelter 1567 #endif
659 gezelter 1562
660 gezelter 1567 // dangerous to not do error checking.
661     RealType rCut_;
662    
663     RealType rList_ = (rCut_ + skinThickness_);
664     RealType rl2 = rList_ * rList_;
665     Snapshot* snap_ = sman_->getCurrentSnapshot();
666 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
667     Vector3d Hx = Hmat.getColumn(0);
668     Vector3d Hy = Hmat.getColumn(1);
669     Vector3d Hz = Hmat.getColumn(2);
670    
671 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
672     nCells_.y() = (int) ( Hy.length() )/ rList_;
673     nCells_.z() = (int) ( Hz.length() )/ rList_;
674 gezelter 1562
675 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
676     Vector3d rs, scaled, dr;
677     Vector3i whichCell;
678     int cellIndex;
679    
680     #ifdef IS_MPI
681     for (int i = 0; i < nGroupsInRow_; i++) {
682 gezelter 1562 rs = cgRowData.position[i];
683 gezelter 1567 // scaled positions relative to the box vectors
684     scaled = invHmat * rs;
685     // wrap the vector back into the unit box by subtracting integer box
686     // numbers
687     for (int j = 0; j < 3; j++)
688     scaled[j] -= roundMe(scaled[j]);
689    
690     // find xyz-indices of cell that cutoffGroup is in.
691 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
692     whichCell.y() = nCells_.y() * scaled.y();
693     whichCell.z() = nCells_.z() * scaled.z();
694 gezelter 1567
695     // find single index of this cell:
696 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
697 gezelter 1567 // add this cutoff group to the list of groups in this cell;
698 gezelter 1568 cellListRow_[cellIndex].push_back(i);
699 gezelter 1562 }
700    
701 gezelter 1567 for (int i = 0; i < nGroupsInCol_; i++) {
702     rs = cgColData.position[i];
703     // scaled positions relative to the box vectors
704     scaled = invHmat * rs;
705     // wrap the vector back into the unit box by subtracting integer box
706     // numbers
707     for (int j = 0; j < 3; j++)
708     scaled[j] -= roundMe(scaled[j]);
709    
710     // find xyz-indices of cell that cutoffGroup is in.
711 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
712     whichCell.y() = nCells_.y() * scaled.y();
713     whichCell.z() = nCells_.z() * scaled.z();
714 gezelter 1567
715     // find single index of this cell:
716 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
717 gezelter 1567 // add this cutoff group to the list of groups in this cell;
718 gezelter 1568 cellListCol_[cellIndex].push_back(i);
719 gezelter 1562 }
720 gezelter 1567 #else
721     for (int i = 0; i < nGroups_; i++) {
722     rs = snap_->cgData.position[i];
723     // scaled positions relative to the box vectors
724     scaled = invHmat * rs;
725     // wrap the vector back into the unit box by subtracting integer box
726     // numbers
727     for (int j = 0; j < 3; j++)
728     scaled[j] -= roundMe(scaled[j]);
729    
730     // find xyz-indices of cell that cutoffGroup is in.
731 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
732     whichCell.y() = nCells_.y() * scaled.y();
733     whichCell.z() = nCells_.z() * scaled.z();
734 gezelter 1567
735     // find single index of this cell:
736 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
737 gezelter 1567 // add this cutoff group to the list of groups in this cell;
738 gezelter 1568 cellList_[cellIndex].push_back(i);
739 gezelter 1567 }
740     #endif
741    
742    
743    
744 gezelter 1568 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
745     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
746     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
747 gezelter 1562 Vector3i m1v(m1x, m1y, m1z);
748 gezelter 1568 int m1 = Vlinear(m1v, nCells_);
749 gezelter 1562
750 gezelter 1568 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
751     os != cellOffsets_.end(); ++os) {
752    
753     Vector3i m2v = m1v + (*os);
754    
755     if (m2v.x() >= nCells_.x()) {
756 gezelter 1562 m2v.x() = 0;
757     } else if (m2v.x() < 0) {
758 gezelter 1568 m2v.x() = nCells_.x() - 1;
759 gezelter 1562 }
760 gezelter 1568
761     if (m2v.y() >= nCells_.y()) {
762 gezelter 1562 m2v.y() = 0;
763     } else if (m2v.y() < 0) {
764 gezelter 1568 m2v.y() = nCells_.y() - 1;
765 gezelter 1562 }
766 gezelter 1568
767     if (m2v.z() >= nCells_.z()) {
768 gezelter 1567 m2v.z() = 0;
769     } else if (m2v.z() < 0) {
770 gezelter 1568 m2v.z() = nCells_.z() - 1;
771 gezelter 1567 }
772 gezelter 1568
773     int m2 = Vlinear (m2v, nCells_);
774 gezelter 1567
775     #ifdef IS_MPI
776 gezelter 1568 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
777     j1 != cellListRow_[m1].end(); ++j1) {
778     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
779     j2 != cellListCol_[m2].end(); ++j2) {
780 gezelter 1567
781     // Always do this if we're in different cells or if
782     // we're in the same cell and the global index of the
783     // j2 cutoff group is less than the j1 cutoff group
784    
785     if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
786     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
787     snap_->wrapVector(dr);
788     if (dr.lengthSquare() < rl2) {
789     neighborList.push_back(make_pair((*j1), (*j2)));
790 gezelter 1562 }
791     }
792     }
793     }
794 gezelter 1567 #else
795 gezelter 1568 for (vector<int>::iterator j1 = cellList_[m1].begin();
796     j1 != cellList_[m1].end(); ++j1) {
797     for (vector<int>::iterator j2 = cellList_[m2].begin();
798     j2 != cellList_[m2].end(); ++j2) {
799 gezelter 1567
800     // Always do this if we're in different cells or if
801     // we're in the same cell and the global index of the
802     // j2 cutoff group is less than the j1 cutoff group
803    
804     if (m2 != m1 || (*j2) < (*j1)) {
805     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
806     snap_->wrapVector(dr);
807     if (dr.lengthSquare() < rl2) {
808     neighborList.push_back(make_pair((*j1), (*j2)));
809     }
810     }
811     }
812     }
813     #endif
814 gezelter 1562 }
815     }
816     }
817     }
818 gezelter 1568
819     // save the local cutoff group positions for the check that is
820     // done on each loop:
821     saved_CG_positions_.clear();
822     for (int i = 0; i < nGroups_; i++)
823     saved_CG_positions_.push_back(snap_->cgData.position[i]);
824    
825 gezelter 1567 return neighborList;
826 gezelter 1562 }
827 gezelter 1539 } //end namespace OpenMD