1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#ifdef IS_MPI |
44 |
#include <mpi.h> |
45 |
#endif |
46 |
|
47 |
#include "parallel/ForceDecomposition.hpp" |
48 |
#include "math/Vector3.hpp" |
49 |
|
50 |
using namespace std; |
51 |
namespace OpenMD { |
52 |
|
53 |
ForceDecomposition::ForceDecomposition(SimInfo* info, InteractionManager* iMan) : info_(info), interactionMan_(iMan), needVelocities_(false) { |
54 |
|
55 |
sman_ = info_->getSnapshotManager(); |
56 |
storageLayout_ = sman_->getStorageLayout(); |
57 |
ff_ = info_->getForceField(); |
58 |
userChoseCutoff_ = false; |
59 |
|
60 |
usePeriodicBoundaryConditions_ = info->getSimParams()->getUsePeriodicBoundaryConditions(); |
61 |
|
62 |
Globals* simParams_ = info_->getSimParams(); |
63 |
if (simParams_->havePrintHeatFlux()) { |
64 |
if (simParams_->getPrintHeatFlux()) { |
65 |
needVelocities_ = true; |
66 |
} |
67 |
} |
68 |
|
69 |
if (simParams_->haveSkinThickness()) { |
70 |
skinThickness_ = simParams_->getSkinThickness(); |
71 |
} else { |
72 |
skinThickness_ = 1.0; |
73 |
sprintf(painCave.errMsg, |
74 |
"ForceDecomposition: No value was set for the skinThickness.\n" |
75 |
"\tOpenMD will use a default value of %f Angstroms\n" |
76 |
"\tfor this simulation\n", skinThickness_); |
77 |
painCave.severity = OPENMD_INFO; |
78 |
painCave.isFatal = 0; |
79 |
simError(); |
80 |
} |
81 |
|
82 |
// cellOffsets are the partial space for the cell lists used in |
83 |
// constructing the neighbor lists |
84 |
cellOffsets_.clear(); |
85 |
cellOffsets_.push_back( Vector3i(0, 0, 0) ); |
86 |
cellOffsets_.push_back( Vector3i(1, 0, 0) ); |
87 |
cellOffsets_.push_back( Vector3i(1, 1, 0) ); |
88 |
cellOffsets_.push_back( Vector3i(0, 1, 0) ); |
89 |
cellOffsets_.push_back( Vector3i(-1,1, 0) ); |
90 |
cellOffsets_.push_back( Vector3i(0, 0, 1) ); |
91 |
cellOffsets_.push_back( Vector3i(1, 0, 1) ); |
92 |
cellOffsets_.push_back( Vector3i(1, 1, 1) ); |
93 |
cellOffsets_.push_back( Vector3i(0, 1, 1) ); |
94 |
cellOffsets_.push_back( Vector3i(-1,1, 1) ); |
95 |
cellOffsets_.push_back( Vector3i(-1,0, 1) ); |
96 |
cellOffsets_.push_back( Vector3i(-1,-1,1) ); |
97 |
cellOffsets_.push_back( Vector3i(0, -1,1) ); |
98 |
cellOffsets_.push_back( Vector3i(1, -1,1) ); |
99 |
} |
100 |
|
101 |
void ForceDecomposition::fillSelfData(SelfData &sdat, int atom1) { |
102 |
|
103 |
//sdat.atype = atypesLocal[atom1]; |
104 |
sdat.atid = idents[atom1]; |
105 |
|
106 |
sdat.pot = &embeddingPot; |
107 |
sdat.excludedPot = &excludedSelfPot; |
108 |
|
109 |
if (storageLayout_ & DataStorage::dslDipole) { |
110 |
sdat.dipole = &(snap_->atomData.dipole[atom1]); |
111 |
} |
112 |
|
113 |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
114 |
sdat.quadrupole = &(snap_->atomData.quadrupole[atom1]); |
115 |
} |
116 |
|
117 |
if (storageLayout_ & DataStorage::dslTorque) { |
118 |
sdat.t = &(snap_->atomData.torque[atom1]); |
119 |
} |
120 |
|
121 |
if (storageLayout_ & DataStorage::dslDensity) { |
122 |
sdat.rho = &(snap_->atomData.density[atom1]); |
123 |
} |
124 |
|
125 |
if (storageLayout_ & DataStorage::dslFunctional) { |
126 |
sdat.frho = &(snap_->atomData.functional[atom1]); |
127 |
} |
128 |
|
129 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
130 |
sdat.dfrhodrho = &(snap_->atomData.functionalDerivative[atom1]); |
131 |
} |
132 |
|
133 |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
134 |
sdat.skippedCharge = &(snap_->atomData.skippedCharge[atom1]); |
135 |
} |
136 |
|
137 |
if (storageLayout_ & DataStorage::dslParticlePot) { |
138 |
sdat.particlePot = &(snap_->atomData.particlePot[atom1]); |
139 |
} |
140 |
|
141 |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
142 |
sdat.flucQ = &(snap_->atomData.flucQPos[atom1]); |
143 |
} |
144 |
|
145 |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
146 |
sdat.flucQfrc = &(snap_->atomData.flucQFrc[atom1]); |
147 |
} |
148 |
} |
149 |
|
150 |
bool ForceDecomposition::checkNeighborList() { |
151 |
|
152 |
int nGroups = snap_->cgData.position.size(); |
153 |
if (needVelocities_) |
154 |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | DataStorage::dslVelocity); |
155 |
|
156 |
// if we have changed the group identities or haven't set up the |
157 |
// saved positions we automatically will need a neighbor list update: |
158 |
|
159 |
if ( saved_CG_positions_.size() != nGroups ) return true; |
160 |
|
161 |
RealType dispmax = 0.0; |
162 |
Vector3d disp; |
163 |
|
164 |
for (int i = 0; i < nGroups; i++) { |
165 |
disp = snap_->cgData.position[i] - saved_CG_positions_[i]; |
166 |
for (int j = 0; j < 3; j++) |
167 |
dispmax = max( abs(disp[j]), dispmax); |
168 |
} |
169 |
|
170 |
#ifdef IS_MPI |
171 |
MPI::COMM_WORLD.Allreduce(&dispmax, &dispmax, 1, MPI::REALTYPE, MPI::MAX); |
172 |
#endif |
173 |
|
174 |
// a conservative test of list skin crossings |
175 |
dispmax = 2.0 * sqrt (3.0 * dispmax * dispmax); |
176 |
|
177 |
|
178 |
if (dispmax > skinThickness_) |
179 |
return (dispmax > skinThickness_); |
180 |
|
181 |
return false; |
182 |
} |
183 |
|
184 |
void ForceDecomposition::addToHeatFlux(Vector3d hf) { |
185 |
Vector3d chf = snap_->getConductiveHeatFlux(); |
186 |
chf += hf; |
187 |
snap_->setConductiveHeatFlux(chf); |
188 |
} |
189 |
void ForceDecomposition::setHeatFlux(Vector3d hf) { |
190 |
snap_->setConductiveHeatFlux(hf); |
191 |
} |
192 |
|
193 |
} |