1 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 |
|
3 |
/* |
4 |
Copyright (C) 2006, 2007 Ferdinando Ametrano |
5 |
Copyright (C) 2007 Marco Bianchetti |
6 |
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
7 |
|
8 |
This file is part of QuantLib, a free-software/open-source library |
9 |
for financial quantitative analysts and developers - http://quantlib.org/ |
10 |
|
11 |
QuantLib is free software: you can redistribute it and/or modify it |
12 |
under the terms of the QuantLib license. You should have received a |
13 |
copy of the license along with this program; if not, please email |
14 |
<quantlib-dev@lists.sf.net>. The license is also available online at |
15 |
<http://quantlib.org/license.shtml>. |
16 |
|
17 |
This program is distributed in the hope that it will be useful, but WITHOUT |
18 |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
19 |
FOR A PARTICULAR PURPOSE. See the license for more details. |
20 |
*/ |
21 |
|
22 |
#include "optimization/EndCriteria.hpp" |
23 |
#include "utils/simError.h" |
24 |
#include <cmath> |
25 |
#include <cstdio> |
26 |
|
27 |
namespace QuantLib { |
28 |
|
29 |
EndCriteria::EndCriteria(size_t maxIterations, |
30 |
size_t maxStationaryStateIterations, |
31 |
RealType rootEpsilon, |
32 |
RealType functionEpsilon, |
33 |
RealType gradientNormEpsilon) |
34 |
: maxIterations_(maxIterations), |
35 |
maxStationaryStateIterations_(maxStationaryStateIterations), |
36 |
rootEpsilon_(rootEpsilon), |
37 |
functionEpsilon_(functionEpsilon), |
38 |
gradientNormEpsilon_(gradientNormEpsilon) { |
39 |
|
40 |
|
41 |
// replaced the QL_REQUIRE macro with OpenMD's simError calls |
42 |
if (maxStationaryStateIterations_ <= 1) { |
43 |
sprintf(painCave.errMsg, |
44 |
"maxStationaryStateIterations_ ( %lu ) " |
45 |
"must be greater than one\n", |
46 |
(unsigned long)maxStationaryStateIterations_); |
47 |
painCave.isFatal = 1; |
48 |
painCave.severity = OPENMD_ERROR; |
49 |
simError(); |
50 |
} |
51 |
if (maxStationaryStateIterations_ > maxIterations_) { |
52 |
sprintf(painCave.errMsg, |
53 |
"maxStationaryStateIterations_ ( %lu ) " |
54 |
"must be less than maxIterations_ ( %lu )\n", |
55 |
(unsigned long)maxStationaryStateIterations_, |
56 |
(unsigned long)maxIterations_); |
57 |
painCave.isFatal = 1; |
58 |
painCave.severity = OPENMD_ERROR; |
59 |
simError(); |
60 |
} |
61 |
|
62 |
} |
63 |
|
64 |
bool EndCriteria::checkMaxIterations(const size_t iteration, |
65 |
EndCriteria::Type& ecType) const{ |
66 |
if (iteration < maxIterations_) |
67 |
return false; |
68 |
ecType = MaxIterations; |
69 |
return true; |
70 |
} |
71 |
|
72 |
bool EndCriteria::checkStationaryPoint(const RealType xOld, |
73 |
const RealType xNew, |
74 |
size_t& statStateIterations, |
75 |
EndCriteria::Type& ecType) const { |
76 |
if (std::fabs(xNew-xOld) >= rootEpsilon_) { |
77 |
statStateIterations = 0; |
78 |
return false; |
79 |
} |
80 |
++statStateIterations; |
81 |
if (statStateIterations <= maxStationaryStateIterations_) |
82 |
return false; |
83 |
ecType = StationaryPoint; |
84 |
return true; |
85 |
} |
86 |
|
87 |
bool EndCriteria::checkStationaryFunctionValue( |
88 |
const RealType fxOld, |
89 |
const RealType fxNew, |
90 |
size_t& statStateIterations, |
91 |
EndCriteria::Type& ecType) const { |
92 |
if (std::fabs(fxNew-fxOld) >= functionEpsilon_) { |
93 |
statStateIterations = 0; |
94 |
return false; |
95 |
} |
96 |
++statStateIterations; |
97 |
if (statStateIterations <= maxStationaryStateIterations_) |
98 |
return false; |
99 |
ecType = StationaryFunctionValue; |
100 |
return true; |
101 |
} |
102 |
|
103 |
bool EndCriteria::checkStationaryFunctionAccuracy( |
104 |
const RealType f, |
105 |
const bool positiveOptimization, |
106 |
EndCriteria::Type& ecType) const { |
107 |
if (!positiveOptimization) |
108 |
return false; |
109 |
if (f >= functionEpsilon_) |
110 |
return false; |
111 |
ecType = StationaryFunctionAccuracy; |
112 |
return true; |
113 |
} |
114 |
|
115 |
//bool EndCriteria::checkZerGradientNormValue( |
116 |
// const RealType gNormOld, |
117 |
// const RealType gNormNew, |
118 |
// EndCriteria::Type& ecType) const { |
119 |
// if (std::fabs(gNormNew-gNormOld) >= gradientNormEpsilon_) |
120 |
// return false; |
121 |
// ecType = StationaryGradient; |
122 |
// return true; |
123 |
//} |
124 |
|
125 |
bool EndCriteria::checkZeroGradientNorm(const RealType gradientNorm, |
126 |
EndCriteria::Type& ecType) const { |
127 |
if (gradientNorm >= gradientNormEpsilon_) |
128 |
return false; |
129 |
ecType = ZeroGradientNorm; |
130 |
return true; |
131 |
} |
132 |
|
133 |
bool EndCriteria::operator()(const size_t iteration, |
134 |
size_t& statStateIterations, |
135 |
const bool positiveOptimization, |
136 |
const RealType fold, |
137 |
const RealType, //normgold, |
138 |
const RealType fnew, |
139 |
const RealType normgnew, |
140 |
EndCriteria::Type& ecType) const { |
141 |
return |
142 |
checkMaxIterations(iteration, ecType) || |
143 |
checkStationaryFunctionValue(fold, fnew, statStateIterations, ecType) || |
144 |
checkStationaryFunctionAccuracy(fnew, positiveOptimization, ecType) || |
145 |
checkZeroGradientNorm(normgnew, ecType); |
146 |
} |
147 |
|
148 |
// Inspectors |
149 |
size_t EndCriteria::maxIterations() const { |
150 |
return maxIterations_; |
151 |
} |
152 |
|
153 |
size_t EndCriteria::maxStationaryStateIterations() const { |
154 |
return maxStationaryStateIterations_; |
155 |
} |
156 |
|
157 |
RealType EndCriteria::rootEpsilon() const { |
158 |
return rootEpsilon_; |
159 |
} |
160 |
|
161 |
RealType EndCriteria::functionEpsilon() const { |
162 |
return functionEpsilon_; |
163 |
} |
164 |
|
165 |
RealType EndCriteria::gradientNormEpsilon() const { |
166 |
return gradientNormEpsilon_; |
167 |
} |
168 |
|
169 |
std::ostream& operator<<(std::ostream& out, EndCriteria::Type ec) { |
170 |
switch (ec) { |
171 |
case QuantLib::EndCriteria::None: |
172 |
return out << "None"; |
173 |
case QuantLib::EndCriteria::MaxIterations: |
174 |
return out << "MaxIterations"; |
175 |
case QuantLib::EndCriteria::StationaryPoint: |
176 |
return out << "StationaryPoint"; |
177 |
case QuantLib::EndCriteria::StationaryFunctionValue: |
178 |
return out << "StationaryFunctionValue"; |
179 |
case QuantLib::EndCriteria::StationaryFunctionAccuracy: |
180 |
return out << "StationaryFunctionAccuracy"; |
181 |
case QuantLib::EndCriteria::ZeroGradientNorm: |
182 |
return out << "ZeroGradientNorm"; |
183 |
case QuantLib::EndCriteria::Unknown: |
184 |
return out << "Unknown"; |
185 |
default: |
186 |
sprintf(painCave.errMsg, "unknown EndCriteria::Type ( %d )\n", |
187 |
int(ec)); |
188 |
painCave.isFatal = 1; |
189 |
painCave.severity = OPENMD_ERROR; |
190 |
simError(); |
191 |
} |
192 |
} |
193 |
|
194 |
} |