| 1 |
gezelter |
1741 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 |
|
|
|
| 3 |
|
|
/* |
| 4 |
|
|
Copyright (C) 2006, 2007 Ferdinando Ametrano |
| 5 |
|
|
Copyright (C) 2007 Marco Bianchetti |
| 6 |
|
|
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
| 7 |
|
|
|
| 8 |
|
|
This file is part of QuantLib, a free-software/open-source library |
| 9 |
|
|
for financial quantitative analysts and developers - http://quantlib.org/ |
| 10 |
|
|
|
| 11 |
|
|
QuantLib is free software: you can redistribute it and/or modify it |
| 12 |
|
|
under the terms of the QuantLib license. You should have received a |
| 13 |
|
|
copy of the license along with this program; if not, please email |
| 14 |
|
|
<quantlib-dev@lists.sf.net>. The license is also available online at |
| 15 |
|
|
<http://quantlib.org/license.shtml>. |
| 16 |
|
|
|
| 17 |
|
|
This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 19 |
|
|
FOR A PARTICULAR PURPOSE. See the license for more details. |
| 20 |
|
|
*/ |
| 21 |
|
|
|
| 22 |
|
|
#include "optimization/EndCriteria.hpp" |
| 23 |
|
|
#include "utils/simError.h" |
| 24 |
|
|
#include <cmath> |
| 25 |
gezelter |
1788 |
#include <cstdio> |
| 26 |
gezelter |
1741 |
|
| 27 |
|
|
namespace QuantLib { |
| 28 |
|
|
|
| 29 |
|
|
EndCriteria::EndCriteria(size_t maxIterations, |
| 30 |
|
|
size_t maxStationaryStateIterations, |
| 31 |
|
|
RealType rootEpsilon, |
| 32 |
|
|
RealType functionEpsilon, |
| 33 |
|
|
RealType gradientNormEpsilon) |
| 34 |
|
|
: maxIterations_(maxIterations), |
| 35 |
|
|
maxStationaryStateIterations_(maxStationaryStateIterations), |
| 36 |
|
|
rootEpsilon_(rootEpsilon), |
| 37 |
|
|
functionEpsilon_(functionEpsilon), |
| 38 |
|
|
gradientNormEpsilon_(gradientNormEpsilon) { |
| 39 |
|
|
|
| 40 |
|
|
|
| 41 |
|
|
// replaced the QL_REQUIRE macro with OpenMD's simError calls |
| 42 |
|
|
if (maxStationaryStateIterations_ <= 1) { |
| 43 |
|
|
sprintf(painCave.errMsg, |
| 44 |
|
|
"maxStationaryStateIterations_ ( %lu ) " |
| 45 |
|
|
"must be greater than one\n", |
| 46 |
|
|
(unsigned long)maxStationaryStateIterations_); |
| 47 |
|
|
painCave.isFatal = 1; |
| 48 |
|
|
painCave.severity = OPENMD_ERROR; |
| 49 |
|
|
simError(); |
| 50 |
|
|
} |
| 51 |
|
|
if (maxStationaryStateIterations_ > maxIterations_) { |
| 52 |
|
|
sprintf(painCave.errMsg, |
| 53 |
|
|
"maxStationaryStateIterations_ ( %lu ) " |
| 54 |
|
|
"must be less than maxIterations_ ( %lu )\n", |
| 55 |
|
|
(unsigned long)maxStationaryStateIterations_, |
| 56 |
|
|
(unsigned long)maxIterations_); |
| 57 |
|
|
painCave.isFatal = 1; |
| 58 |
|
|
painCave.severity = OPENMD_ERROR; |
| 59 |
|
|
simError(); |
| 60 |
|
|
} |
| 61 |
|
|
|
| 62 |
|
|
} |
| 63 |
|
|
|
| 64 |
|
|
bool EndCriteria::checkMaxIterations(const size_t iteration, |
| 65 |
|
|
EndCriteria::Type& ecType) const{ |
| 66 |
|
|
if (iteration < maxIterations_) |
| 67 |
|
|
return false; |
| 68 |
|
|
ecType = MaxIterations; |
| 69 |
|
|
return true; |
| 70 |
|
|
} |
| 71 |
|
|
|
| 72 |
|
|
bool EndCriteria::checkStationaryPoint(const RealType xOld, |
| 73 |
|
|
const RealType xNew, |
| 74 |
|
|
size_t& statStateIterations, |
| 75 |
|
|
EndCriteria::Type& ecType) const { |
| 76 |
|
|
if (std::fabs(xNew-xOld) >= rootEpsilon_) { |
| 77 |
|
|
statStateIterations = 0; |
| 78 |
|
|
return false; |
| 79 |
|
|
} |
| 80 |
|
|
++statStateIterations; |
| 81 |
|
|
if (statStateIterations <= maxStationaryStateIterations_) |
| 82 |
|
|
return false; |
| 83 |
|
|
ecType = StationaryPoint; |
| 84 |
|
|
return true; |
| 85 |
|
|
} |
| 86 |
|
|
|
| 87 |
|
|
bool EndCriteria::checkStationaryFunctionValue( |
| 88 |
|
|
const RealType fxOld, |
| 89 |
|
|
const RealType fxNew, |
| 90 |
|
|
size_t& statStateIterations, |
| 91 |
|
|
EndCriteria::Type& ecType) const { |
| 92 |
|
|
if (std::fabs(fxNew-fxOld) >= functionEpsilon_) { |
| 93 |
|
|
statStateIterations = 0; |
| 94 |
|
|
return false; |
| 95 |
|
|
} |
| 96 |
|
|
++statStateIterations; |
| 97 |
|
|
if (statStateIterations <= maxStationaryStateIterations_) |
| 98 |
|
|
return false; |
| 99 |
|
|
ecType = StationaryFunctionValue; |
| 100 |
|
|
return true; |
| 101 |
|
|
} |
| 102 |
|
|
|
| 103 |
|
|
bool EndCriteria::checkStationaryFunctionAccuracy( |
| 104 |
|
|
const RealType f, |
| 105 |
|
|
const bool positiveOptimization, |
| 106 |
|
|
EndCriteria::Type& ecType) const { |
| 107 |
|
|
if (!positiveOptimization) |
| 108 |
|
|
return false; |
| 109 |
|
|
if (f >= functionEpsilon_) |
| 110 |
|
|
return false; |
| 111 |
|
|
ecType = StationaryFunctionAccuracy; |
| 112 |
|
|
return true; |
| 113 |
|
|
} |
| 114 |
|
|
|
| 115 |
|
|
//bool EndCriteria::checkZerGradientNormValue( |
| 116 |
|
|
// const RealType gNormOld, |
| 117 |
|
|
// const RealType gNormNew, |
| 118 |
|
|
// EndCriteria::Type& ecType) const { |
| 119 |
|
|
// if (std::fabs(gNormNew-gNormOld) >= gradientNormEpsilon_) |
| 120 |
|
|
// return false; |
| 121 |
|
|
// ecType = StationaryGradient; |
| 122 |
|
|
// return true; |
| 123 |
|
|
//} |
| 124 |
|
|
|
| 125 |
|
|
bool EndCriteria::checkZeroGradientNorm(const RealType gradientNorm, |
| 126 |
|
|
EndCriteria::Type& ecType) const { |
| 127 |
|
|
if (gradientNorm >= gradientNormEpsilon_) |
| 128 |
|
|
return false; |
| 129 |
|
|
ecType = ZeroGradientNorm; |
| 130 |
|
|
return true; |
| 131 |
|
|
} |
| 132 |
|
|
|
| 133 |
|
|
bool EndCriteria::operator()(const size_t iteration, |
| 134 |
|
|
size_t& statStateIterations, |
| 135 |
|
|
const bool positiveOptimization, |
| 136 |
|
|
const RealType fold, |
| 137 |
|
|
const RealType, //normgold, |
| 138 |
|
|
const RealType fnew, |
| 139 |
|
|
const RealType normgnew, |
| 140 |
|
|
EndCriteria::Type& ecType) const { |
| 141 |
|
|
return |
| 142 |
|
|
checkMaxIterations(iteration, ecType) || |
| 143 |
|
|
checkStationaryFunctionValue(fold, fnew, statStateIterations, ecType) || |
| 144 |
|
|
checkStationaryFunctionAccuracy(fnew, positiveOptimization, ecType) || |
| 145 |
|
|
checkZeroGradientNorm(normgnew, ecType); |
| 146 |
|
|
} |
| 147 |
|
|
|
| 148 |
|
|
// Inspectors |
| 149 |
|
|
size_t EndCriteria::maxIterations() const { |
| 150 |
|
|
return maxIterations_; |
| 151 |
|
|
} |
| 152 |
|
|
|
| 153 |
|
|
size_t EndCriteria::maxStationaryStateIterations() const { |
| 154 |
|
|
return maxStationaryStateIterations_; |
| 155 |
|
|
} |
| 156 |
|
|
|
| 157 |
|
|
RealType EndCriteria::rootEpsilon() const { |
| 158 |
|
|
return rootEpsilon_; |
| 159 |
|
|
} |
| 160 |
|
|
|
| 161 |
|
|
RealType EndCriteria::functionEpsilon() const { |
| 162 |
|
|
return functionEpsilon_; |
| 163 |
|
|
} |
| 164 |
|
|
|
| 165 |
|
|
RealType EndCriteria::gradientNormEpsilon() const { |
| 166 |
|
|
return gradientNormEpsilon_; |
| 167 |
|
|
} |
| 168 |
|
|
|
| 169 |
|
|
std::ostream& operator<<(std::ostream& out, EndCriteria::Type ec) { |
| 170 |
|
|
switch (ec) { |
| 171 |
|
|
case QuantLib::EndCriteria::None: |
| 172 |
|
|
return out << "None"; |
| 173 |
|
|
case QuantLib::EndCriteria::MaxIterations: |
| 174 |
|
|
return out << "MaxIterations"; |
| 175 |
|
|
case QuantLib::EndCriteria::StationaryPoint: |
| 176 |
|
|
return out << "StationaryPoint"; |
| 177 |
|
|
case QuantLib::EndCriteria::StationaryFunctionValue: |
| 178 |
|
|
return out << "StationaryFunctionValue"; |
| 179 |
|
|
case QuantLib::EndCriteria::StationaryFunctionAccuracy: |
| 180 |
|
|
return out << "StationaryFunctionAccuracy"; |
| 181 |
|
|
case QuantLib::EndCriteria::ZeroGradientNorm: |
| 182 |
|
|
return out << "ZeroGradientNorm"; |
| 183 |
|
|
case QuantLib::EndCriteria::Unknown: |
| 184 |
|
|
return out << "Unknown"; |
| 185 |
|
|
default: |
| 186 |
|
|
sprintf(painCave.errMsg, "unknown EndCriteria::Type ( %d )\n", |
| 187 |
|
|
int(ec)); |
| 188 |
|
|
painCave.isFatal = 1; |
| 189 |
|
|
painCave.severity = OPENMD_ERROR; |
| 190 |
|
|
simError(); |
| 191 |
|
|
} |
| 192 |
|
|
} |
| 193 |
|
|
|
| 194 |
|
|
} |