1 |
/********************************************************************** |
2 |
vector3.h - Handle 3D coordinates. |
3 |
|
4 |
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
5 |
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
6 |
|
7 |
This file is part of the Open Babel project. |
8 |
For more information, see <http://openbabel.sourceforge.net/> |
9 |
|
10 |
This program is free software; you can redistribute it and/or modify |
11 |
it under the terms of the GNU General Public License as published by |
12 |
the Free Software Foundation version 2 of the License. |
13 |
|
14 |
This program is distributed in the hope that it will be useful, |
15 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 |
GNU General Public License for more details. |
18 |
***********************************************************************/ |
19 |
|
20 |
#ifndef OB_VECTOR_H |
21 |
#define OB_VECTOR_H |
22 |
|
23 |
#if HAVE_IOSTREAM |
24 |
#include <iostream> |
25 |
#elif HAVE_IOSTREAM_H |
26 |
#include <iostream.h> |
27 |
#endif |
28 |
|
29 |
#if HAVE_FSTREAM |
30 |
#include <fstream> |
31 |
#elif HAVE_FSTREAM_H |
32 |
#include <fstream.h> |
33 |
#endif |
34 |
|
35 |
#include <math.h> |
36 |
#include "obutil.hpp" |
37 |
|
38 |
#ifndef PI |
39 |
#define PI 3.1415926535897932384626433 |
40 |
#endif |
41 |
|
42 |
#ifndef RAD_TO_DEG |
43 |
#define RAD_TO_DEG 180.0/PI |
44 |
#endif |
45 |
|
46 |
#ifndef DEG_TO_RAD |
47 |
#define DEG_TO_RAD PI/180.0 |
48 |
#endif |
49 |
|
50 |
namespace OpenBabel |
51 |
{ |
52 |
|
53 |
class matrix3x3; |
54 |
|
55 |
// class introduction in vector3.cpp |
56 |
class OBAPI vector3 |
57 |
{ |
58 |
private : |
59 |
double _vx, _vy, _vz ; |
60 |
|
61 |
public : |
62 |
//! Constructor |
63 |
vector3 (const double x=0.0, const double y=0.0, const double z=0.0) |
64 |
{ |
65 |
_vx = x; |
66 |
_vy = y; |
67 |
_vz = z; |
68 |
}; |
69 |
//! Copy Constructor |
70 |
vector3 (const vector3& v) |
71 |
{ |
72 |
_vx = v._vx; |
73 |
_vy = v._vy; |
74 |
_vz = v._vz; |
75 |
}; |
76 |
|
77 |
//! set x,y and z-component of a vector |
78 |
void Set(const double x, const double y, const double z) |
79 |
{ |
80 |
_vx = x ; |
81 |
_vy = y ; |
82 |
_vz = z ; |
83 |
}; |
84 |
//! set x,y and z-component of a vector from c[0]..c[2] |
85 |
void Set(const double *c) |
86 |
{ |
87 |
_vx = c[0]; |
88 |
_vy = c[1]; |
89 |
_vz = c[2]; |
90 |
} |
91 |
//! access function to get the x-coordinate of the vector |
92 |
void SetX(const double x) |
93 |
{ |
94 |
_vx = x; |
95 |
}; |
96 |
//! access function to get the y-coordinate of the vector |
97 |
void SetY(const double y) |
98 |
{ |
99 |
_vy = y; |
100 |
}; |
101 |
//! access function to get the z-coordinate of the vector |
102 |
void SetZ(const double z) |
103 |
{ |
104 |
_vz = z; |
105 |
}; |
106 |
//! set c[0]..c[2] to the components of the vector |
107 |
void Get(double *c) |
108 |
{ |
109 |
c[0]=_vx; |
110 |
c[1]=_vy; |
111 |
c[2]=_vz; |
112 |
}; |
113 |
//! access function |
114 |
double& operator[] ( unsigned int i); |
115 |
|
116 |
//! assignment |
117 |
vector3& operator= ( const vector3& v) |
118 |
{ |
119 |
_vx = v._vx; |
120 |
_vy = v._vy; |
121 |
_vz = v._vz; |
122 |
return *this; |
123 |
}; |
124 |
|
125 |
//! prints a representation of the vector as a row vector of the form "<0.1,1,2>" |
126 |
friend OBAPI std::ostream& operator<< ( std::ostream&, const vector3& ) ; |
127 |
|
128 |
// Comparison |
129 |
friend OBAPI int operator== ( const vector3&, const vector3& ) ; |
130 |
friend OBAPI int operator!= ( const vector3&, const vector3& ) ; |
131 |
|
132 |
// Sum, Difference, Scalar Product |
133 |
//! vector addition |
134 |
friend OBAPI vector3 operator+ ( const vector3& v1, const vector3& v2) |
135 |
{ |
136 |
return vector3(v1._vx+v2._vx, v1._vy+v2._vy, v1._vz+v2._vz); |
137 |
}; |
138 |
//! vector subtraction |
139 |
friend OBAPI vector3 operator- ( const vector3& v1, const vector3& v2) |
140 |
{ |
141 |
return vector3(v1._vx-v2._vx, v1._vy-v2._vy, v1._vz-v2._vz); |
142 |
}; |
143 |
//! unary minus |
144 |
friend OBAPI vector3 operator- ( const vector3& v) |
145 |
{ |
146 |
return vector3(-v._vx, -v._vy, -v._vz); |
147 |
}; |
148 |
//! multiplication with a scalar |
149 |
friend OBAPI vector3 operator* ( const double& c, const vector3& v) |
150 |
{ |
151 |
return vector3( c*v._vx, c*v._vy, c*v._vz); |
152 |
}; |
153 |
//! multiplication with a scalar |
154 |
friend OBAPI vector3 operator* ( const vector3& v, const double& c) |
155 |
{ |
156 |
return vector3( c*v._vx, c*v._vy, c*v._vz); |
157 |
}; |
158 |
//! division by a scalar |
159 |
friend OBAPI vector3 operator/ ( const vector3& v, const double& c) |
160 |
{ |
161 |
return vector3( v._vx/c, v._vy/c, v._vz/c); |
162 |
}; |
163 |
// @removed@ misleading operation |
164 |
// friend vector3 operator* ( const vector3 &,const vector3 &); |
165 |
|
166 |
//vector and matrix ops |
167 |
// @removed@ misleading operation; matrix multiplication is not commutitative |
168 |
// friend vector3 operator *(const vector3 &v,const matrix3x3 &m); |
169 |
|
170 |
//! multiplication of matrix and vector |
171 |
friend OBAPI vector3 operator *(const matrix3x3 &m,const vector3 &v); |
172 |
|
173 |
// Immediate Sum, Difference, Scalar Product |
174 |
vector3& operator+= ( const vector3& v) |
175 |
{ |
176 |
_vx += v._vx; |
177 |
_vy += v._vy; |
178 |
_vz += v._vz; |
179 |
return *this; |
180 |
}; |
181 |
vector3& operator-= ( const vector3& v) |
182 |
{ |
183 |
_vx -= v._vx; |
184 |
_vy -= v._vy; |
185 |
_vz -= v._vz; |
186 |
return *this; |
187 |
}; |
188 |
vector3& operator+= ( const double* f) |
189 |
{ |
190 |
_vx += f[0]; |
191 |
_vy += f[1]; |
192 |
_vz += f[2]; |
193 |
return *this; |
194 |
}; |
195 |
vector3& operator-= ( const double* f) |
196 |
{ |
197 |
_vx -= f[0]; |
198 |
_vy -= f[1]; |
199 |
_vz -= f[2]; |
200 |
return *this; |
201 |
}; |
202 |
vector3& operator*= ( const double& c) |
203 |
{ |
204 |
_vx *= c; |
205 |
_vy *= c; |
206 |
_vz *= c; |
207 |
return *this; |
208 |
}; |
209 |
vector3& operator/= ( const double& c) |
210 |
{ |
211 |
_vx /= c; |
212 |
_vy /= c; |
213 |
_vz /= c; |
214 |
return *this; |
215 |
}; |
216 |
//! multiplication of matrix and vector |
217 |
vector3& operator*= ( const matrix3x3 &); |
218 |
|
219 |
//! create a random unit vector |
220 |
void randomUnitVector(OBRandom *oeRand= 0L); |
221 |
|
222 |
// Member Functions |
223 |
|
224 |
//! dot product of two vectors |
225 |
friend OBAPI double dot ( const vector3&, const vector3& ) ; |
226 |
|
227 |
//! cross product of two vectors |
228 |
friend OBAPI vector3 cross ( const vector3&, const vector3& ) ; |
229 |
|
230 |
//! calculate angle between vectors |
231 |
friend OBAPI double vectorAngle ( const vector3& v1, const vector3& v2 ); |
232 |
|
233 |
//! calculate the torsion angle between vectors |
234 |
friend OBAPI double CalcTorsionAngle(const vector3 &a, const vector3 &b, |
235 |
const vector3 &c, const vector3 &d); |
236 |
|
237 |
//! scales a vector to give it length one. |
238 |
vector3& normalize () ; |
239 |
|
240 |
//! vector length |
241 |
double length () const |
242 |
{ |
243 |
return sqrt(_vx*_vx + _vy*_vy + _vz*_vz); |
244 |
}; |
245 |
//! vector length squared |
246 |
double length_2 () const |
247 |
{ |
248 |
return _vx*_vx + _vy*_vy + _vz*_vz; |
249 |
}; |
250 |
//! access function to get the x-coordinate of the vector |
251 |
double x () const |
252 |
{ |
253 |
return _vx ; |
254 |
} ; |
255 |
//! access function to get the y-coordinate of the vector |
256 |
double y () const |
257 |
{ |
258 |
return _vy ; |
259 |
} ; |
260 |
//! access function to get the z-coordinate of the vector |
261 |
double z () const |
262 |
{ |
263 |
return _vz ; |
264 |
} ; |
265 |
|
266 |
//! square to the distance between *this and vv |
267 |
/*! equivalent to length_2(*this-vv) |
268 |
*/ |
269 |
inline double distSq(const vector3 &vv) const |
270 |
{ |
271 |
return( (_vx - vv.x() )*(_vx - vv.x() ) + |
272 |
(_vy - vv.y() )*(_vy - vv.y() ) + |
273 |
(_vz - vv.z() )*(_vz - vv.z() ) ); |
274 |
} |
275 |
|
276 |
//! creates a vector of length one, orthogonal to *this. |
277 |
void createOrthoVector(vector3 &v) const; |
278 |
|
279 |
} ; |
280 |
|
281 |
//! \brief Calculate the distance of point a to the plane determined by b,c,d |
282 |
OBAPI double Point2Plane(vector3 a, vector3 b, vector3 c, vector3 d); |
283 |
|
284 |
// The global constant vector3s |
285 |
extern OBAPI const vector3 VZero; |
286 |
extern OBAPI const vector3 VX; |
287 |
extern OBAPI const vector3 VY; |
288 |
extern OBAPI const vector3 VZ; |
289 |
|
290 |
#ifndef SWIG |
291 |
OBAPI vector3 center_coords(double*,int); |
292 |
#endif |
293 |
} |
294 |
|
295 |
#endif // OB_VECTOR_H |
296 |
|
297 |
//! \file |
298 |
//! \brief Handle 3D coordinates. |