| 1 | 
tim | 
741 | 
/********************************************************************** | 
| 2 | 
  | 
  | 
vector3.cpp - Handle 3D coordinates. | 
| 3 | 
  | 
  | 
  | 
| 4 | 
  | 
  | 
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. | 
| 5 | 
  | 
  | 
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison | 
| 6 | 
  | 
  | 
  | 
| 7 | 
  | 
  | 
This file is part of the Open Babel project. | 
| 8 | 
  | 
  | 
For more information, see <http://openbabel.sourceforge.net/> | 
| 9 | 
  | 
  | 
  | 
| 10 | 
  | 
  | 
This program is free software; you can redistribute it and/or modify | 
| 11 | 
  | 
  | 
it under the terms of the GNU General Public License as published by | 
| 12 | 
  | 
  | 
the Free Software Foundation version 2 of the License. | 
| 13 | 
  | 
  | 
  | 
| 14 | 
  | 
  | 
This program is distributed in the hope that it will be useful, | 
| 15 | 
  | 
  | 
but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 16 | 
  | 
  | 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 17 | 
  | 
  | 
GNU General Public License for more details. | 
| 18 | 
  | 
  | 
***********************************************************************/ | 
| 19 | 
  | 
  | 
 | 
| 20 | 
  | 
  | 
#include <math.h> | 
| 21 | 
  | 
  | 
 | 
| 22 | 
  | 
  | 
#include "mol.hpp" | 
| 23 | 
  | 
  | 
#include "vector3.hpp" | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
using namespace std; | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
namespace OpenBabel | 
| 28 | 
  | 
  | 
{ | 
| 29 | 
  | 
  | 
 | 
| 30 | 
  | 
  | 
/*! \class vector3 | 
| 31 | 
  | 
  | 
   \brief Represents a vector in the 3-dimensional real space. | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
The vector3 class was designed to simplify operations with doubleing | 
| 34 | 
  | 
  | 
point coordinates. To this end many of the common operations have been | 
| 35 | 
  | 
  | 
overloaded for simplicity. Vector addition, subtraction, scalar | 
| 36 | 
  | 
  | 
multiplication, dot product, cross product, magnitude and a number of | 
| 37 | 
  | 
  | 
other utility functions are built in to the vector class. For a full | 
| 38 | 
  | 
  | 
description of the class member functions please consult the header | 
| 39 | 
  | 
  | 
file vector3.h. The following code demonstrates several of the | 
| 40 | 
  | 
  | 
functions of the vector class: | 
| 41 | 
  | 
  | 
\code | 
| 42 | 
  | 
  | 
vector3 v1,v2,v3; | 
| 43 | 
  | 
  | 
v1 = VX; | 
| 44 | 
  | 
  | 
v2 = VY; | 
| 45 | 
  | 
  | 
v3 = cross(v1,v2); | 
| 46 | 
  | 
  | 
v3 *= 2.5; | 
| 47 | 
  | 
  | 
v3.normalize(); | 
| 48 | 
  | 
  | 
\endcode | 
| 49 | 
  | 
  | 
*/ | 
| 50 | 
  | 
  | 
 | 
| 51 | 
  | 
  | 
/*! This (slow) method allows to access the elements of the | 
| 52 | 
  | 
  | 
  vector as if it were an array of doubles. If the index is > 2, | 
| 53 | 
  | 
  | 
  then a warning is printed, and the program is terminated via | 
| 54 | 
  | 
  | 
  exit(-1). Otherwise, if i is 0, 1 or 2, then a reference to x, | 
| 55 | 
  | 
  | 
  y or z is returned, respectively. | 
| 56 | 
  | 
  | 
   | 
| 57 | 
  | 
  | 
  \warning This method is primarily designed to facilitate the | 
| 58 | 
  | 
  | 
  integration ('Open Babelization') of code that uses arrays of | 
| 59 | 
  | 
  | 
  doubles rather than the vector class. Due to the error checks | 
| 60 | 
  | 
  | 
  the method is of course very slow and should therefore be | 
| 61 | 
  | 
  | 
  avoided in production code. | 
| 62 | 
  | 
  | 
*/ | 
| 63 | 
  | 
  | 
double& vector3::operator[] ( unsigned int i) | 
| 64 | 
  | 
  | 
{ | 
| 65 | 
  | 
  | 
    if (i > 2) | 
| 66 | 
  | 
  | 
    { | 
| 67 | 
  | 
  | 
        cerr << "ERROR in OpenBabel::vector3::operator[]" << endl | 
| 68 | 
  | 
  | 
        << "The method has been called with an illegal index i=" << i << "." << endl | 
| 69 | 
  | 
  | 
        << "Please contact the author of the offending program immediately." << endl; | 
| 70 | 
  | 
  | 
        exit(-1); | 
| 71 | 
  | 
  | 
    } | 
| 72 | 
  | 
  | 
    if (i == 0) | 
| 73 | 
  | 
  | 
        return _vx; | 
| 74 | 
  | 
  | 
    if (i == 1) | 
| 75 | 
  | 
  | 
        return _vy; | 
| 76 | 
  | 
  | 
    return _vz; | 
| 77 | 
  | 
  | 
} | 
| 78 | 
  | 
  | 
 | 
| 79 | 
  | 
  | 
/*! replaces *this with a random unit vector, which is (supposed | 
| 80 | 
  | 
  | 
  to be) uniformly distributed over the unit sphere. Uses the | 
| 81 | 
  | 
  | 
  random number generator obRand, or uses the system number | 
| 82 | 
  | 
  | 
  generator with a time seed if obRand == NULL. | 
| 83 | 
  | 
  | 
      | 
| 84 | 
  | 
  | 
  @param obRandP random number generator to use, or 0L, if the | 
| 85 | 
  | 
  | 
  system random number generator (with time seed) should be used | 
| 86 | 
  | 
  | 
*/ | 
| 87 | 
  | 
  | 
void vector3::randomUnitVector(OBRandom *obRandP) | 
| 88 | 
  | 
  | 
{ | 
| 89 | 
  | 
  | 
    OBRandom *ptr; | 
| 90 | 
  | 
  | 
    if (!obRandP) | 
| 91 | 
  | 
  | 
    { | 
| 92 | 
  | 
  | 
        ptr = new OBRandom(true); | 
| 93 | 
  | 
  | 
        ptr->TimeSeed(); | 
| 94 | 
  | 
  | 
    } | 
| 95 | 
  | 
  | 
    else | 
| 96 | 
  | 
  | 
        ptr = obRandP; | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
    // obtain a random vector with 0.001 <= length^2 <= 1.0, normalize | 
| 99 | 
  | 
  | 
    // the vector to obtain a random vector of length 1.0. | 
| 100 | 
  | 
  | 
    double l; | 
| 101 | 
  | 
  | 
    do | 
| 102 | 
  | 
  | 
    { | 
| 103 | 
  | 
  | 
        this->Set(ptr->NextFloat()-0.5, ptr->NextFloat()-0.5, ptr->NextFloat()-0.5); | 
| 104 | 
  | 
  | 
        l = length_2(); | 
| 105 | 
  | 
  | 
    } | 
| 106 | 
  | 
  | 
    while ( (l > 1.0) || (l < 1e-4) ); | 
| 107 | 
  | 
  | 
    this->normalize(); | 
| 108 | 
  | 
  | 
 | 
| 109 | 
  | 
  | 
    if (!obRandP) | 
| 110 | 
  | 
  | 
        delete ptr; | 
| 111 | 
  | 
  | 
} | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
OBAPI ostream& operator<< ( ostream& co, const vector3& v ) | 
| 114 | 
  | 
  | 
{ | 
| 115 | 
  | 
  | 
    co << "< " << v._vx << ", " << v._vy << ", " << v._vz << " >" ; | 
| 116 | 
  | 
  | 
    return co ; | 
| 117 | 
  | 
  | 
} | 
| 118 | 
  | 
  | 
 | 
| 119 | 
  | 
  | 
OBAPI int operator== ( const vector3& v1, const vector3& v2 ) | 
| 120 | 
  | 
  | 
{ | 
| 121 | 
  | 
  | 
    if ( ( v1._vx == v2._vx ) && | 
| 122 | 
  | 
  | 
            ( v1._vy == v2._vy ) && | 
| 123 | 
  | 
  | 
            ( v1._vz == v2._vz ) ) | 
| 124 | 
  | 
  | 
        return ( true ) ; | 
| 125 | 
  | 
  | 
    else | 
| 126 | 
  | 
  | 
        return ( false ) ; | 
| 127 | 
  | 
  | 
} | 
| 128 | 
  | 
  | 
 | 
| 129 | 
  | 
  | 
OBAPI int operator!= ( const vector3& v1, const vector3& v2 ) | 
| 130 | 
  | 
  | 
{ | 
| 131 | 
  | 
  | 
    if ( ( v1._vx != v2._vx ) || | 
| 132 | 
  | 
  | 
            ( v1._vy != v2._vy ) || | 
| 133 | 
  | 
  | 
            ( v1._vz != v2._vz ) ) | 
| 134 | 
  | 
  | 
        return ( true ) ; | 
| 135 | 
  | 
  | 
    else | 
| 136 | 
  | 
  | 
        return ( false ) ; | 
| 137 | 
  | 
  | 
} | 
| 138 | 
  | 
  | 
 | 
| 139 | 
  | 
  | 
/*! This method checks if the current vector has length() == | 
| 140 | 
  | 
  | 
  0.0.  If so, *this remains unchanged. Otherwise, *this is | 
| 141 | 
  | 
  | 
  scaled by 1.0/length(). | 
| 142 | 
  | 
  | 
 | 
| 143 | 
  | 
  | 
  \warning If length() is very close to zero, but not == 0.0, | 
| 144 | 
  | 
  | 
  this method may behave in unexpected ways and return almost | 
| 145 | 
  | 
  | 
  random results; details may depend on your particular doubleing | 
| 146 | 
  | 
  | 
  point implementation. The use of this method is therefore | 
| 147 | 
  | 
  | 
  highly discouraged, unless you are certain that length() is in | 
| 148 | 
  | 
  | 
  a reasonable range, away from 0.0 (Stefan Kebekus) | 
| 149 | 
  | 
  | 
 | 
| 150 | 
  | 
  | 
  \deprecated This method will probably replaced by a safer | 
| 151 | 
  | 
  | 
  algorithm in the future. | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
  \todo Replace this method with a more fool-proof version. | 
| 154 | 
  | 
  | 
 | 
| 155 | 
  | 
  | 
  @returns a reference to *this | 
| 156 | 
  | 
  | 
*/ | 
| 157 | 
  | 
  | 
vector3& vector3 :: normalize () | 
| 158 | 
  | 
  | 
{ | 
| 159 | 
  | 
  | 
    double l = length (); | 
| 160 | 
  | 
  | 
 | 
| 161 | 
  | 
  | 
    if (IsNearZero(l)) | 
| 162 | 
  | 
  | 
        return(*this); | 
| 163 | 
  | 
  | 
 | 
| 164 | 
  | 
  | 
    _vx = _vx / l ; | 
| 165 | 
  | 
  | 
    _vy = _vy / l ; | 
| 166 | 
  | 
  | 
    _vz = _vz / l ; | 
| 167 | 
  | 
  | 
 | 
| 168 | 
  | 
  | 
    return(*this); | 
| 169 | 
  | 
  | 
} | 
| 170 | 
  | 
  | 
 | 
| 171 | 
  | 
  | 
OBAPI double dot ( const vector3& v1, const vector3& v2 ) | 
| 172 | 
  | 
  | 
{ | 
| 173 | 
  | 
  | 
    return v1._vx*v2._vx + v1._vy*v2._vy + v1._vz*v2._vz ; | 
| 174 | 
  | 
  | 
} | 
| 175 | 
  | 
  | 
 | 
| 176 | 
  | 
  | 
OBAPI vector3 cross ( const vector3& v1, const vector3& v2 ) | 
| 177 | 
  | 
  | 
{ | 
| 178 | 
  | 
  | 
    vector3 vv ; | 
| 179 | 
  | 
  | 
 | 
| 180 | 
  | 
  | 
    vv._vx =   v1._vy*v2._vz - v1._vz*v2._vy ; | 
| 181 | 
  | 
  | 
    vv._vy = - v1._vx*v2._vz + v1._vz*v2._vx ; | 
| 182 | 
  | 
  | 
    vv._vz =   v1._vx*v2._vy - v1._vy*v2._vx ; | 
| 183 | 
  | 
  | 
 | 
| 184 | 
  | 
  | 
    return ( vv ) ; | 
| 185 | 
  | 
  | 
} | 
| 186 | 
  | 
  | 
 | 
| 187 | 
  | 
  | 
 | 
| 188 | 
  | 
  | 
/*! This method calculates the angle between two vectors | 
| 189 | 
  | 
  | 
      | 
| 190 | 
  | 
  | 
  \warning If length() of any of the two vectors is == 0.0, | 
| 191 | 
  | 
  | 
  this method will divide by zero. If the product of the | 
| 192 | 
  | 
  | 
  length() of the two vectors is very close to 0.0, but not == | 
| 193 | 
  | 
  | 
  0.0, this method may behave in unexpected ways and return | 
| 194 | 
  | 
  | 
  almost random results; details may depend on your particular | 
| 195 | 
  | 
  | 
  doubleing point implementation. The use of this method is | 
| 196 | 
  | 
  | 
  therefore highly discouraged, unless you are certain that the | 
| 197 | 
  | 
  | 
  length()es are in a reasonable range, away from 0.0 (Stefan | 
| 198 | 
  | 
  | 
  Kebekus) | 
| 199 | 
  | 
  | 
 | 
| 200 | 
  | 
  | 
  \deprecated This method will probably replaced by a safer | 
| 201 | 
  | 
  | 
  algorithm in the future. | 
| 202 | 
  | 
  | 
 | 
| 203 | 
  | 
  | 
  \todo Replace this method with a more fool-proof version. | 
| 204 | 
  | 
  | 
 | 
| 205 | 
  | 
  | 
  @returns the angle in degrees (0-360) | 
| 206 | 
  | 
  | 
*/ | 
| 207 | 
  | 
  | 
OBAPI double vectorAngle ( const vector3& v1, const vector3& v2 ) | 
| 208 | 
  | 
  | 
{ | 
| 209 | 
  | 
  | 
    double mag; | 
| 210 | 
  | 
  | 
    double dp; | 
| 211 | 
  | 
  | 
 | 
| 212 | 
  | 
  | 
    mag = v1.length() * v2.length(); | 
| 213 | 
  | 
  | 
    dp = dot(v1,v2)/mag; | 
| 214 | 
  | 
  | 
 | 
| 215 | 
  | 
  | 
    if (dp < -0.999999) | 
| 216 | 
  | 
  | 
        dp = -0.9999999; | 
| 217 | 
  | 
  | 
 | 
| 218 | 
  | 
  | 
    if (dp > 0.9999999) | 
| 219 | 
  | 
  | 
        dp = 0.9999999; | 
| 220 | 
  | 
  | 
 | 
| 221 | 
  | 
  | 
    if (dp > 1.0) | 
| 222 | 
  | 
  | 
        dp = 1.0; | 
| 223 | 
  | 
  | 
 | 
| 224 | 
  | 
  | 
    return((RAD_TO_DEG * acos(dp))); | 
| 225 | 
  | 
  | 
} | 
| 226 | 
  | 
  | 
 | 
| 227 | 
  | 
  | 
OBAPI double CalcTorsionAngle(const vector3 &a, const vector3 &b, | 
| 228 | 
  | 
  | 
                        const vector3 &c, const vector3 &d) | 
| 229 | 
  | 
  | 
{ | 
| 230 | 
  | 
  | 
    double torsion; | 
| 231 | 
  | 
  | 
    vector3 b1,b2,b3,c1,c2,c3; | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
    b1 = a - b; | 
| 234 | 
  | 
  | 
    b2 = b - c; | 
| 235 | 
  | 
  | 
    b3 = c - d; | 
| 236 | 
  | 
  | 
 | 
| 237 | 
  | 
  | 
    c1 = cross(b1,b2); | 
| 238 | 
  | 
  | 
    c2 = cross(b2,b3); | 
| 239 | 
  | 
  | 
    c3 = cross(c1,c2); | 
| 240 | 
  | 
  | 
 | 
| 241 | 
  | 
  | 
    if (c1.length() * c2.length() < 0.001) | 
| 242 | 
  | 
  | 
        torsion = 0.0; | 
| 243 | 
  | 
  | 
    else | 
| 244 | 
  | 
  | 
    { | 
| 245 | 
  | 
  | 
        torsion = vectorAngle(c1,c2); | 
| 246 | 
  | 
  | 
        if (dot(b2,c3) > 0.0) | 
| 247 | 
  | 
  | 
            torsion *= -1.0; | 
| 248 | 
  | 
  | 
    } | 
| 249 | 
  | 
  | 
 | 
| 250 | 
  | 
  | 
    return(torsion); | 
| 251 | 
  | 
  | 
} | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
/*! This method checks if the current vector *this is zero | 
| 254 | 
  | 
  | 
  (i.e. if all entries == 0.0). If so, a warning message is | 
| 255 | 
  | 
  | 
  printed, and the whole program is aborted with exit(0). | 
| 256 | 
  | 
  | 
  Otherwise, a vector of length one is generated, which is | 
| 257 | 
  | 
  | 
  orthogonal to *this, and stored in v. The resulting vector is | 
| 258 | 
  | 
  | 
  not random. | 
| 259 | 
  | 
  | 
 | 
| 260 | 
  | 
  | 
  \warning If the entries of the *this (in particular the | 
| 261 | 
  | 
  | 
  z-component) are very close to zero, but not == 0.0, this | 
| 262 | 
  | 
  | 
  method may behave in unexpected ways and return almost random | 
| 263 | 
  | 
  | 
  results; details may depend on your particular floating point | 
| 264 | 
  | 
  | 
  implementation. The use of this method is therefore highly | 
| 265 | 
  | 
  | 
  discouraged, unless you are certain that all components of | 
| 266 | 
  | 
  | 
  *this are in a reasonable range, away from 0.0 (Stefan | 
| 267 | 
  | 
  | 
  Kebekus) | 
| 268 | 
  | 
  | 
 | 
| 269 | 
  | 
  | 
  \deprecated This method will probably replaced by a safer | 
| 270 | 
  | 
  | 
  algorithm in the future. | 
| 271 | 
  | 
  | 
 | 
| 272 | 
  | 
  | 
  \todo Replace this method with a more fool-proof version that | 
| 273 | 
  | 
  | 
  does not call exit() | 
| 274 | 
  | 
  | 
 | 
| 275 | 
  | 
  | 
  @param res a reference to a vector where the result will be | 
| 276 | 
  | 
  | 
  stored | 
| 277 | 
  | 
  | 
*/ | 
| 278 | 
  | 
  | 
void vector3::createOrthoVector(vector3 &res) const | 
| 279 | 
  | 
  | 
{ | 
| 280 | 
  | 
  | 
    vector3 cO; | 
| 281 | 
  | 
  | 
 | 
| 282 | 
  | 
  | 
    if ( ( IsNearZero(this->x())) && (IsNearZero(this->y())) ) | 
| 283 | 
  | 
  | 
    { | 
| 284 | 
  | 
  | 
        if ( IsNearZero(this->z()) ) | 
| 285 | 
  | 
  | 
        { | 
| 286 | 
  | 
  | 
            cerr << "makeorthovec zero vector" << endl; | 
| 287 | 
  | 
  | 
            exit(0); | 
| 288 | 
  | 
  | 
        } | 
| 289 | 
  | 
  | 
        cO.SetX(1.0); | 
| 290 | 
  | 
  | 
    } | 
| 291 | 
  | 
  | 
    else | 
| 292 | 
  | 
  | 
    { | 
| 293 | 
  | 
  | 
        cO.SetZ(1.0); | 
| 294 | 
  | 
  | 
    } | 
| 295 | 
  | 
  | 
    res= cross(cO,*this); | 
| 296 | 
  | 
  | 
    res.normalize(); | 
| 297 | 
  | 
  | 
} | 
| 298 | 
  | 
  | 
 | 
| 299 | 
  | 
  | 
const vector3 VZero ( 0.0, 0.0, 0.0 ) ; | 
| 300 | 
  | 
  | 
const vector3 VX    ( 1.0, 0.0, 0.0 ) ; | 
| 301 | 
  | 
  | 
const vector3 VY    ( 0.0, 1.0, 0.0 ) ; | 
| 302 | 
  | 
  | 
const vector3 VZ    ( 0.0, 0.0, 1.0 ) ; | 
| 303 | 
  | 
  | 
 | 
| 304 | 
  | 
  | 
/* Calculate the distance of point a to the plane determined by b,c,d */ | 
| 305 | 
  | 
  | 
double Point2Plane(vector3 a, vector3 b, vector3 c, vector3 d) | 
| 306 | 
  | 
  | 
{ | 
| 307 | 
  | 
  | 
  double angle =0; | 
| 308 | 
  | 
  | 
  double dist_ab =0; | 
| 309 | 
  | 
  | 
  vector3 v_ba = a-b; | 
| 310 | 
  | 
  | 
  vector3 v_normal = cross(c-b, d-b).normalize(); | 
| 311 | 
  | 
  | 
  angle = vectorAngle(v_normal, v_ba); | 
| 312 | 
  | 
  | 
  dist_ab = v_ba.length(); | 
| 313 | 
  | 
  | 
  return fabs(dist_ab * cos(DEG_TO_RAD * angle)); | 
| 314 | 
  | 
  | 
} | 
| 315 | 
  | 
  | 
 | 
| 316 | 
  | 
  | 
} // namespace OpenBabel | 
| 317 | 
  | 
  | 
 | 
| 318 | 
  | 
  | 
//! \file vector3.cpp | 
| 319 | 
  | 
  | 
//! \brief Handle 3D coordinates. |