| 1 | 
/********************************************************************** | 
| 2 | 
obutil.cpp - Various utility methods. | 
| 3 | 
  | 
| 4 | 
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. | 
| 5 | 
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison | 
| 6 | 
  | 
| 7 | 
This file is part of the Open Babel project. | 
| 8 | 
For more information, see <http://openbabel.sourceforge.net/> | 
| 9 | 
  | 
| 10 | 
This program is free software; you can redistribute it and/or modify | 
| 11 | 
it under the terms of the GNU General Public License as published by | 
| 12 | 
the Free Software Foundation version 2 of the License. | 
| 13 | 
  | 
| 14 | 
This program is distributed in the hope that it will be useful, | 
| 15 | 
but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 16 | 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 17 | 
GNU General Public License for more details. | 
| 18 | 
***********************************************************************/ | 
| 19 | 
 | 
| 20 | 
#include "config.h" | 
| 21 | 
#include "matrix3x3.hpp" | 
| 22 | 
#include "vector3.hpp" | 
| 23 | 
#include "mol.hpp" | 
| 24 | 
#include "obutil.hpp" | 
| 25 | 
 | 
| 26 | 
#if HAVE_CONIO_H | 
| 27 | 
#include <conio.h> | 
| 28 | 
#endif | 
| 29 | 
 | 
| 30 | 
using namespace std; | 
| 31 | 
namespace OpenBabel | 
| 32 | 
{ | 
| 33 | 
 | 
| 34 | 
/*! \class OBStopwatch | 
| 35 | 
   \brief Stopwatch class used for timing length of execution | 
| 36 | 
 | 
| 37 | 
   The OBStopwatch class makes timing the execution of blocks of | 
| 38 | 
   code to microsecond accuracy very simple. The class effectively | 
| 39 | 
   has two functions, Start() and Elapsed(). The usage of the | 
| 40 | 
   OBStopwatch class is demonstrated by the following code: | 
| 41 | 
\code | 
| 42 | 
OBStopwatch sw; | 
| 43 | 
sw.Start(); | 
| 44 | 
//insert code here | 
| 45 | 
cout << "Elapsed time = " << sw.Elapsed() << endl; | 
| 46 | 
\endcode | 
| 47 | 
*/ | 
| 48 | 
 | 
| 49 | 
//! Deprecated: use the OBMessageHandler class instead | 
| 50 | 
//! \deprecated Throw an error through the OpenBabel::OBMessageHandler class | 
| 51 | 
OBAPI void ThrowError(char *str) | 
| 52 | 
{ | 
| 53 | 
  obErrorLog.ThrowError("", str, obInfo); | 
| 54 | 
} | 
| 55 | 
 | 
| 56 | 
//! Deprecated: use the OBMessageHandler class instead | 
| 57 | 
//! \deprecated Throw an error through the OpenBabel::OBMessageHandler class | 
| 58 | 
OBAPI void ThrowError(std::string &str) | 
| 59 | 
{ | 
| 60 | 
  obErrorLog.ThrowError("", str, obInfo); | 
| 61 | 
} | 
| 62 | 
 | 
| 63 | 
// Comparison function (for sorting ints) returns a < b | 
| 64 | 
OBAPI bool OBCompareInt(const int &a,const int &b) | 
| 65 | 
{ | 
| 66 | 
    return(a<b); | 
| 67 | 
} | 
| 68 | 
 | 
| 69 | 
// Comparison function (for sorting unsigned ints) returns a < b | 
| 70 | 
OBAPI bool OBCompareUnsigned(const unsigned int &a,const unsigned int &b) | 
| 71 | 
{ | 
| 72 | 
    return(a<b); | 
| 73 | 
} | 
| 74 | 
 | 
| 75 | 
// Comparison for doubles: returns a < (b + epsilon) | 
| 76 | 
OBAPI bool IsNear(const double &a, const double &b, const double epsilon) | 
| 77 | 
{ | 
| 78 | 
    return (fabs(a - b) < epsilon); | 
| 79 | 
} | 
| 80 | 
 | 
| 81 | 
// Comparison for doubles: returns a < (0.0 + epsilon) | 
| 82 | 
OBAPI bool IsNearZero(const double &a, const double epsilon) | 
| 83 | 
{ | 
| 84 | 
    return (fabs(a) < epsilon); | 
| 85 | 
} | 
| 86 | 
 | 
| 87 | 
//! Utility function: replace the last extension in string &src with new extension char *ext. | 
| 88 | 
OBAPI string NewExtension(string &src,char *ext) | 
| 89 | 
{ | 
| 90 | 
    unsigned int pos = (unsigned int)src.find_last_of("."); | 
| 91 | 
    string dst; | 
| 92 | 
 | 
| 93 | 
    if (pos != string::npos) | 
| 94 | 
        dst = src.substr(0,pos+1); | 
| 95 | 
    else | 
| 96 | 
    { | 
| 97 | 
        dst = src; | 
| 98 | 
        dst += "."; | 
| 99 | 
    } | 
| 100 | 
 | 
| 101 | 
    dst += ext; | 
| 102 | 
    return(dst); | 
| 103 | 
} | 
| 104 | 
 | 
| 105 | 
//! Return the geometric centroid to an array of coordinates in double* format | 
| 106 | 
//!  and center the coordinates to the origin. Operates on the first "size"  | 
| 107 | 
//!  coordinates in the array. | 
| 108 | 
OBAPI vector3 center_coords(double *c, unsigned int size) | 
| 109 | 
{ | 
| 110 | 
  if (size == 0) | 
| 111 | 
    { | 
| 112 | 
      vector3 v(0.0f, 0.0f, 0.0f); | 
| 113 | 
      return(v); | 
| 114 | 
    } | 
| 115 | 
                unsigned int i;  | 
| 116 | 
    double x=0,y=0,z=0; | 
| 117 | 
    for (i = 0;i < size;i++) | 
| 118 | 
    { | 
| 119 | 
        x += c[i*3]; | 
| 120 | 
        y += c[i*3+1]; | 
| 121 | 
        z += c[i*3+2]; | 
| 122 | 
    } | 
| 123 | 
    x /= (double) size; | 
| 124 | 
    y /= (double) size; | 
| 125 | 
    z /= (double) size; | 
| 126 | 
    for (i = 0;i < size;i++) | 
| 127 | 
    { | 
| 128 | 
        c[i*3]   -= x; | 
| 129 | 
        c[i*3+1] -= y; | 
| 130 | 
        c[i*3+2] -= z; | 
| 131 | 
    } | 
| 132 | 
    vector3 v(x,y,z); | 
| 133 | 
    return(v); | 
| 134 | 
} | 
| 135 | 
 | 
| 136 | 
//! Rotates the coordinate set *c by the transformation matrix m[3][3] | 
| 137 | 
//!  Operates on the first "size" coordinates in the array. | 
| 138 | 
OBAPI void rotate_coords(double *c,double m[3][3],unsigned int size) | 
| 139 | 
{ | 
| 140 | 
    double x,y,z; | 
| 141 | 
    for (unsigned int i = 0;i < size;i++) | 
| 142 | 
    { | 
| 143 | 
        x = c[i*3]*m[0][0] + c[i*3+1]*m[0][1] + c[i*3+2]*m[0][2]; | 
| 144 | 
        y = c[i*3]*m[1][0] + c[i*3+1]*m[1][1] + c[i*3+2]*m[1][2]; | 
| 145 | 
        z = c[i*3]*m[2][0] + c[i*3+1]*m[2][1] + c[i*3+2]*m[2][2]; | 
| 146 | 
        c[i*3] = x; | 
| 147 | 
        c[i*3+1] = y; | 
| 148 | 
        c[i*3+2] = z; | 
| 149 | 
    } | 
| 150 | 
} | 
| 151 | 
 | 
| 152 | 
//! Calculate the RMS deviation between the first N coordinates of *r and *f | 
| 153 | 
OBAPI double calc_rms(double *r,double *f, unsigned int N) | 
| 154 | 
{ | 
| 155 | 
  if (N == 0) | 
| 156 | 
    return 0.0f; // no RMS deviation between two empty sets | 
| 157 | 
 | 
| 158 | 
    double d2=0.0; | 
| 159 | 
    for (unsigned int i = 0;i < N;i++) | 
| 160 | 
    { | 
| 161 | 
        d2 += SQUARE(r[i*3] - f[i*3]) + | 
| 162 | 
              SQUARE(r[i*3+1] - f[i*3+1]) + | 
| 163 | 
              SQUARE(r[i*3+2] - f[i*3+2]); | 
| 164 | 
    } | 
| 165 | 
 | 
| 166 | 
    d2 /= (double) N; | 
| 167 | 
    return(sqrt(d2)); | 
| 168 | 
} | 
| 169 | 
 | 
| 170 | 
//! Rotate the coordinates of 'atoms' | 
| 171 | 
//! such that tor == ang - atoms in 'tor' should be ordered such | 
| 172 | 
//! that the 3rd atom is the pivot around which atoms rotate | 
| 173 | 
OBAPI void SetRotorToAngle(double *c,vector<int> &tor,double ang,vector<int> &atoms) | 
| 174 | 
{ | 
| 175 | 
    double v1x,v1y,v1z,v2x,v2y,v2z,v3x,v3y,v3z; | 
| 176 | 
    double c1x,c1y,c1z,c2x,c2y,c2z,c3x,c3y,c3z; | 
| 177 | 
    double c1mag,c2mag,radang,costheta,m[9]; | 
| 178 | 
    double x,y,z,mag,rotang,sn,cs,t,tx,ty,tz; | 
| 179 | 
 | 
| 180 | 
    // | 
| 181 | 
    //calculate the torsion angle | 
| 182 | 
    // | 
| 183 | 
    v1x = c[tor[0]]   - c[tor[1]]; | 
| 184 | 
    v2x = c[tor[1]]   - c[tor[2]]; | 
| 185 | 
    v1y = c[tor[0]+1] - c[tor[1]+1]; | 
| 186 | 
    v2y = c[tor[1]+1] - c[tor[2]+1]; | 
| 187 | 
    v1z = c[tor[0]+2] - c[tor[1]+2]; | 
| 188 | 
    v2z = c[tor[1]+2] - c[tor[2]+2]; | 
| 189 | 
    v3x = c[tor[2]]   - c[tor[3]]; | 
| 190 | 
    v3y = c[tor[2]+1] - c[tor[3]+1]; | 
| 191 | 
    v3z = c[tor[2]+2] - c[tor[3]+2]; | 
| 192 | 
 | 
| 193 | 
    c1x = v1y*v2z - v1z*v2y; | 
| 194 | 
    c2x = v2y*v3z - v2z*v3y; | 
| 195 | 
    c1y = -v1x*v2z + v1z*v2x; | 
| 196 | 
    c2y = -v2x*v3z + v2z*v3x; | 
| 197 | 
    c1z = v1x*v2y - v1y*v2x; | 
| 198 | 
    c2z = v2x*v3y - v2y*v3x; | 
| 199 | 
    c3x = c1y*c2z - c1z*c2y; | 
| 200 | 
    c3y = -c1x*c2z + c1z*c2x; | 
| 201 | 
    c3z = c1x*c2y - c1y*c2x; | 
| 202 | 
 | 
| 203 | 
    c1mag = SQUARE(c1x)+SQUARE(c1y)+SQUARE(c1z); | 
| 204 | 
    c2mag = SQUARE(c2x)+SQUARE(c2y)+SQUARE(c2z); | 
| 205 | 
    if (c1mag*c2mag < 0.01) | 
| 206 | 
        costheta = 1.0; //avoid div by zero error | 
| 207 | 
    else | 
| 208 | 
        costheta = (c1x*c2x + c1y*c2y + c1z*c2z)/(sqrt(c1mag*c2mag)); | 
| 209 | 
 | 
| 210 | 
    if (costheta < -0.999999) | 
| 211 | 
        costheta = -0.999999; | 
| 212 | 
    if (costheta >  0.999999) | 
| 213 | 
        costheta =  0.999999; | 
| 214 | 
 | 
| 215 | 
    if ((v2x*c3x + v2y*c3y + v2z*c3z) > 0.0) | 
| 216 | 
        radang = -acos(costheta); | 
| 217 | 
    else | 
| 218 | 
        radang = acos(costheta); | 
| 219 | 
 | 
| 220 | 
    // | 
| 221 | 
    // now we have the torsion angle (radang) - set up the rot matrix | 
| 222 | 
    // | 
| 223 | 
 | 
| 224 | 
    //find the difference between current and requested | 
| 225 | 
    rotang = ang - radang; | 
| 226 | 
 | 
| 227 | 
    sn = sin(rotang); | 
| 228 | 
    cs = cos(rotang); | 
| 229 | 
    t = 1 - cs; | 
| 230 | 
    //normalize the rotation vector | 
| 231 | 
    mag = sqrt(SQUARE(v2x)+SQUARE(v2y)+SQUARE(v2z)); | 
| 232 | 
    x = v2x/mag; | 
| 233 | 
    y = v2y/mag; | 
| 234 | 
    z = v2z/mag; | 
| 235 | 
 | 
| 236 | 
    //set up the rotation matrix | 
| 237 | 
    m[0]= t*x*x + cs; | 
| 238 | 
    m[1] = t*x*y + sn*z; | 
| 239 | 
    m[2] = t*x*z - sn*y; | 
| 240 | 
    m[3] = t*x*y - sn*z; | 
| 241 | 
    m[4] = t*y*y + cs; | 
| 242 | 
    m[5] = t*y*z + sn*x; | 
| 243 | 
    m[6] = t*x*z + sn*y; | 
| 244 | 
    m[7] = t*y*z - sn*x; | 
| 245 | 
    m[8] = t*z*z + cs; | 
| 246 | 
 | 
| 247 | 
    // | 
| 248 | 
    //now the matrix is set - time to rotate the atoms | 
| 249 | 
    // | 
| 250 | 
    tx = c[tor[1]]; | 
| 251 | 
    ty = c[tor[1]+1]; | 
| 252 | 
    tz = c[tor[1]+2]; | 
| 253 | 
    vector<int>::iterator i; | 
| 254 | 
    int j; | 
| 255 | 
    for (i = atoms.begin();i != atoms.end();i++) | 
| 256 | 
    { | 
| 257 | 
        j = *i; | 
| 258 | 
        c[j] -= tx; | 
| 259 | 
        c[j+1] -= ty; | 
| 260 | 
        c[j+2]-= tz; | 
| 261 | 
        x = c[j]*m[0] + c[j+1]*m[1] + c[j+2]*m[2]; | 
| 262 | 
        y = c[j]*m[3] + c[j+1]*m[4] + c[j+2]*m[5]; | 
| 263 | 
        z = c[j]*m[6] + c[j+1]*m[7] + c[j+2]*m[8]; | 
| 264 | 
        c[j] = x; | 
| 265 | 
        c[j+1] = y; | 
| 266 | 
        c[j+2] = z; | 
| 267 | 
        c[j] += tx; | 
| 268 | 
        c[j+1] += ty; | 
| 269 | 
        c[j+2] += tz; | 
| 270 | 
    } | 
| 271 | 
} | 
| 272 | 
 | 
| 273 | 
//! Safely open the supplied filename and return an ifstream, throwing an error | 
| 274 | 
//! to the default OBMessageHandler error log if it fails. | 
| 275 | 
OBAPI bool SafeOpen(ifstream &fs,char *filename) | 
| 276 | 
{ | 
| 277 | 
#ifdef WIN32 | 
| 278 | 
    string s = filename; | 
| 279 | 
    if (s.find(".bin") != string::npos) | 
| 280 | 
        fs.open(filename,ios::binary); | 
| 281 | 
    else | 
| 282 | 
#endif | 
| 283 | 
 | 
| 284 | 
        fs.open(filename); | 
| 285 | 
 | 
| 286 | 
    if (!fs) | 
| 287 | 
    { | 
| 288 | 
        string error = "Unable to open file \'"; | 
| 289 | 
        error += filename; | 
| 290 | 
        error += "\' in read mode"; | 
| 291 | 
        obErrorLog.ThrowError(__FUNCTION__, error, obError); | 
| 292 | 
        return(false); | 
| 293 | 
    } | 
| 294 | 
 | 
| 295 | 
    return(true); | 
| 296 | 
} | 
| 297 | 
 | 
| 298 | 
 | 
| 299 | 
//! Safely open the supplied filename and return an ofstream, throwing an error | 
| 300 | 
//! to the default OBMessageHandler error log if it fails. | 
| 301 | 
OBAPI bool SafeOpen(ofstream &fs,char *filename) | 
| 302 | 
{ | 
| 303 | 
#ifdef WIN32 | 
| 304 | 
    string s = filename; | 
| 305 | 
    if (s.find(".bin") != string::npos) | 
| 306 | 
        fs.open(filename,ios::binary); | 
| 307 | 
    else | 
| 308 | 
#endif | 
| 309 | 
 | 
| 310 | 
        fs.open(filename); | 
| 311 | 
 | 
| 312 | 
    if (!fs) | 
| 313 | 
    { | 
| 314 | 
        string error = "Unable to open file \'"; | 
| 315 | 
        error += filename; | 
| 316 | 
        error += "\' in write mode"; | 
| 317 | 
        obErrorLog.ThrowError(__FUNCTION__, error, obError); | 
| 318 | 
        return(false); | 
| 319 | 
    } | 
| 320 | 
 | 
| 321 | 
    return(true); | 
| 322 | 
} | 
| 323 | 
 | 
| 324 | 
//! Safely open the supplied filename and return an ifstream, throwing an error | 
| 325 | 
//! to the default OBMessageHandler error log if it fails. | 
| 326 | 
OBAPI bool SafeOpen(ifstream &fs,string &filename) | 
| 327 | 
{ | 
| 328 | 
    return(SafeOpen(fs,(char*)filename.c_str())); | 
| 329 | 
} | 
| 330 | 
 | 
| 331 | 
//! Safely open the supplied filename and return an ofstream, throwing an error | 
| 332 | 
//! to the default OBMessageHandler error log if it fails. | 
| 333 | 
OBAPI bool SafeOpen(ofstream &fs,string &filename) | 
| 334 | 
{ | 
| 335 | 
    return(SafeOpen(fs,(char*)filename.c_str())); | 
| 336 | 
} | 
| 337 | 
 | 
| 338 | 
//! Shift the supplied string to uppercase | 
| 339 | 
OBAPI void ToUpper(std::string &s) | 
| 340 | 
{ | 
| 341 | 
    if (s.empty()) | 
| 342 | 
        return; | 
| 343 | 
    unsigned int i; | 
| 344 | 
    for (i = 0;i < s.size();i++) | 
| 345 | 
        if (isalpha(s[i]) && !isdigit(s[i])) | 
| 346 | 
            s[i] = toupper(s[i]); | 
| 347 | 
} | 
| 348 | 
 | 
| 349 | 
//! Shift the supplied char* to uppercase | 
| 350 | 
OBAPI void ToUpper(char *cptr) | 
| 351 | 
{ | 
| 352 | 
    char *c; | 
| 353 | 
    for (c = cptr;*c != '\0';c++) | 
| 354 | 
        if (isalpha(*c) && !isdigit(*c)) | 
| 355 | 
            *c = toupper(*c); | 
| 356 | 
} | 
| 357 | 
 | 
| 358 | 
//! Shift the supplied string to lowercase | 
| 359 | 
OBAPI void ToLower(std::string &s) | 
| 360 | 
{ | 
| 361 | 
    if (s.empty()) | 
| 362 | 
        return; | 
| 363 | 
    unsigned int i; | 
| 364 | 
    for (i = 0;i < s.size();i++) | 
| 365 | 
        if (isalpha(s[i]) && !isdigit(s[i])) | 
| 366 | 
            s[i] = tolower(s[i]); | 
| 367 | 
} | 
| 368 | 
 | 
| 369 | 
//! Shift the supplied char* to lowercase | 
| 370 | 
OBAPI void ToLower(char *cptr) | 
| 371 | 
{ | 
| 372 | 
    char *c; | 
| 373 | 
    for (c = cptr;*c != '\0';c++) | 
| 374 | 
        if (isalpha(*c) && !isdigit(*c)) | 
| 375 | 
            *c = tolower(*c); | 
| 376 | 
} | 
| 377 | 
 | 
| 378 | 
//! "Clean" the supplied atom type, shifting the first character to uppercase, | 
| 379 | 
//! the second character (if it's a letter) to lowercase, and terminating with a NULL | 
| 380 | 
//! to strip off any trailing characters | 
| 381 | 
OBAPI void CleanAtomType(char *id) | 
| 382 | 
{ | 
| 383 | 
    id[0] = toupper(id[0]); | 
| 384 | 
    if (isalpha(id[1]) == 0) | 
| 385 | 
        id[1] = '\0'; | 
| 386 | 
    else | 
| 387 | 
      { | 
| 388 | 
        id[1] = tolower(id[1]); | 
| 389 | 
        id[2] = '\0'; | 
| 390 | 
      } | 
| 391 | 
} | 
| 392 | 
 | 
| 393 | 
//! Transform the supplied vector<OBInternalCoord*> into cartesian and update | 
| 394 | 
//! the OBMol accordingly. | 
| 395 | 
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#zmatrixCoordinatesIntoCartesianCoordinates">blue-obelisk:zmatrixCoordinatesIntoCartesianCoordinates</a> | 
| 396 | 
OBAPI void InternalToCartesian(std::vector<OBInternalCoord*> &vic,OBMol &mol) | 
| 397 | 
{ | 
| 398 | 
    vector3 n,nn,v1,v2,v3,avec,bvec,cvec; | 
| 399 | 
    double dst = 0.0, ang = 0.0, tor = 0.0; | 
| 400 | 
    OBAtom *atom; | 
| 401 | 
    vector<OBNodeBase*>::iterator i; | 
| 402 | 
    int index; | 
| 403 | 
 | 
| 404 | 
    if (vic.empty()) | 
| 405 | 
        return; | 
| 406 | 
 | 
| 407 | 
    obErrorLog.ThrowError(__FUNCTION__, | 
| 408 | 
                          "Ran OpenBabel::InternalToCartesian", obAuditMsg); | 
| 409 | 
 | 
| 410 | 
    for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) | 
| 411 | 
    { | 
| 412 | 
        index = atom->GetIdx(); | 
| 413 | 
 | 
| 414 | 
        if (!vic[index]) // make sure we always have valid pointers | 
| 415 | 
          return; | 
| 416 | 
 | 
| 417 | 
        if (vic[index]->_a) // make sure we have a valid ptr | 
| 418 | 
        { | 
| 419 | 
            avec = vic[index]->_a->GetVector(); | 
| 420 | 
            dst = vic[index]->_dst; | 
| 421 | 
        } | 
| 422 | 
        else | 
| 423 | 
        { | 
| 424 | 
            // atom 1 | 
| 425 | 
            atom->SetVector(0.0, 0.0, 0.0); | 
| 426 | 
            continue; | 
| 427 | 
        } | 
| 428 | 
 | 
| 429 | 
        if (vic[index]->_b) | 
| 430 | 
        { | 
| 431 | 
            bvec = vic[index]->_b->GetVector(); | 
| 432 | 
            ang = vic[index]->_ang * DEG_TO_RAD; | 
| 433 | 
        } | 
| 434 | 
        else | 
| 435 | 
        { | 
| 436 | 
            // atom 2 | 
| 437 | 
            atom->SetVector(dst, 0.0, 0.0); | 
| 438 | 
            continue; | 
| 439 | 
        } | 
| 440 | 
 | 
| 441 | 
        if (vic[index]->_c) | 
| 442 | 
        { | 
| 443 | 
            cvec = vic[index]->_c->GetVector(); | 
| 444 | 
            tor = vic[index]->_tor * DEG_TO_RAD; | 
| 445 | 
        } | 
| 446 | 
        else | 
| 447 | 
        { | 
| 448 | 
            // atom 3 | 
| 449 | 
            cvec = VY; | 
| 450 | 
            tor = 90. * DEG_TO_RAD; | 
| 451 | 
        } | 
| 452 | 
 | 
| 453 | 
        v1 = avec - bvec; | 
| 454 | 
        v2 = avec - cvec; | 
| 455 | 
        n = cross(v1,v2); | 
| 456 | 
        nn = cross(v1,n); | 
| 457 | 
        n.normalize(); | 
| 458 | 
        nn.normalize(); | 
| 459 | 
 | 
| 460 | 
        n  *= -sin(tor); | 
| 461 | 
        nn *= cos(tor); | 
| 462 | 
        v3 = n + nn; | 
| 463 | 
        v3.normalize(); | 
| 464 | 
        v3 *= dst * sin(ang); | 
| 465 | 
        v1.normalize(); | 
| 466 | 
        v1 *= dst * cos(ang); | 
| 467 | 
        v2 = avec + v3 - v1; | 
| 468 | 
 | 
| 469 | 
        atom->SetVector(v2); | 
| 470 | 
    } | 
| 471 | 
 | 
| 472 | 
    // Delete dummy atoms | 
| 473 | 
    for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) | 
| 474 | 
        if (atom->GetAtomicNum() == 0) | 
| 475 | 
            mol.DeleteAtom(atom); | 
| 476 | 
} | 
| 477 | 
 | 
| 478 | 
//! Use the supplied OBMol and its Cartesian coordinates to generate | 
| 479 | 
//! a set of internal (z-matrix) coordinates as supplied in the | 
| 480 | 
//! vector<OBInternalCoord*> argument. | 
| 481 | 
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#cartesianCoordinatesIntoZmatrixCoordinates">blue-obelisk:cartesianCoordinatesIntoZmatrixCoordinates</a>. | 
| 482 | 
OBAPI void CartesianToInternal(std::vector<OBInternalCoord*> &vic,OBMol &mol) | 
| 483 | 
{ | 
| 484 | 
    double r,sum; | 
| 485 | 
    OBAtom *atom,*nbr,*ref; | 
| 486 | 
    vector<OBNodeBase*>::iterator i,j,m; | 
| 487 | 
 | 
| 488 | 
    obErrorLog.ThrowError(__FUNCTION__, | 
| 489 | 
                          "Ran OpenBabel::CartesianToInternal", obAuditMsg); | 
| 490 | 
 | 
| 491 | 
    //set reference atoms | 
| 492 | 
    for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) | 
| 493 | 
    { | 
| 494 | 
        if      (atom->GetIdx() == 1) | 
| 495 | 
            continue; | 
| 496 | 
        else if (atom->GetIdx() == 2) | 
| 497 | 
        { | 
| 498 | 
            vic[atom->GetIdx()]->_a = mol.GetAtom(1); | 
| 499 | 
            continue; | 
| 500 | 
        } | 
| 501 | 
        else if (atom->GetIdx() == 3) | 
| 502 | 
        { | 
| 503 | 
            if( (atom->GetVector()-mol.GetAtom(2)->GetVector()).length_2() | 
| 504 | 
                    <(atom->GetVector()-mol.GetAtom(1)->GetVector()).length_2()) | 
| 505 | 
            { | 
| 506 | 
                vic[atom->GetIdx()]->_a = mol.GetAtom(2); | 
| 507 | 
                vic[atom->GetIdx()]->_b = mol.GetAtom(1); | 
| 508 | 
            } | 
| 509 | 
            else | 
| 510 | 
            { | 
| 511 | 
                vic[atom->GetIdx()]->_a = mol.GetAtom(1); | 
| 512 | 
                vic[atom->GetIdx()]->_b = mol.GetAtom(2); | 
| 513 | 
            } | 
| 514 | 
            continue; | 
| 515 | 
        } | 
| 516 | 
        sum=1.0E10; | 
| 517 | 
        ref = mol.GetAtom(1); | 
| 518 | 
        for(nbr = mol.BeginAtom(j);nbr && (i != j);nbr = mol.NextAtom(j)) | 
| 519 | 
        { | 
| 520 | 
            r = (atom->GetVector()-nbr->GetVector()).length_2(); | 
| 521 | 
            if((r < sum) && (vic[nbr->GetIdx()]->_a != nbr) && | 
| 522 | 
                    (vic[nbr->GetIdx()]->_b != nbr)) | 
| 523 | 
            { | 
| 524 | 
                sum = r; | 
| 525 | 
                ref = nbr; | 
| 526 | 
            } | 
| 527 | 
        } | 
| 528 | 
 | 
| 529 | 
        vic[atom->GetIdx()]->_a = ref; | 
| 530 | 
        if (ref->GetIdx() >= 3) | 
| 531 | 
        { | 
| 532 | 
            vic[atom->GetIdx()]->_b = vic[ref->GetIdx()]->_a; | 
| 533 | 
            vic[atom->GetIdx()]->_c = vic[ref->GetIdx()]->_b; | 
| 534 | 
        } | 
| 535 | 
        else | 
| 536 | 
        { | 
| 537 | 
            if(ref->GetIdx()== 1) | 
| 538 | 
            { | 
| 539 | 
                vic[atom->GetIdx()]->_b = mol.GetAtom(2); | 
| 540 | 
                vic[atom->GetIdx()]->_c = mol.GetAtom(3); | 
| 541 | 
            } | 
| 542 | 
            else | 
| 543 | 
            {//ref->GetIdx()== 2 | 
| 544 | 
                vic[atom->GetIdx()]->_b = mol.GetAtom(1); | 
| 545 | 
                vic[atom->GetIdx()]->_c = mol.GetAtom(3); | 
| 546 | 
            } | 
| 547 | 
        } | 
| 548 | 
    } | 
| 549 | 
 | 
| 550 | 
    //fill in geometries | 
| 551 | 
    unsigned int k; | 
| 552 | 
    vector3 v1,v2; | 
| 553 | 
    OBAtom *a,*b,*c; | 
| 554 | 
    for (k = 2;k <= mol.NumAtoms();k++) | 
| 555 | 
    { | 
| 556 | 
        atom = mol.GetAtom(k); | 
| 557 | 
        a = vic[k]->_a; | 
| 558 | 
        b = vic[k]->_b; | 
| 559 | 
        c = vic[k]->_c; | 
| 560 | 
        if (k == 2) | 
| 561 | 
        { | 
| 562 | 
            vic[k]->_dst = (atom->GetVector() - a->GetVector()).length(); | 
| 563 | 
            continue; | 
| 564 | 
        } | 
| 565 | 
 | 
| 566 | 
        v1 = atom->GetVector() - a->GetVector(); | 
| 567 | 
        v2 = b->GetVector()    - a->GetVector(); | 
| 568 | 
        vic[k]->_dst = v1.length(); | 
| 569 | 
        vic[k]->_ang = vectorAngle(v1,v2); | 
| 570 | 
 | 
| 571 | 
        if (k == 3) | 
| 572 | 
            continue; | 
| 573 | 
        vic[k]->_tor = CalcTorsionAngle(atom->GetVector(), | 
| 574 | 
                                        a->GetVector(), | 
| 575 | 
                                        b->GetVector(), | 
| 576 | 
                                        c->GetVector()); | 
| 577 | 
    } | 
| 578 | 
 | 
| 579 | 
    //check for linear geometries and try to correct if possible | 
| 580 | 
    bool done; | 
| 581 | 
    double ang; | 
| 582 | 
    for (k = 2;k <= mol.NumAtoms();k++) | 
| 583 | 
    { | 
| 584 | 
        ang = fabs(vic[k]->_ang); | 
| 585 | 
        if (ang > 5.0 && ang < 175.0) | 
| 586 | 
            continue; | 
| 587 | 
        atom = mol.GetAtom(k); | 
| 588 | 
        done = false; | 
| 589 | 
        for (a = mol.BeginAtom(i);a && a->GetIdx() < k && !done;a = mol.NextAtom(i)) | 
| 590 | 
            for (b=mol.BeginAtom(j);b && b->GetIdx()<a->GetIdx() && !done;b = mol.NextAtom(j)) | 
| 591 | 
            { | 
| 592 | 
                v1 = atom->GetVector() - a->GetVector(); | 
| 593 | 
                v2 = b->GetVector() - a->GetVector(); | 
| 594 | 
                ang = fabs(vectorAngle(v1,v2)); | 
| 595 | 
                if (ang < 5.0 || ang > 175.0) | 
| 596 | 
                    continue; | 
| 597 | 
 | 
| 598 | 
                for (c = mol.BeginAtom(m);c && c->GetIdx() < atom->GetIdx();c = mol.NextAtom(m)) | 
| 599 | 
                    if (c != atom && c != a && c != b) | 
| 600 | 
                        break; | 
| 601 | 
                if (!c) | 
| 602 | 
                    continue; | 
| 603 | 
 | 
| 604 | 
                vic[k]->_a = a; | 
| 605 | 
                vic[k]->_b = b; | 
| 606 | 
                vic[k]->_c = c; | 
| 607 | 
                vic[k]->_dst = v1.length(); | 
| 608 | 
                vic[k]->_ang = vectorAngle(v1,v2); | 
| 609 | 
                vic[k]->_tor = CalcTorsionAngle(atom->GetVector(), | 
| 610 | 
                                                a->GetVector(), | 
| 611 | 
                                                b->GetVector(), | 
| 612 | 
                                                c->GetVector()); | 
| 613 | 
                done = true; | 
| 614 | 
            } | 
| 615 | 
    } | 
| 616 | 
} | 
| 617 | 
 | 
| 618 | 
OBAPI void qtrfit (double *r,double *f,int size, double u[3][3]) | 
| 619 | 
{ | 
| 620 | 
    register int i; | 
| 621 | 
    double xxyx, xxyy, xxyz; | 
| 622 | 
    double xyyx, xyyy, xyyz; | 
| 623 | 
    double xzyx, xzyy, xzyz; | 
| 624 | 
    double d[4],q[4]; | 
| 625 | 
    double c[16],v[16]; | 
| 626 | 
    double rx,ry,rz,fx,fy,fz; | 
| 627 | 
 | 
| 628 | 
    /* generate the upper triangle of the quadratic form matrix */ | 
| 629 | 
 | 
| 630 | 
    xxyx = 0.0; | 
| 631 | 
    xxyy = 0.0; | 
| 632 | 
    xxyz = 0.0; | 
| 633 | 
    xyyx = 0.0; | 
| 634 | 
    xyyy = 0.0; | 
| 635 | 
    xyyz = 0.0; | 
| 636 | 
    xzyx = 0.0; | 
| 637 | 
    xzyy = 0.0; | 
| 638 | 
    xzyz = 0.0; | 
| 639 | 
 | 
| 640 | 
    for (i = 0; i < size; i++) | 
| 641 | 
    { | 
| 642 | 
        rx = r[i*3]; | 
| 643 | 
        ry = r[i*3+1]; | 
| 644 | 
        rz = r[i*3+2]; | 
| 645 | 
        fx = f[i*3]; | 
| 646 | 
        fy = f[i*3+1]; | 
| 647 | 
        fz = f[i*3+2]; | 
| 648 | 
 | 
| 649 | 
        xxyx += fx * rx; | 
| 650 | 
        xxyy += fx * ry; | 
| 651 | 
        xxyz += fx * rz; | 
| 652 | 
        xyyx += fy * rx; | 
| 653 | 
        xyyy += fy * ry; | 
| 654 | 
        xyyz += fy * rz; | 
| 655 | 
        xzyx += fz * rx; | 
| 656 | 
        xzyy += fz * ry; | 
| 657 | 
        xzyz += fz * rz; | 
| 658 | 
    } | 
| 659 | 
 | 
| 660 | 
    c[4*0+0] = xxyx + xyyy + xzyz; | 
| 661 | 
 | 
| 662 | 
    c[4*0+1] = xzyy - xyyz; | 
| 663 | 
    c[4*1+1] = xxyx - xyyy - xzyz; | 
| 664 | 
 | 
| 665 | 
    c[4*0+2] = xxyz - xzyx; | 
| 666 | 
    c[4*1+2] = xxyy + xyyx; | 
| 667 | 
    c[4*2+2] = xyyy - xzyz - xxyx; | 
| 668 | 
 | 
| 669 | 
    c[4*0+3] = xyyx - xxyy; | 
| 670 | 
    c[4*1+3] = xzyx + xxyz; | 
| 671 | 
    c[4*2+3] = xyyz + xzyy; | 
| 672 | 
    c[4*3+3] = xzyz - xxyx - xyyy; | 
| 673 | 
 | 
| 674 | 
    /* diagonalize c */ | 
| 675 | 
 | 
| 676 | 
    matrix3x3::jacobi(4, c, d, v); | 
| 677 | 
 | 
| 678 | 
    /* extract the desired quaternion */ | 
| 679 | 
 | 
| 680 | 
    q[0] = v[4*0+3]; | 
| 681 | 
    q[1] = v[4*1+3]; | 
| 682 | 
    q[2] = v[4*2+3]; | 
| 683 | 
    q[3] = v[4*3+3]; | 
| 684 | 
 | 
| 685 | 
    /* generate the rotation matrix */ | 
| 686 | 
 | 
| 687 | 
    u[0][0] = q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3]; | 
| 688 | 
    u[1][0] = 2.0 * (q[1] * q[2] - q[0] * q[3]); | 
| 689 | 
    u[2][0] = 2.0 * (q[1] * q[3] + q[0] * q[2]); | 
| 690 | 
 | 
| 691 | 
    u[0][1] = 2.0 * (q[2] * q[1] + q[0] * q[3]); | 
| 692 | 
    u[1][1] = q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3]; | 
| 693 | 
    u[2][1] = 2.0 * (q[2] * q[3] - q[0] * q[1]); | 
| 694 | 
 | 
| 695 | 
    u[0][2] = 2.0 * (q[3] * q[1] - q[0] * q[2]); | 
| 696 | 
    u[1][2] = 2.0 * (q[3] * q[2] + q[0] * q[1]); | 
| 697 | 
    u[2][2] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; | 
| 698 | 
} | 
| 699 | 
 | 
| 700 | 
 | 
| 701 | 
 | 
| 702 | 
static double Roots[4]; | 
| 703 | 
 | 
| 704 | 
#define ApproxZero 1E-7 | 
| 705 | 
#define IsZero(x)  ((double)fabs(x)<ApproxZero) | 
| 706 | 
#ifndef PI | 
| 707 | 
#define PI         3.14159265358979323846226433 | 
| 708 | 
#endif | 
| 709 | 
#define OneThird      (1.0/3.0) | 
| 710 | 
#define FourThirdsPI  (4.0*PI/3.0) | 
| 711 | 
#define TwoThirdsPI   (2.0*PI/3.0) | 
| 712 | 
 | 
| 713 | 
#ifdef OLD_RMAT | 
| 714 | 
 | 
| 715 | 
/*FUNCTION */ | 
| 716 | 
/* recieves: the co-efficients for a general | 
| 717 | 
 *           equation of degree one. | 
| 718 | 
 *           Ax + B = 0 !! | 
| 719 | 
 */ | 
| 720 | 
OBAPI static int SolveLinear(double A,double B) | 
| 721 | 
{ | 
| 722 | 
    if( IsZero(A) ) | 
| 723 | 
        return( 0 ); | 
| 724 | 
    Roots[0] = -B/A; | 
| 725 | 
    return( 1 ); | 
| 726 | 
} | 
| 727 | 
 | 
| 728 | 
/*FUNCTION */ | 
| 729 | 
/* recieves: the co-efficients for a general | 
| 730 | 
 *           linear equation of degree two. | 
| 731 | 
 *           Ax^2 + Bx + C = 0 !! | 
| 732 | 
 */ | 
| 733 | 
OBAPI static int SolveQuadratic(double A,double B,double C) | 
| 734 | 
{ | 
| 735 | 
    register double Descr, Temp, TwoA; | 
| 736 | 
 | 
| 737 | 
    if( IsZero(A) ) | 
| 738 | 
        return( SolveLinear(B,C) ); | 
| 739 | 
 | 
| 740 | 
    TwoA = A+A; | 
| 741 | 
    Temp = TwoA*C; | 
| 742 | 
    Descr = B*B - (Temp+Temp); | 
| 743 | 
    if( Descr<0.0 ) | 
| 744 | 
        return( 0 ); | 
| 745 | 
 | 
| 746 | 
    if( Descr>0.0 ) | 
| 747 | 
    { | 
| 748 | 
        Descr = sqrt(Descr); | 
| 749 | 
#ifdef ORIG | 
| 750 | 
 | 
| 751 | 
        Roots[0] = (-B-Descr)/TwoA; | 
| 752 | 
        Roots[1] = (-B+Descr)/TwoA; | 
| 753 | 
#else | 
| 754 | 
        /* W. Press, B. Flannery, S. Teukolsky and W. Vetterling, | 
| 755 | 
        * "Quadratic and Cubic Equations", Numerical Recipes in C, | 
| 756 | 
        * Chapter 5, pp. 156-157, 1989. | 
| 757 | 
        */ | 
| 758 | 
        Temp = (B<0.0)? -0.5*(B-Descr) : -0.5*(B+Descr); | 
| 759 | 
        Roots[0] = Temp/A; | 
| 760 | 
        Roots[1] = C/Temp; | 
| 761 | 
#endif | 
| 762 | 
 | 
| 763 | 
        return( 2 ); | 
| 764 | 
    } | 
| 765 | 
    Roots[0] = -B/TwoA; | 
| 766 | 
    return( 1 ); | 
| 767 | 
} | 
| 768 | 
 | 
| 769 | 
/*FUNCTION */ | 
| 770 | 
/* task: to return the cube root of the | 
| 771 | 
 *       given value taking into account | 
| 772 | 
 *       that it may be negative. | 
| 773 | 
 */ | 
| 774 | 
OBAPI static double CubeRoot(double X) | 
| 775 | 
{ | 
| 776 | 
    if( X>=0.0 ) | 
| 777 | 
    { | 
| 778 | 
        return pow( X, OneThird ); | 
| 779 | 
    } | 
| 780 | 
    else | 
| 781 | 
        return -pow( -X, OneThird ); | 
| 782 | 
} | 
| 783 | 
 | 
| 784 | 
OBAPI static int SolveCubic(double A,double B,double C,double D) | 
| 785 | 
{ | 
| 786 | 
    register double TwoA, ThreeA, BOver3A; | 
| 787 | 
    register double Temp, POver3, QOver2; | 
| 788 | 
    register double Desc, Rho, Psi; | 
| 789 | 
 | 
| 790 | 
 | 
| 791 | 
    if( IsZero(A) ) | 
| 792 | 
    { | 
| 793 | 
        return( SolveQuadratic(B,C,D) ); | 
| 794 | 
    } | 
| 795 | 
 | 
| 796 | 
    TwoA = A+A; | 
| 797 | 
    ThreeA = TwoA+A; | 
| 798 | 
    BOver3A = B/ThreeA; | 
| 799 | 
    QOver2 = ((TwoA*BOver3A*BOver3A-C)*BOver3A+D)/TwoA; | 
| 800 | 
    POver3 = (C-B*BOver3A)/ThreeA; | 
| 801 | 
 | 
| 802 | 
 | 
| 803 | 
    Rho = POver3*POver3*POver3; | 
| 804 | 
    Desc = QOver2*QOver2 + Rho; | 
| 805 | 
 | 
| 806 | 
    if( Desc<=0.0 ) | 
| 807 | 
    { | 
| 808 | 
        Rho = sqrt( -Rho ); | 
| 809 | 
        Psi = OneThird*acos(-QOver2/Rho); | 
| 810 | 
        Temp = CubeRoot( Rho ); | 
| 811 | 
        Temp = Temp+Temp; | 
| 812 | 
 | 
| 813 | 
        Roots[0] = Temp*cos( Psi )-BOver3A; | 
| 814 | 
        Roots[1] = Temp*cos( Psi+TwoThirdsPI )-BOver3A; | 
| 815 | 
        Roots[2] = Temp*cos( Psi+FourThirdsPI )-BOver3A; | 
| 816 | 
        return( 3 ); | 
| 817 | 
    } | 
| 818 | 
 | 
| 819 | 
    if( Desc> 0.0 ) | 
| 820 | 
    { | 
| 821 | 
        Temp = CubeRoot( -QOver2 ); | 
| 822 | 
        Roots[0] = Temp+Temp-BOver3A; | 
| 823 | 
        Roots[1] = -Temp-BOver3A; | 
| 824 | 
        return( 2 ); | 
| 825 | 
    } | 
| 826 | 
 | 
| 827 | 
    Desc = sqrt( Desc ); | 
| 828 | 
    Roots[0] = CubeRoot(Desc-QOver2)-CubeRoot(Desc+QOver2) - BOver3A; | 
| 829 | 
 | 
| 830 | 
    return( 1 ); | 
| 831 | 
} | 
| 832 | 
#endif | 
| 833 | 
 | 
| 834 | 
 | 
| 835 | 
#define MAX_SWEEPS 50 | 
| 836 | 
 | 
| 837 | 
OBAPI void ob_make_rmat(double a[3][3],double rmat[9]) | 
| 838 | 
{ | 
| 839 | 
    double onorm, dnorm; | 
| 840 | 
    double b, dma, q, t, c, s,d[3]; | 
| 841 | 
    double atemp, vtemp, dtemp,v[3][3]; | 
| 842 | 
    double r1[3],r2[3],v1[3],v2[3],v3[3]; | 
| 843 | 
    int i, j, k, l; | 
| 844 | 
 | 
| 845 | 
    memset((char*)d,'\0',sizeof(double)*3); | 
| 846 | 
 | 
| 847 | 
    for (j = 0; j < 3; j++) | 
| 848 | 
    { | 
| 849 | 
        for (i = 0; i < 3; i++) | 
| 850 | 
            v[i][j] = 0.0; | 
| 851 | 
 | 
| 852 | 
        v[j][j] = 1.0; | 
| 853 | 
        d[j] = a[j][j]; | 
| 854 | 
    } | 
| 855 | 
 | 
| 856 | 
    for (l = 1; l <= MAX_SWEEPS; l++) | 
| 857 | 
    { | 
| 858 | 
        dnorm = 0.0; | 
| 859 | 
        onorm = 0.0; | 
| 860 | 
        for (j = 0; j < 3; j++) | 
| 861 | 
        { | 
| 862 | 
            dnorm = dnorm + (double)fabs(d[j]); | 
| 863 | 
            for (i = 0; i <= j - 1; i++) | 
| 864 | 
            { | 
| 865 | 
                onorm = onorm + (double)fabs(a[i][j]); | 
| 866 | 
            } | 
| 867 | 
        } | 
| 868 | 
 | 
| 869 | 
        if((onorm/dnorm) <= 1.0e-12) | 
| 870 | 
            goto Exit_now; | 
| 871 | 
        for (j = 1; j < 3; j++) | 
| 872 | 
        { | 
| 873 | 
            for (i = 0; i <= j - 1; i++) | 
| 874 | 
            { | 
| 875 | 
                b = a[i][j]; | 
| 876 | 
                if(fabs(b) > 0.0) | 
| 877 | 
                { | 
| 878 | 
                    dma = d[j] - d[i]; | 
| 879 | 
                    if((fabs(dma) + fabs(b)) <=  fabs(dma)) | 
| 880 | 
                        t = b / dma; | 
| 881 | 
                    else | 
| 882 | 
                    { | 
| 883 | 
                        q = 0.5 * dma / b; | 
| 884 | 
                        t = 1.0/((double)fabs(q) + (double)sqrt(1.0+q*q)); | 
| 885 | 
                        if(q < 0.0) | 
| 886 | 
                            t = -t; | 
| 887 | 
                    } | 
| 888 | 
                    c = 1.0/(double)sqrt(t * t + 1.0); | 
| 889 | 
                    s = t * c; | 
| 890 | 
                    a[i][j] = 0.0; | 
| 891 | 
                    for (k = 0; k <= i-1; k++) | 
| 892 | 
                    { | 
| 893 | 
                        atemp = c * a[k][i] - s * a[k][j]; | 
| 894 | 
                        a[k][j] = s * a[k][i] + c * a[k][j]; | 
| 895 | 
                        a[k][i] = atemp; | 
| 896 | 
                    } | 
| 897 | 
                    for (k = i+1; k <= j-1; k++) | 
| 898 | 
                    { | 
| 899 | 
                        atemp = c * a[i][k] - s * a[k][j]; | 
| 900 | 
                        a[k][j] = s * a[i][k] + c * a[k][j]; | 
| 901 | 
                        a[i][k] = atemp; | 
| 902 | 
                    } | 
| 903 | 
                    for (k = j+1; k < 3; k++) | 
| 904 | 
                    { | 
| 905 | 
                        atemp = c * a[i][k] - s * a[j][k]; | 
| 906 | 
                        a[j][k] = s * a[i][k] + c * a[j][k]; | 
| 907 | 
                        a[i][k] = atemp; | 
| 908 | 
                    } | 
| 909 | 
                    for (k = 0; k < 3; k++) | 
| 910 | 
                    { | 
| 911 | 
                        vtemp = c * v[k][i] - s * v[k][j]; | 
| 912 | 
                        v[k][j] = s * v[k][i] + c * v[k][j]; | 
| 913 | 
                        v[k][i] = vtemp; | 
| 914 | 
                    } | 
| 915 | 
                    dtemp = c*c*d[i] + s*s*d[j] - 2.0*c*s*b; | 
| 916 | 
                    d[j] = s*s*d[i] + c*c*d[j] +  2.0*c*s*b; | 
| 917 | 
                    d[i] = dtemp; | 
| 918 | 
                }  /* end if */ | 
| 919 | 
            } /* end for i */ | 
| 920 | 
        } /* end for j */ | 
| 921 | 
    } /* end for l */ | 
| 922 | 
 | 
| 923 | 
Exit_now: | 
| 924 | 
 | 
| 925 | 
    /* max_sweeps = l;*/ | 
| 926 | 
 | 
| 927 | 
    for (j = 0; j < 3-1; j++) | 
| 928 | 
    { | 
| 929 | 
        k = j; | 
| 930 | 
        dtemp = d[k]; | 
| 931 | 
        for (i = j+1; i < 3; i++) | 
| 932 | 
            if(d[i] < dtemp) | 
| 933 | 
            { | 
| 934 | 
                k = i; | 
| 935 | 
                dtemp = d[k]; | 
| 936 | 
            } | 
| 937 | 
 | 
| 938 | 
        if(k > j) | 
| 939 | 
        { | 
| 940 | 
            d[k] = d[j]; | 
| 941 | 
            d[j] = dtemp; | 
| 942 | 
            for (i = 0; i < 3 ; i++) | 
| 943 | 
            { | 
| 944 | 
                dtemp = v[i][k]; | 
| 945 | 
                v[i][k] = v[i][j]; | 
| 946 | 
                v[i][j] = dtemp; | 
| 947 | 
            } | 
| 948 | 
        } | 
| 949 | 
    } | 
| 950 | 
 | 
| 951 | 
    r1[0] = v[0][0]; | 
| 952 | 
    r1[1] = v[1][0]; | 
| 953 | 
    r1[2] = v[2][0]; | 
| 954 | 
    r2[0] = v[0][1]; | 
| 955 | 
    r2[1] = v[1][1]; | 
| 956 | 
    r2[2] = v[2][1]; | 
| 957 | 
 | 
| 958 | 
    v3[0] =  r1[1]*r2[2] - r1[2]*r2[1]; | 
| 959 | 
    v3[1] = -r1[0]*r2[2] + r1[2]*r2[0]; | 
| 960 | 
    v3[2] =  r1[0]*r2[1] - r1[1]*r2[0]; | 
| 961 | 
    s = (double)sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); | 
| 962 | 
    v3[0] /= s; | 
| 963 | 
    v3[0] /= s; | 
| 964 | 
    v3[0] /= s; | 
| 965 | 
 | 
| 966 | 
    v2[0] =  v3[1]*r1[2] - v3[2]*r1[1]; | 
| 967 | 
    v2[1] = -v3[0]*r1[2] + v3[2]*r1[0]; | 
| 968 | 
    v2[2] =  v3[0]*r1[1] - v3[1]*r1[0]; | 
| 969 | 
    s = (double)sqrt(v2[0]*v2[0] + v2[1]*v2[1] + v2[2]*v2[2]); | 
| 970 | 
    v2[0] /= s; | 
| 971 | 
    v2[0] /= s; | 
| 972 | 
    v2[0] /= s; | 
| 973 | 
 | 
| 974 | 
    v1[0] =  v2[1]*v3[2] - v2[2]*v3[1]; | 
| 975 | 
    v1[1] = -v2[0]*v3[2] + v2[2]*v3[0]; | 
| 976 | 
    v1[2] =  v2[0]*v3[1] - v2[1]*v3[0]; | 
| 977 | 
    s = (double)sqrt(v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2]); | 
| 978 | 
    v1[0] /= s; | 
| 979 | 
    v1[0] /= s; | 
| 980 | 
    v1[0] /= s; | 
| 981 | 
 | 
| 982 | 
    rmat[0] = v1[0]; | 
| 983 | 
    rmat[1] = v1[1]; | 
| 984 | 
    rmat[2] = v1[2]; | 
| 985 | 
    rmat[3] = v2[0]; | 
| 986 | 
    rmat[4] = v2[1]; | 
| 987 | 
    rmat[5] = v2[2]; | 
| 988 | 
    rmat[6] = v3[0]; | 
| 989 | 
    rmat[7] = v3[1]; | 
| 990 | 
    rmat[8] = v3[2]; | 
| 991 | 
} | 
| 992 | 
 | 
| 993 | 
static int get_roots_3_3(double mat[3][3], double roots[3]) | 
| 994 | 
{ | 
| 995 | 
    double rmat[9]; | 
| 996 | 
 | 
| 997 | 
    ob_make_rmat(mat,rmat); | 
| 998 | 
 | 
| 999 | 
    mat[0][0]=rmat[0]; | 
| 1000 | 
    mat[0][1]=rmat[3]; | 
| 1001 | 
    mat[0][2]=rmat[6]; | 
| 1002 | 
    mat[1][0]=rmat[1]; | 
| 1003 | 
    mat[1][1]=rmat[4]; | 
| 1004 | 
    mat[1][2]=rmat[7]; | 
| 1005 | 
    mat[2][0]=rmat[2]; | 
| 1006 | 
    mat[2][1]=rmat[5]; | 
| 1007 | 
    mat[2][2]=rmat[8]; | 
| 1008 | 
 | 
| 1009 | 
    roots[0]=(double)Roots[0]; | 
| 1010 | 
    roots[1]=(double)Roots[1]; | 
| 1011 | 
    roots[2]=(double)Roots[2]; | 
| 1012 | 
 | 
| 1013 | 
    return 1; | 
| 1014 | 
} | 
| 1015 | 
 | 
| 1016 | 
OBAPI double superimpose(double *r,double *f,int size) | 
| 1017 | 
{ | 
| 1018 | 
    int i,j; | 
| 1019 | 
    double x,y,z,d2; | 
| 1020 | 
    double mat[3][3],rmat[3][3],mat2[3][3],roots[3]; | 
| 1021 | 
 | 
| 1022 | 
    /* make inertial cross tensor */ | 
| 1023 | 
    for(i=0;i<3;i++) | 
| 1024 | 
        for(j=0;j<3;j++) | 
| 1025 | 
            mat[i][j]=0.0; | 
| 1026 | 
 | 
| 1027 | 
    for(i=0;i < size;i++) | 
| 1028 | 
    { | 
| 1029 | 
        mat[0][0]+=r[3*i]  *f[3*i]; | 
| 1030 | 
        mat[1][0]+=r[3*i+1]*f[3*i]; | 
| 1031 | 
        mat[2][0]+=r[3*i+2]*f[3*i]; | 
| 1032 | 
        mat[0][1]+=r[3*i]  *f[3*i+1]; | 
| 1033 | 
        mat[1][1]+=r[3*i+1]*f[3*i+1]; | 
| 1034 | 
        mat[2][1]+=r[3*i+2]*f[3*i+1]; | 
| 1035 | 
        mat[0][2]+=r[3*i]  *f[3*i+2]; | 
| 1036 | 
        mat[1][2]+=r[3*i+1]*f[3*i+2]; | 
| 1037 | 
        mat[2][2]+=r[3*i+2]*f[3*i+2]; | 
| 1038 | 
    } | 
| 1039 | 
 | 
| 1040 | 
    d2=mat[0][0]*(mat[1][1]*mat[2][2]-mat[1][2]*mat[2][1]) | 
| 1041 | 
       -mat[0][1]*(mat[1][0]*mat[2][2]-mat[1][2]*mat[2][0]) | 
| 1042 | 
       +mat[0][2]*(mat[1][0]*mat[2][1]-mat[1][1]*mat[2][0]); | 
| 1043 | 
 | 
| 1044 | 
 | 
| 1045 | 
    /* square matrix= ((mat transpose) * mat) */ | 
| 1046 | 
    for(i=0;i<3;i++) | 
| 1047 | 
        for(j=0;j<3;j++) | 
| 1048 | 
        { | 
| 1049 | 
            x=mat[0][i]*mat[0][j]+mat[1][i]*mat[1][j]+mat[2][i]*mat[2][j]; | 
| 1050 | 
            mat2[i][j]=mat[i][j]; | 
| 1051 | 
            rmat[i][j]=x; | 
| 1052 | 
        } | 
| 1053 | 
    get_roots_3_3(rmat,roots); | 
| 1054 | 
 | 
| 1055 | 
    roots[0]=(roots[0]<0.0001) ? 0.0: (roots[0]); | 
| 1056 | 
    roots[1]=(roots[1]<0.0001) ? 0.0: (roots[1]); | 
| 1057 | 
    roots[2]=(roots[2]<0.0001) ? 0.0: (roots[2]); | 
| 1058 | 
 | 
| 1059 | 
    /* make sqrt of rmat, store in mat*/ | 
| 1060 | 
 | 
| 1061 | 
    roots[0]=roots[0]<0.0001? 0.0: 1.0/(double)sqrt(roots[0]); | 
| 1062 | 
    roots[1]=roots[1]<0.0001? 0.0: 1.0/(double)sqrt(roots[1]); | 
| 1063 | 
    roots[2]=roots[2]<0.0001? 0.0: 1.0/(double)sqrt(roots[2]); | 
| 1064 | 
 | 
| 1065 | 
    if(d2<0.0) | 
| 1066 | 
    { | 
| 1067 | 
        if( (roots[0]>=roots[1]) && (roots[0]>=roots[2]) ) | 
| 1068 | 
            roots[0]*=-1.0; | 
| 1069 | 
        if( (roots[1]>roots[0]) && (roots[1]>=roots[2]) ) | 
| 1070 | 
            roots[1]*=-1.0; | 
| 1071 | 
        if( (roots[2]>roots[1]) && (roots[2]>roots[0]) ) | 
| 1072 | 
            roots[2]*=-1.0; | 
| 1073 | 
    } | 
| 1074 | 
 | 
| 1075 | 
    for(i=0;i<3;i++) | 
| 1076 | 
        for(j=0;j<3;j++) | 
| 1077 | 
            mat[i][j]=roots[0]*rmat[i][0]*rmat[j][0]+ | 
| 1078 | 
                      roots[1]*rmat[i][1]*rmat[j][1]+ | 
| 1079 | 
                      roots[2]*rmat[i][2]*rmat[j][2]; | 
| 1080 | 
 | 
| 1081 | 
    /* and multiply into original inertial cross matrix, mat2 */ | 
| 1082 | 
    for(i=0;i<3;i++) | 
| 1083 | 
        for(j=0;j<3;j++) | 
| 1084 | 
            rmat[i][j]=mat[0][j]*mat2[i][0]+ | 
| 1085 | 
                       mat[1][j]*mat2[i][1]+ | 
| 1086 | 
                       mat[2][j]*mat2[i][2]; | 
| 1087 | 
 | 
| 1088 | 
    /* rotate all coordinates */ | 
| 1089 | 
    d2 = 0.0; | 
| 1090 | 
    for(i=0;i<size;i++) | 
| 1091 | 
    { | 
| 1092 | 
        x=f[3*i]*rmat[0][0]+f[3*i+1]*rmat[0][1]+f[3*i+2]*rmat[0][2]; | 
| 1093 | 
        y=f[3*i]*rmat[1][0]+f[3*i+1]*rmat[1][1]+f[3*i+2]*rmat[1][2]; | 
| 1094 | 
        z=f[3*i]*rmat[2][0]+f[3*i+1]*rmat[2][1]+f[3*i+2]*rmat[2][2]; | 
| 1095 | 
        f[3*i  ]=x; | 
| 1096 | 
        f[3*i+1]=y; | 
| 1097 | 
        f[3*i+2]=z; | 
| 1098 | 
 | 
| 1099 | 
        x = r[i*3]   - f[i*3]; | 
| 1100 | 
        y = r[i*3+1] - f[i*3+1]; | 
| 1101 | 
        z = r[i*3+2] - f[i*3+2]; | 
| 1102 | 
        d2 += x*x+y*y+z*z; | 
| 1103 | 
    } | 
| 1104 | 
 | 
| 1105 | 
    d2 /= (double) size; | 
| 1106 | 
 | 
| 1107 | 
    return((double)sqrt(d2)); | 
| 1108 | 
} | 
| 1109 | 
 | 
| 1110 | 
OBAPI void get_rmat(double *rvec,double *r,double *f,int size) | 
| 1111 | 
{ | 
| 1112 | 
    int i,j; | 
| 1113 | 
    double x,d2; | 
| 1114 | 
    double mat[3][3],rmat[3][3],mat2[3][3],roots[3]; | 
| 1115 | 
 | 
| 1116 | 
    /* make inertial cross tensor */ | 
| 1117 | 
    for(i=0;i<3;i++) | 
| 1118 | 
        for(j=0;j<3;j++) | 
| 1119 | 
            mat[i][j]=0.0; | 
| 1120 | 
 | 
| 1121 | 
    for(i=0;i < size;i++) | 
| 1122 | 
    { | 
| 1123 | 
        mat[0][0]+=r[3*i]  *f[3*i]; | 
| 1124 | 
        mat[1][0]+=r[3*i+1]*f[3*i]; | 
| 1125 | 
        mat[2][0]+=r[3*i+2]*f[3*i]; | 
| 1126 | 
        mat[0][1]+=r[3*i]  *f[3*i+1]; | 
| 1127 | 
        mat[1][1]+=r[3*i+1]*f[3*i+1]; | 
| 1128 | 
        mat[2][1]+=r[3*i+2]*f[3*i+1]; | 
| 1129 | 
        mat[0][2]+=r[3*i]  *f[3*i+2]; | 
| 1130 | 
        mat[1][2]+=r[3*i+1]*f[3*i+2]; | 
| 1131 | 
        mat[2][2]+=r[3*i+2]*f[3*i+2]; | 
| 1132 | 
    } | 
| 1133 | 
 | 
| 1134 | 
    d2=mat[0][0]*(mat[1][1]*mat[2][2]-mat[1][2]*mat[2][1]) | 
| 1135 | 
       -mat[0][1]*(mat[1][0]*mat[2][2]-mat[1][2]*mat[2][0]) | 
| 1136 | 
       +mat[0][2]*(mat[1][0]*mat[2][1]-mat[1][1]*mat[2][0]); | 
| 1137 | 
 | 
| 1138 | 
    /* square matrix= ((mat transpose) * mat) */ | 
| 1139 | 
    for(i=0;i<3;i++) | 
| 1140 | 
        for(j=0;j<3;j++) | 
| 1141 | 
        { | 
| 1142 | 
            x=mat[0][i]*mat[0][j]+mat[1][i]*mat[1][j]+mat[2][i]*mat[2][j]; | 
| 1143 | 
            mat2[i][j]=mat[i][j]; | 
| 1144 | 
            rmat[i][j]=x; | 
| 1145 | 
        } | 
| 1146 | 
    get_roots_3_3(rmat,roots); | 
| 1147 | 
 | 
| 1148 | 
    roots[0]=(roots[0]<0.0001) ? 0.0: (roots[0]); | 
| 1149 | 
    roots[1]=(roots[1]<0.0001) ? 0.0: (roots[1]); | 
| 1150 | 
    roots[2]=(roots[2]<0.0001) ? 0.0: (roots[2]); | 
| 1151 | 
 | 
| 1152 | 
    /* make sqrt of rmat, store in mat*/ | 
| 1153 | 
 | 
| 1154 | 
    roots[0]=(roots[0]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[0]); | 
| 1155 | 
    roots[1]=(roots[1]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[1]); | 
| 1156 | 
    roots[2]=(roots[2]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[2]); | 
| 1157 | 
 | 
| 1158 | 
    if(d2<0.0) | 
| 1159 | 
    { | 
| 1160 | 
        if( (roots[0]>=roots[1]) && (roots[0]>=roots[2]) ) | 
| 1161 | 
            roots[0]*=-1.0; | 
| 1162 | 
        if( (roots[1]>roots[0]) && (roots[1]>=roots[2]) ) | 
| 1163 | 
            roots[1]*=-1.0; | 
| 1164 | 
        if( (roots[2]>roots[1]) && (roots[2]>roots[0]) ) | 
| 1165 | 
            roots[2]*=-1.0; | 
| 1166 | 
    } | 
| 1167 | 
 | 
| 1168 | 
    for(i=0;i<3;i++) | 
| 1169 | 
        for(j=0;j<3;j++) | 
| 1170 | 
            mat[i][j]=roots[0]*rmat[i][0]*rmat[j][0]+ | 
| 1171 | 
                      roots[1]*rmat[i][1]*rmat[j][1]+ | 
| 1172 | 
                      roots[2]*rmat[i][2]*rmat[j][2]; | 
| 1173 | 
 | 
| 1174 | 
    /* and multiply into original inertial cross matrix, mat2 */ | 
| 1175 | 
    for(i=0;i<3;i++) | 
| 1176 | 
        for(j=0;j<3;j++) | 
| 1177 | 
            rmat[i][j]=mat[0][j]*mat2[i][0]+ | 
| 1178 | 
                       mat[1][j]*mat2[i][1]+ | 
| 1179 | 
                       mat[2][j]*mat2[i][2]; | 
| 1180 | 
 | 
| 1181 | 
    rvec[0] = rmat[0][0]; | 
| 1182 | 
    rvec[1] = rmat[0][1]; | 
| 1183 | 
    rvec[2] = rmat[0][2]; | 
| 1184 | 
    rvec[3] = rmat[1][0]; | 
| 1185 | 
    rvec[4] = rmat[1][1]; | 
| 1186 | 
    rvec[5] = rmat[1][2]; | 
| 1187 | 
    rvec[6] = rmat[2][0]; | 
| 1188 | 
    rvec[7] = rmat[2][1]; | 
| 1189 | 
    rvec[8] = rmat[2][2]; | 
| 1190 | 
} | 
| 1191 | 
 | 
| 1192 | 
} // end namespace OpenBabel | 
| 1193 | 
 | 
| 1194 | 
//! \file obutil.cpp | 
| 1195 | 
//! \brief Various utility methods. |