1 |
/********************************************************************** |
2 |
obutil.cpp - Various utility methods. |
3 |
|
4 |
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
5 |
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
6 |
|
7 |
This file is part of the Open Babel project. |
8 |
For more information, see <http://openbabel.sourceforge.net/> |
9 |
|
10 |
This program is free software; you can redistribute it and/or modify |
11 |
it under the terms of the GNU General Public License as published by |
12 |
the Free Software Foundation version 2 of the License. |
13 |
|
14 |
This program is distributed in the hope that it will be useful, |
15 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 |
GNU General Public License for more details. |
18 |
***********************************************************************/ |
19 |
|
20 |
#include "config.h" |
21 |
#include "matrix3x3.hpp" |
22 |
#include "vector3.hpp" |
23 |
#include "mol.hpp" |
24 |
#include "obutil.hpp" |
25 |
|
26 |
#if HAVE_CONIO_H |
27 |
#include <conio.h> |
28 |
#endif |
29 |
|
30 |
using namespace std; |
31 |
namespace OpenBabel |
32 |
{ |
33 |
|
34 |
/*! \class OBStopwatch |
35 |
\brief Stopwatch class used for timing length of execution |
36 |
|
37 |
The OBStopwatch class makes timing the execution of blocks of |
38 |
code to microsecond accuracy very simple. The class effectively |
39 |
has two functions, Start() and Elapsed(). The usage of the |
40 |
OBStopwatch class is demonstrated by the following code: |
41 |
\code |
42 |
OBStopwatch sw; |
43 |
sw.Start(); |
44 |
//insert code here |
45 |
cout << "Elapsed time = " << sw.Elapsed() << endl; |
46 |
\endcode |
47 |
*/ |
48 |
|
49 |
//! Deprecated: use the OBMessageHandler class instead |
50 |
//! \deprecated Throw an error through the OpenBabel::OBMessageHandler class |
51 |
OBAPI void ThrowError(char *str) |
52 |
{ |
53 |
obErrorLog.ThrowError("", str, obInfo); |
54 |
} |
55 |
|
56 |
//! Deprecated: use the OBMessageHandler class instead |
57 |
//! \deprecated Throw an error through the OpenBabel::OBMessageHandler class |
58 |
OBAPI void ThrowError(std::string &str) |
59 |
{ |
60 |
obErrorLog.ThrowError("", str, obInfo); |
61 |
} |
62 |
|
63 |
// Comparison function (for sorting ints) returns a < b |
64 |
OBAPI bool OBCompareInt(const int &a,const int &b) |
65 |
{ |
66 |
return(a<b); |
67 |
} |
68 |
|
69 |
// Comparison function (for sorting unsigned ints) returns a < b |
70 |
OBAPI bool OBCompareUnsigned(const unsigned int &a,const unsigned int &b) |
71 |
{ |
72 |
return(a<b); |
73 |
} |
74 |
|
75 |
// Comparison for doubles: returns a < (b + epsilon) |
76 |
OBAPI bool IsNear(const double &a, const double &b, const double epsilon) |
77 |
{ |
78 |
return (fabs(a - b) < epsilon); |
79 |
} |
80 |
|
81 |
// Comparison for doubles: returns a < (0.0 + epsilon) |
82 |
OBAPI bool IsNearZero(const double &a, const double epsilon) |
83 |
{ |
84 |
return (fabs(a) < epsilon); |
85 |
} |
86 |
|
87 |
//! Utility function: replace the last extension in string &src with new extension char *ext. |
88 |
OBAPI string NewExtension(string &src,char *ext) |
89 |
{ |
90 |
unsigned int pos = (unsigned int)src.find_last_of("."); |
91 |
string dst; |
92 |
|
93 |
if (pos != string::npos) |
94 |
dst = src.substr(0,pos+1); |
95 |
else |
96 |
{ |
97 |
dst = src; |
98 |
dst += "."; |
99 |
} |
100 |
|
101 |
dst += ext; |
102 |
return(dst); |
103 |
} |
104 |
|
105 |
//! Return the geometric centroid to an array of coordinates in double* format |
106 |
//! and center the coordinates to the origin. Operates on the first "size" |
107 |
//! coordinates in the array. |
108 |
OBAPI vector3 center_coords(double *c, unsigned int size) |
109 |
{ |
110 |
if (size == 0) |
111 |
{ |
112 |
vector3 v(0.0f, 0.0f, 0.0f); |
113 |
return(v); |
114 |
} |
115 |
unsigned int i; |
116 |
double x=0,y=0,z=0; |
117 |
for (i = 0;i < size;i++) |
118 |
{ |
119 |
x += c[i*3]; |
120 |
y += c[i*3+1]; |
121 |
z += c[i*3+2]; |
122 |
} |
123 |
x /= (double) size; |
124 |
y /= (double) size; |
125 |
z /= (double) size; |
126 |
for (i = 0;i < size;i++) |
127 |
{ |
128 |
c[i*3] -= x; |
129 |
c[i*3+1] -= y; |
130 |
c[i*3+2] -= z; |
131 |
} |
132 |
vector3 v(x,y,z); |
133 |
return(v); |
134 |
} |
135 |
|
136 |
//! Rotates the coordinate set *c by the transformation matrix m[3][3] |
137 |
//! Operates on the first "size" coordinates in the array. |
138 |
OBAPI void rotate_coords(double *c,double m[3][3],unsigned int size) |
139 |
{ |
140 |
double x,y,z; |
141 |
for (unsigned int i = 0;i < size;i++) |
142 |
{ |
143 |
x = c[i*3]*m[0][0] + c[i*3+1]*m[0][1] + c[i*3+2]*m[0][2]; |
144 |
y = c[i*3]*m[1][0] + c[i*3+1]*m[1][1] + c[i*3+2]*m[1][2]; |
145 |
z = c[i*3]*m[2][0] + c[i*3+1]*m[2][1] + c[i*3+2]*m[2][2]; |
146 |
c[i*3] = x; |
147 |
c[i*3+1] = y; |
148 |
c[i*3+2] = z; |
149 |
} |
150 |
} |
151 |
|
152 |
//! Calculate the RMS deviation between the first N coordinates of *r and *f |
153 |
OBAPI double calc_rms(double *r,double *f, unsigned int N) |
154 |
{ |
155 |
if (N == 0) |
156 |
return 0.0f; // no RMS deviation between two empty sets |
157 |
|
158 |
double d2=0.0; |
159 |
for (unsigned int i = 0;i < N;i++) |
160 |
{ |
161 |
d2 += SQUARE(r[i*3] - f[i*3]) + |
162 |
SQUARE(r[i*3+1] - f[i*3+1]) + |
163 |
SQUARE(r[i*3+2] - f[i*3+2]); |
164 |
} |
165 |
|
166 |
d2 /= (double) N; |
167 |
return(sqrt(d2)); |
168 |
} |
169 |
|
170 |
//! Rotate the coordinates of 'atoms' |
171 |
//! such that tor == ang - atoms in 'tor' should be ordered such |
172 |
//! that the 3rd atom is the pivot around which atoms rotate |
173 |
OBAPI void SetRotorToAngle(double *c,vector<int> &tor,double ang,vector<int> &atoms) |
174 |
{ |
175 |
double v1x,v1y,v1z,v2x,v2y,v2z,v3x,v3y,v3z; |
176 |
double c1x,c1y,c1z,c2x,c2y,c2z,c3x,c3y,c3z; |
177 |
double c1mag,c2mag,radang,costheta,m[9]; |
178 |
double x,y,z,mag,rotang,sn,cs,t,tx,ty,tz; |
179 |
|
180 |
// |
181 |
//calculate the torsion angle |
182 |
// |
183 |
v1x = c[tor[0]] - c[tor[1]]; |
184 |
v2x = c[tor[1]] - c[tor[2]]; |
185 |
v1y = c[tor[0]+1] - c[tor[1]+1]; |
186 |
v2y = c[tor[1]+1] - c[tor[2]+1]; |
187 |
v1z = c[tor[0]+2] - c[tor[1]+2]; |
188 |
v2z = c[tor[1]+2] - c[tor[2]+2]; |
189 |
v3x = c[tor[2]] - c[tor[3]]; |
190 |
v3y = c[tor[2]+1] - c[tor[3]+1]; |
191 |
v3z = c[tor[2]+2] - c[tor[3]+2]; |
192 |
|
193 |
c1x = v1y*v2z - v1z*v2y; |
194 |
c2x = v2y*v3z - v2z*v3y; |
195 |
c1y = -v1x*v2z + v1z*v2x; |
196 |
c2y = -v2x*v3z + v2z*v3x; |
197 |
c1z = v1x*v2y - v1y*v2x; |
198 |
c2z = v2x*v3y - v2y*v3x; |
199 |
c3x = c1y*c2z - c1z*c2y; |
200 |
c3y = -c1x*c2z + c1z*c2x; |
201 |
c3z = c1x*c2y - c1y*c2x; |
202 |
|
203 |
c1mag = SQUARE(c1x)+SQUARE(c1y)+SQUARE(c1z); |
204 |
c2mag = SQUARE(c2x)+SQUARE(c2y)+SQUARE(c2z); |
205 |
if (c1mag*c2mag < 0.01) |
206 |
costheta = 1.0; //avoid div by zero error |
207 |
else |
208 |
costheta = (c1x*c2x + c1y*c2y + c1z*c2z)/(sqrt(c1mag*c2mag)); |
209 |
|
210 |
if (costheta < -0.999999) |
211 |
costheta = -0.999999; |
212 |
if (costheta > 0.999999) |
213 |
costheta = 0.999999; |
214 |
|
215 |
if ((v2x*c3x + v2y*c3y + v2z*c3z) > 0.0) |
216 |
radang = -acos(costheta); |
217 |
else |
218 |
radang = acos(costheta); |
219 |
|
220 |
// |
221 |
// now we have the torsion angle (radang) - set up the rot matrix |
222 |
// |
223 |
|
224 |
//find the difference between current and requested |
225 |
rotang = ang - radang; |
226 |
|
227 |
sn = sin(rotang); |
228 |
cs = cos(rotang); |
229 |
t = 1 - cs; |
230 |
//normalize the rotation vector |
231 |
mag = sqrt(SQUARE(v2x)+SQUARE(v2y)+SQUARE(v2z)); |
232 |
x = v2x/mag; |
233 |
y = v2y/mag; |
234 |
z = v2z/mag; |
235 |
|
236 |
//set up the rotation matrix |
237 |
m[0]= t*x*x + cs; |
238 |
m[1] = t*x*y + sn*z; |
239 |
m[2] = t*x*z - sn*y; |
240 |
m[3] = t*x*y - sn*z; |
241 |
m[4] = t*y*y + cs; |
242 |
m[5] = t*y*z + sn*x; |
243 |
m[6] = t*x*z + sn*y; |
244 |
m[7] = t*y*z - sn*x; |
245 |
m[8] = t*z*z + cs; |
246 |
|
247 |
// |
248 |
//now the matrix is set - time to rotate the atoms |
249 |
// |
250 |
tx = c[tor[1]]; |
251 |
ty = c[tor[1]+1]; |
252 |
tz = c[tor[1]+2]; |
253 |
vector<int>::iterator i; |
254 |
int j; |
255 |
for (i = atoms.begin();i != atoms.end();i++) |
256 |
{ |
257 |
j = *i; |
258 |
c[j] -= tx; |
259 |
c[j+1] -= ty; |
260 |
c[j+2]-= tz; |
261 |
x = c[j]*m[0] + c[j+1]*m[1] + c[j+2]*m[2]; |
262 |
y = c[j]*m[3] + c[j+1]*m[4] + c[j+2]*m[5]; |
263 |
z = c[j]*m[6] + c[j+1]*m[7] + c[j+2]*m[8]; |
264 |
c[j] = x; |
265 |
c[j+1] = y; |
266 |
c[j+2] = z; |
267 |
c[j] += tx; |
268 |
c[j+1] += ty; |
269 |
c[j+2] += tz; |
270 |
} |
271 |
} |
272 |
|
273 |
//! Safely open the supplied filename and return an ifstream, throwing an error |
274 |
//! to the default OBMessageHandler error log if it fails. |
275 |
OBAPI bool SafeOpen(ifstream &fs,char *filename) |
276 |
{ |
277 |
#ifdef WIN32 |
278 |
string s = filename; |
279 |
if (s.find(".bin") != string::npos) |
280 |
fs.open(filename,ios::binary); |
281 |
else |
282 |
#endif |
283 |
|
284 |
fs.open(filename); |
285 |
|
286 |
if (!fs) |
287 |
{ |
288 |
string error = "Unable to open file \'"; |
289 |
error += filename; |
290 |
error += "\' in read mode"; |
291 |
obErrorLog.ThrowError(__func__, error, obError); |
292 |
return(false); |
293 |
} |
294 |
|
295 |
return(true); |
296 |
} |
297 |
|
298 |
|
299 |
//! Safely open the supplied filename and return an ofstream, throwing an error |
300 |
//! to the default OBMessageHandler error log if it fails. |
301 |
OBAPI bool SafeOpen(ofstream &fs,char *filename) |
302 |
{ |
303 |
#ifdef WIN32 |
304 |
string s = filename; |
305 |
if (s.find(".bin") != string::npos) |
306 |
fs.open(filename,ios::binary); |
307 |
else |
308 |
#endif |
309 |
|
310 |
fs.open(filename); |
311 |
|
312 |
if (!fs) |
313 |
{ |
314 |
string error = "Unable to open file \'"; |
315 |
error += filename; |
316 |
error += "\' in write mode"; |
317 |
obErrorLog.ThrowError(__func__, error, obError); |
318 |
return(false); |
319 |
} |
320 |
|
321 |
return(true); |
322 |
} |
323 |
|
324 |
//! Safely open the supplied filename and return an ifstream, throwing an error |
325 |
//! to the default OBMessageHandler error log if it fails. |
326 |
OBAPI bool SafeOpen(ifstream &fs,string &filename) |
327 |
{ |
328 |
return(SafeOpen(fs,(char*)filename.c_str())); |
329 |
} |
330 |
|
331 |
//! Safely open the supplied filename and return an ofstream, throwing an error |
332 |
//! to the default OBMessageHandler error log if it fails. |
333 |
OBAPI bool SafeOpen(ofstream &fs,string &filename) |
334 |
{ |
335 |
return(SafeOpen(fs,(char*)filename.c_str())); |
336 |
} |
337 |
|
338 |
//! Shift the supplied string to uppercase |
339 |
OBAPI void ToUpper(std::string &s) |
340 |
{ |
341 |
if (s.empty()) |
342 |
return; |
343 |
unsigned int i; |
344 |
for (i = 0;i < s.size();i++) |
345 |
if (isalpha(s[i]) && !isdigit(s[i])) |
346 |
s[i] = toupper(s[i]); |
347 |
} |
348 |
|
349 |
//! Shift the supplied char* to uppercase |
350 |
OBAPI void ToUpper(char *cptr) |
351 |
{ |
352 |
char *c; |
353 |
for (c = cptr;*c != '\0';c++) |
354 |
if (isalpha(*c) && !isdigit(*c)) |
355 |
*c = toupper(*c); |
356 |
} |
357 |
|
358 |
//! Shift the supplied string to lowercase |
359 |
OBAPI void ToLower(std::string &s) |
360 |
{ |
361 |
if (s.empty()) |
362 |
return; |
363 |
unsigned int i; |
364 |
for (i = 0;i < s.size();i++) |
365 |
if (isalpha(s[i]) && !isdigit(s[i])) |
366 |
s[i] = tolower(s[i]); |
367 |
} |
368 |
|
369 |
//! Shift the supplied char* to lowercase |
370 |
OBAPI void ToLower(char *cptr) |
371 |
{ |
372 |
char *c; |
373 |
for (c = cptr;*c != '\0';c++) |
374 |
if (isalpha(*c) && !isdigit(*c)) |
375 |
*c = tolower(*c); |
376 |
} |
377 |
|
378 |
//! "Clean" the supplied atom type, shifting the first character to uppercase, |
379 |
//! the second character (if it's a letter) to lowercase, and terminating with a NULL |
380 |
//! to strip off any trailing characters |
381 |
OBAPI void CleanAtomType(char *id) |
382 |
{ |
383 |
id[0] = toupper(id[0]); |
384 |
if (isalpha(id[1]) == 0) |
385 |
id[1] = '\0'; |
386 |
else |
387 |
{ |
388 |
id[1] = tolower(id[1]); |
389 |
id[2] = '\0'; |
390 |
} |
391 |
} |
392 |
|
393 |
//! Transform the supplied vector<OBInternalCoord*> into cartesian and update |
394 |
//! the OBMol accordingly. |
395 |
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#zmatrixCoordinatesIntoCartesianCoordinates">blue-obelisk:zmatrixCoordinatesIntoCartesianCoordinates</a> |
396 |
OBAPI void InternalToCartesian(std::vector<OBInternalCoord*> &vic,OBMol &mol) |
397 |
{ |
398 |
vector3 n,nn,v1,v2,v3,avec,bvec,cvec; |
399 |
double dst = 0.0, ang = 0.0, tor = 0.0; |
400 |
OBAtom *atom; |
401 |
vector<OBNodeBase*>::iterator i; |
402 |
int index; |
403 |
|
404 |
if (vic.empty()) |
405 |
return; |
406 |
|
407 |
obErrorLog.ThrowError(__func__, |
408 |
"Ran OpenBabel::InternalToCartesian", obAuditMsg); |
409 |
|
410 |
for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) |
411 |
{ |
412 |
index = atom->GetIdx(); |
413 |
|
414 |
// make sure we always have valid pointers |
415 |
if (index >= vic.size() || !vic[index]) |
416 |
return; |
417 |
|
418 |
if (vic[index]->_a) // make sure we have a valid ptr |
419 |
{ |
420 |
avec = vic[index]->_a->GetVector(); |
421 |
dst = vic[index]->_dst; |
422 |
} |
423 |
else |
424 |
{ |
425 |
// atom 1 |
426 |
atom->SetVector(0.0, 0.0, 0.0); |
427 |
continue; |
428 |
} |
429 |
|
430 |
if (vic[index]->_b) |
431 |
{ |
432 |
bvec = vic[index]->_b->GetVector(); |
433 |
ang = vic[index]->_ang * DEG_TO_RAD; |
434 |
} |
435 |
else |
436 |
{ |
437 |
// atom 2 |
438 |
atom->SetVector(dst, 0.0, 0.0); |
439 |
continue; |
440 |
} |
441 |
|
442 |
if (vic[index]->_c) |
443 |
{ |
444 |
cvec = vic[index]->_c->GetVector(); |
445 |
tor = vic[index]->_tor * DEG_TO_RAD; |
446 |
} |
447 |
else |
448 |
{ |
449 |
// atom 3 |
450 |
cvec = VY; |
451 |
tor = 90.0 * DEG_TO_RAD; |
452 |
} |
453 |
|
454 |
v1 = avec - bvec; |
455 |
v2 = avec - cvec; |
456 |
n = cross(v1,v2); |
457 |
nn = cross(v1,n); |
458 |
n.normalize(); |
459 |
nn.normalize(); |
460 |
|
461 |
n *= -sin(tor); |
462 |
nn *= cos(tor); |
463 |
v3 = n + nn; |
464 |
v3.normalize(); |
465 |
v3 *= dst * sin(ang); |
466 |
v1.normalize(); |
467 |
v1 *= dst * cos(ang); |
468 |
v2 = avec + v3 - v1; |
469 |
|
470 |
atom->SetVector(v2); |
471 |
} |
472 |
|
473 |
// Delete dummy atoms |
474 |
for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) |
475 |
if (atom->GetAtomicNum() == 0) |
476 |
mol.DeleteAtom(atom); |
477 |
} |
478 |
|
479 |
//! Use the supplied OBMol and its Cartesian coordinates to generate |
480 |
//! a set of internal (z-matrix) coordinates as supplied in the |
481 |
//! vector<OBInternalCoord*> argument. |
482 |
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#cartesianCoordinatesIntoZmatrixCoordinates">blue-obelisk:cartesianCoordinatesIntoZmatrixCoordinates</a>. |
483 |
OBAPI void CartesianToInternal(std::vector<OBInternalCoord*> &vic,OBMol &mol) |
484 |
{ |
485 |
double r,sum; |
486 |
OBAtom *atom,*nbr,*ref; |
487 |
vector<OBNodeBase*>::iterator i,j,m; |
488 |
|
489 |
obErrorLog.ThrowError(__func__, |
490 |
"Ran OpenBabel::CartesianToInternal", obAuditMsg); |
491 |
|
492 |
//set reference atoms |
493 |
for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) |
494 |
{ |
495 |
if (atom->GetIdx() == 1) |
496 |
continue; |
497 |
else if (atom->GetIdx() == 2) |
498 |
{ |
499 |
vic[atom->GetIdx()]->_a = mol.GetAtom(1); |
500 |
continue; |
501 |
} |
502 |
else if (atom->GetIdx() == 3) |
503 |
{ |
504 |
if( (atom->GetVector()-mol.GetAtom(2)->GetVector()).length_2() |
505 |
<(atom->GetVector()-mol.GetAtom(1)->GetVector()).length_2()) |
506 |
{ |
507 |
vic[atom->GetIdx()]->_a = mol.GetAtom(2); |
508 |
vic[atom->GetIdx()]->_b = mol.GetAtom(1); |
509 |
} |
510 |
else |
511 |
{ |
512 |
vic[atom->GetIdx()]->_a = mol.GetAtom(1); |
513 |
vic[atom->GetIdx()]->_b = mol.GetAtom(2); |
514 |
} |
515 |
continue; |
516 |
} |
517 |
sum=1.0E10; |
518 |
ref = mol.GetAtom(1); |
519 |
for(nbr = mol.BeginAtom(j);nbr && (i != j);nbr = mol.NextAtom(j)) |
520 |
{ |
521 |
r = (atom->GetVector()-nbr->GetVector()).length_2(); |
522 |
if((r < sum) && (vic[nbr->GetIdx()]->_a != nbr) && |
523 |
(vic[nbr->GetIdx()]->_b != nbr)) |
524 |
{ |
525 |
sum = r; |
526 |
ref = nbr; |
527 |
} |
528 |
} |
529 |
|
530 |
vic[atom->GetIdx()]->_a = ref; |
531 |
if (ref->GetIdx() >= 3) |
532 |
{ |
533 |
vic[atom->GetIdx()]->_b = vic[ref->GetIdx()]->_a; |
534 |
vic[atom->GetIdx()]->_c = vic[ref->GetIdx()]->_b; |
535 |
} |
536 |
else |
537 |
{ |
538 |
if(ref->GetIdx()== 1) |
539 |
{ |
540 |
vic[atom->GetIdx()]->_b = mol.GetAtom(2); |
541 |
vic[atom->GetIdx()]->_c = mol.GetAtom(3); |
542 |
} |
543 |
else |
544 |
{//ref->GetIdx()== 2 |
545 |
vic[atom->GetIdx()]->_b = mol.GetAtom(1); |
546 |
vic[atom->GetIdx()]->_c = mol.GetAtom(3); |
547 |
} |
548 |
} |
549 |
} |
550 |
|
551 |
//fill in geometries |
552 |
unsigned int k; |
553 |
vector3 v1,v2; |
554 |
OBAtom *a,*b,*c; |
555 |
for (k = 2;k <= mol.NumAtoms();k++) |
556 |
{ |
557 |
atom = mol.GetAtom(k); |
558 |
a = vic[k]->_a; |
559 |
b = vic[k]->_b; |
560 |
c = vic[k]->_c; |
561 |
if (k == 2) |
562 |
{ |
563 |
vic[k]->_dst = (atom->GetVector() - a->GetVector()).length(); |
564 |
continue; |
565 |
} |
566 |
|
567 |
v1 = atom->GetVector() - a->GetVector(); |
568 |
v2 = b->GetVector() - a->GetVector(); |
569 |
vic[k]->_dst = v1.length(); |
570 |
vic[k]->_ang = vectorAngle(v1,v2); |
571 |
|
572 |
if (k == 3) |
573 |
continue; |
574 |
vic[k]->_tor = CalcTorsionAngle(atom->GetVector(), |
575 |
a->GetVector(), |
576 |
b->GetVector(), |
577 |
c->GetVector()); |
578 |
} |
579 |
|
580 |
//check for linear geometries and try to correct if possible |
581 |
bool done; |
582 |
double ang; |
583 |
for (k = 2;k <= mol.NumAtoms();k++) |
584 |
{ |
585 |
ang = fabs(vic[k]->_ang); |
586 |
if (ang > 5.0 && ang < 175.0) |
587 |
continue; |
588 |
atom = mol.GetAtom(k); |
589 |
done = false; |
590 |
for (a = mol.BeginAtom(i);a && a->GetIdx() < k && !done;a = mol.NextAtom(i)) |
591 |
for (b=mol.BeginAtom(j);b && b->GetIdx()<a->GetIdx() && !done;b = mol.NextAtom(j)) |
592 |
{ |
593 |
v1 = atom->GetVector() - a->GetVector(); |
594 |
v2 = b->GetVector() - a->GetVector(); |
595 |
ang = fabs(vectorAngle(v1,v2)); |
596 |
if (ang < 5.0 || ang > 175.0) |
597 |
continue; |
598 |
|
599 |
for (c = mol.BeginAtom(m);c && c->GetIdx() < atom->GetIdx();c = mol.NextAtom(m)) |
600 |
if (c != atom && c != a && c != b) |
601 |
break; |
602 |
if (!c) |
603 |
continue; |
604 |
|
605 |
vic[k]->_a = a; |
606 |
vic[k]->_b = b; |
607 |
vic[k]->_c = c; |
608 |
vic[k]->_dst = v1.length(); |
609 |
vic[k]->_ang = vectorAngle(v1,v2); |
610 |
vic[k]->_tor = CalcTorsionAngle(atom->GetVector(), |
611 |
a->GetVector(), |
612 |
b->GetVector(), |
613 |
c->GetVector()); |
614 |
done = true; |
615 |
} |
616 |
} |
617 |
} |
618 |
|
619 |
OBAPI void qtrfit (double *r,double *f,int size, double u[3][3]) |
620 |
{ |
621 |
register int i; |
622 |
double xxyx, xxyy, xxyz; |
623 |
double xyyx, xyyy, xyyz; |
624 |
double xzyx, xzyy, xzyz; |
625 |
double d[4],q[4]; |
626 |
double c[16],v[16]; |
627 |
double rx,ry,rz,fx,fy,fz; |
628 |
|
629 |
/* generate the upper triangle of the quadratic form matrix */ |
630 |
|
631 |
xxyx = 0.0; |
632 |
xxyy = 0.0; |
633 |
xxyz = 0.0; |
634 |
xyyx = 0.0; |
635 |
xyyy = 0.0; |
636 |
xyyz = 0.0; |
637 |
xzyx = 0.0; |
638 |
xzyy = 0.0; |
639 |
xzyz = 0.0; |
640 |
|
641 |
for (i = 0; i < size; i++) |
642 |
{ |
643 |
rx = r[i*3]; |
644 |
ry = r[i*3+1]; |
645 |
rz = r[i*3+2]; |
646 |
fx = f[i*3]; |
647 |
fy = f[i*3+1]; |
648 |
fz = f[i*3+2]; |
649 |
|
650 |
xxyx += fx * rx; |
651 |
xxyy += fx * ry; |
652 |
xxyz += fx * rz; |
653 |
xyyx += fy * rx; |
654 |
xyyy += fy * ry; |
655 |
xyyz += fy * rz; |
656 |
xzyx += fz * rx; |
657 |
xzyy += fz * ry; |
658 |
xzyz += fz * rz; |
659 |
} |
660 |
|
661 |
c[4*0+0] = xxyx + xyyy + xzyz; |
662 |
|
663 |
c[4*0+1] = xzyy - xyyz; |
664 |
c[4*1+1] = xxyx - xyyy - xzyz; |
665 |
|
666 |
c[4*0+2] = xxyz - xzyx; |
667 |
c[4*1+2] = xxyy + xyyx; |
668 |
c[4*2+2] = xyyy - xzyz - xxyx; |
669 |
|
670 |
c[4*0+3] = xyyx - xxyy; |
671 |
c[4*1+3] = xzyx + xxyz; |
672 |
c[4*2+3] = xyyz + xzyy; |
673 |
c[4*3+3] = xzyz - xxyx - xyyy; |
674 |
|
675 |
/* diagonalize c */ |
676 |
|
677 |
matrix3x3::jacobi(4, c, d, v); |
678 |
|
679 |
/* extract the desired quaternion */ |
680 |
|
681 |
q[0] = v[4*0+3]; |
682 |
q[1] = v[4*1+3]; |
683 |
q[2] = v[4*2+3]; |
684 |
q[3] = v[4*3+3]; |
685 |
|
686 |
/* generate the rotation matrix */ |
687 |
|
688 |
u[0][0] = q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3]; |
689 |
u[1][0] = 2.0 * (q[1] * q[2] - q[0] * q[3]); |
690 |
u[2][0] = 2.0 * (q[1] * q[3] + q[0] * q[2]); |
691 |
|
692 |
u[0][1] = 2.0 * (q[2] * q[1] + q[0] * q[3]); |
693 |
u[1][1] = q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3]; |
694 |
u[2][1] = 2.0 * (q[2] * q[3] - q[0] * q[1]); |
695 |
|
696 |
u[0][2] = 2.0 * (q[3] * q[1] - q[0] * q[2]); |
697 |
u[1][2] = 2.0 * (q[3] * q[2] + q[0] * q[1]); |
698 |
u[2][2] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; |
699 |
} |
700 |
|
701 |
|
702 |
|
703 |
static double Roots[4]; |
704 |
|
705 |
#define ApproxZero 1E-7 |
706 |
#define IsZero(x) ((double)fabs(x)<ApproxZero) |
707 |
#ifndef PI |
708 |
#define PI 3.14159265358979323846226433 |
709 |
#endif |
710 |
#define OneThird (1.0/3.0) |
711 |
#define FourThirdsPI (4.0*PI/3.0) |
712 |
#define TwoThirdsPI (2.0*PI/3.0) |
713 |
|
714 |
#ifdef OLD_RMAT |
715 |
|
716 |
/*FUNCTION */ |
717 |
/* recieves: the co-efficients for a general |
718 |
* equation of degree one. |
719 |
* Ax + B = 0 !! |
720 |
*/ |
721 |
OBAPI static int SolveLinear(double A,double B) |
722 |
{ |
723 |
if( IsZero(A) ) |
724 |
return( 0 ); |
725 |
Roots[0] = -B/A; |
726 |
return( 1 ); |
727 |
} |
728 |
|
729 |
/*FUNCTION */ |
730 |
/* recieves: the co-efficients for a general |
731 |
* linear equation of degree two. |
732 |
* Ax^2 + Bx + C = 0 !! |
733 |
*/ |
734 |
OBAPI static int SolveQuadratic(double A,double B,double C) |
735 |
{ |
736 |
register double Descr, Temp, TwoA; |
737 |
|
738 |
if( IsZero(A) ) |
739 |
return( SolveLinear(B,C) ); |
740 |
|
741 |
TwoA = A+A; |
742 |
Temp = TwoA*C; |
743 |
Descr = B*B - (Temp+Temp); |
744 |
if( Descr<0.0 ) |
745 |
return( 0 ); |
746 |
|
747 |
if( Descr>0.0 ) |
748 |
{ |
749 |
Descr = sqrt(Descr); |
750 |
#ifdef ORIG |
751 |
|
752 |
Roots[0] = (-B-Descr)/TwoA; |
753 |
Roots[1] = (-B+Descr)/TwoA; |
754 |
#else |
755 |
/* W. Press, B. Flannery, S. Teukolsky and W. Vetterling, |
756 |
* "Quadratic and Cubic Equations", Numerical Recipes in C, |
757 |
* Chapter 5, pp. 156-157, 1989. |
758 |
*/ |
759 |
Temp = (B<0.0)? -0.5*(B-Descr) : -0.5*(B+Descr); |
760 |
Roots[0] = Temp/A; |
761 |
Roots[1] = C/Temp; |
762 |
#endif |
763 |
|
764 |
return( 2 ); |
765 |
} |
766 |
Roots[0] = -B/TwoA; |
767 |
return( 1 ); |
768 |
} |
769 |
|
770 |
/*FUNCTION */ |
771 |
/* task: to return the cube root of the |
772 |
* given value taking into account |
773 |
* that it may be negative. |
774 |
*/ |
775 |
OBAPI static double CubeRoot(double X) |
776 |
{ |
777 |
if( X>=0.0 ) |
778 |
{ |
779 |
return pow( X, OneThird ); |
780 |
} |
781 |
else |
782 |
return -pow( -X, OneThird ); |
783 |
} |
784 |
|
785 |
OBAPI static int SolveCubic(double A,double B,double C,double D) |
786 |
{ |
787 |
register double TwoA, ThreeA, BOver3A; |
788 |
register double Temp, POver3, QOver2; |
789 |
register double Desc, Rho, Psi; |
790 |
|
791 |
|
792 |
if( IsZero(A) ) |
793 |
{ |
794 |
return( SolveQuadratic(B,C,D) ); |
795 |
} |
796 |
|
797 |
TwoA = A+A; |
798 |
ThreeA = TwoA+A; |
799 |
BOver3A = B/ThreeA; |
800 |
QOver2 = ((TwoA*BOver3A*BOver3A-C)*BOver3A+D)/TwoA; |
801 |
POver3 = (C-B*BOver3A)/ThreeA; |
802 |
|
803 |
|
804 |
Rho = POver3*POver3*POver3; |
805 |
Desc = QOver2*QOver2 + Rho; |
806 |
|
807 |
if( Desc<=0.0 ) |
808 |
{ |
809 |
Rho = sqrt( -Rho ); |
810 |
Psi = OneThird*acos(-QOver2/Rho); |
811 |
Temp = CubeRoot( Rho ); |
812 |
Temp = Temp+Temp; |
813 |
|
814 |
Roots[0] = Temp*cos( Psi )-BOver3A; |
815 |
Roots[1] = Temp*cos( Psi+TwoThirdsPI )-BOver3A; |
816 |
Roots[2] = Temp*cos( Psi+FourThirdsPI )-BOver3A; |
817 |
return( 3 ); |
818 |
} |
819 |
|
820 |
if( Desc> 0.0 ) |
821 |
{ |
822 |
Temp = CubeRoot( -QOver2 ); |
823 |
Roots[0] = Temp+Temp-BOver3A; |
824 |
Roots[1] = -Temp-BOver3A; |
825 |
return( 2 ); |
826 |
} |
827 |
|
828 |
Desc = sqrt( Desc ); |
829 |
Roots[0] = CubeRoot(Desc-QOver2)-CubeRoot(Desc+QOver2) - BOver3A; |
830 |
|
831 |
return( 1 ); |
832 |
} |
833 |
#endif |
834 |
|
835 |
|
836 |
#define MAX_SWEEPS 50 |
837 |
|
838 |
OBAPI void ob_make_rmat(double a[3][3],double rmat[9]) |
839 |
{ |
840 |
double onorm, dnorm; |
841 |
double b, dma, q, t, c, s,d[3]; |
842 |
double atemp, vtemp, dtemp,v[3][3]; |
843 |
double r1[3],r2[3],v1[3],v2[3],v3[3]; |
844 |
int i, j, k, l; |
845 |
|
846 |
memset((char*)d,'\0',sizeof(double)*3); |
847 |
|
848 |
for (j = 0; j < 3; j++) |
849 |
{ |
850 |
for (i = 0; i < 3; i++) |
851 |
v[i][j] = 0.0; |
852 |
|
853 |
v[j][j] = 1.0; |
854 |
d[j] = a[j][j]; |
855 |
} |
856 |
|
857 |
for (l = 1; l <= MAX_SWEEPS; l++) |
858 |
{ |
859 |
dnorm = 0.0; |
860 |
onorm = 0.0; |
861 |
for (j = 0; j < 3; j++) |
862 |
{ |
863 |
dnorm = dnorm + (double)fabs(d[j]); |
864 |
for (i = 0; i <= j - 1; i++) |
865 |
{ |
866 |
onorm = onorm + (double)fabs(a[i][j]); |
867 |
} |
868 |
} |
869 |
|
870 |
if((onorm/dnorm) <= 1.0e-12) |
871 |
goto Exit_now; |
872 |
for (j = 1; j < 3; j++) |
873 |
{ |
874 |
for (i = 0; i <= j - 1; i++) |
875 |
{ |
876 |
b = a[i][j]; |
877 |
if(fabs(b) > 0.0) |
878 |
{ |
879 |
dma = d[j] - d[i]; |
880 |
if((fabs(dma) + fabs(b)) <= fabs(dma)) |
881 |
t = b / dma; |
882 |
else |
883 |
{ |
884 |
q = 0.5 * dma / b; |
885 |
t = 1.0/((double)fabs(q) + (double)sqrt(1.0+q*q)); |
886 |
if(q < 0.0) |
887 |
t = -t; |
888 |
} |
889 |
c = 1.0/(double)sqrt(t * t + 1.0); |
890 |
s = t * c; |
891 |
a[i][j] = 0.0; |
892 |
for (k = 0; k <= i-1; k++) |
893 |
{ |
894 |
atemp = c * a[k][i] - s * a[k][j]; |
895 |
a[k][j] = s * a[k][i] + c * a[k][j]; |
896 |
a[k][i] = atemp; |
897 |
} |
898 |
for (k = i+1; k <= j-1; k++) |
899 |
{ |
900 |
atemp = c * a[i][k] - s * a[k][j]; |
901 |
a[k][j] = s * a[i][k] + c * a[k][j]; |
902 |
a[i][k] = atemp; |
903 |
} |
904 |
for (k = j+1; k < 3; k++) |
905 |
{ |
906 |
atemp = c * a[i][k] - s * a[j][k]; |
907 |
a[j][k] = s * a[i][k] + c * a[j][k]; |
908 |
a[i][k] = atemp; |
909 |
} |
910 |
for (k = 0; k < 3; k++) |
911 |
{ |
912 |
vtemp = c * v[k][i] - s * v[k][j]; |
913 |
v[k][j] = s * v[k][i] + c * v[k][j]; |
914 |
v[k][i] = vtemp; |
915 |
} |
916 |
dtemp = c*c*d[i] + s*s*d[j] - 2.0*c*s*b; |
917 |
d[j] = s*s*d[i] + c*c*d[j] + 2.0*c*s*b; |
918 |
d[i] = dtemp; |
919 |
} /* end if */ |
920 |
} /* end for i */ |
921 |
} /* end for j */ |
922 |
} /* end for l */ |
923 |
|
924 |
Exit_now: |
925 |
|
926 |
/* max_sweeps = l;*/ |
927 |
|
928 |
for (j = 0; j < 3-1; j++) |
929 |
{ |
930 |
k = j; |
931 |
dtemp = d[k]; |
932 |
for (i = j+1; i < 3; i++) |
933 |
if(d[i] < dtemp) |
934 |
{ |
935 |
k = i; |
936 |
dtemp = d[k]; |
937 |
} |
938 |
|
939 |
if(k > j) |
940 |
{ |
941 |
d[k] = d[j]; |
942 |
d[j] = dtemp; |
943 |
for (i = 0; i < 3 ; i++) |
944 |
{ |
945 |
dtemp = v[i][k]; |
946 |
v[i][k] = v[i][j]; |
947 |
v[i][j] = dtemp; |
948 |
} |
949 |
} |
950 |
} |
951 |
|
952 |
r1[0] = v[0][0]; |
953 |
r1[1] = v[1][0]; |
954 |
r1[2] = v[2][0]; |
955 |
r2[0] = v[0][1]; |
956 |
r2[1] = v[1][1]; |
957 |
r2[2] = v[2][1]; |
958 |
|
959 |
v3[0] = r1[1]*r2[2] - r1[2]*r2[1]; |
960 |
v3[1] = -r1[0]*r2[2] + r1[2]*r2[0]; |
961 |
v3[2] = r1[0]*r2[1] - r1[1]*r2[0]; |
962 |
s = (double)sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); |
963 |
v3[0] /= s; |
964 |
v3[0] /= s; |
965 |
v3[0] /= s; |
966 |
|
967 |
v2[0] = v3[1]*r1[2] - v3[2]*r1[1]; |
968 |
v2[1] = -v3[0]*r1[2] + v3[2]*r1[0]; |
969 |
v2[2] = v3[0]*r1[1] - v3[1]*r1[0]; |
970 |
s = (double)sqrt(v2[0]*v2[0] + v2[1]*v2[1] + v2[2]*v2[2]); |
971 |
v2[0] /= s; |
972 |
v2[0] /= s; |
973 |
v2[0] /= s; |
974 |
|
975 |
v1[0] = v2[1]*v3[2] - v2[2]*v3[1]; |
976 |
v1[1] = -v2[0]*v3[2] + v2[2]*v3[0]; |
977 |
v1[2] = v2[0]*v3[1] - v2[1]*v3[0]; |
978 |
s = (double)sqrt(v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2]); |
979 |
v1[0] /= s; |
980 |
v1[0] /= s; |
981 |
v1[0] /= s; |
982 |
|
983 |
rmat[0] = v1[0]; |
984 |
rmat[1] = v1[1]; |
985 |
rmat[2] = v1[2]; |
986 |
rmat[3] = v2[0]; |
987 |
rmat[4] = v2[1]; |
988 |
rmat[5] = v2[2]; |
989 |
rmat[6] = v3[0]; |
990 |
rmat[7] = v3[1]; |
991 |
rmat[8] = v3[2]; |
992 |
} |
993 |
|
994 |
static int get_roots_3_3(double mat[3][3], double roots[3]) |
995 |
{ |
996 |
double rmat[9]; |
997 |
|
998 |
ob_make_rmat(mat,rmat); |
999 |
|
1000 |
mat[0][0]=rmat[0]; |
1001 |
mat[0][1]=rmat[3]; |
1002 |
mat[0][2]=rmat[6]; |
1003 |
mat[1][0]=rmat[1]; |
1004 |
mat[1][1]=rmat[4]; |
1005 |
mat[1][2]=rmat[7]; |
1006 |
mat[2][0]=rmat[2]; |
1007 |
mat[2][1]=rmat[5]; |
1008 |
mat[2][2]=rmat[8]; |
1009 |
|
1010 |
roots[0]=(double)Roots[0]; |
1011 |
roots[1]=(double)Roots[1]; |
1012 |
roots[2]=(double)Roots[2]; |
1013 |
|
1014 |
return 1; |
1015 |
} |
1016 |
|
1017 |
OBAPI double superimpose(double *r,double *f,int size) |
1018 |
{ |
1019 |
int i,j; |
1020 |
double x,y,z,d2; |
1021 |
double mat[3][3],rmat[3][3],mat2[3][3],roots[3]; |
1022 |
|
1023 |
/* make inertial cross tensor */ |
1024 |
for(i=0;i<3;i++) |
1025 |
for(j=0;j<3;j++) |
1026 |
mat[i][j]=0.0; |
1027 |
|
1028 |
for(i=0;i < size;i++) |
1029 |
{ |
1030 |
mat[0][0]+=r[3*i] *f[3*i]; |
1031 |
mat[1][0]+=r[3*i+1]*f[3*i]; |
1032 |
mat[2][0]+=r[3*i+2]*f[3*i]; |
1033 |
mat[0][1]+=r[3*i] *f[3*i+1]; |
1034 |
mat[1][1]+=r[3*i+1]*f[3*i+1]; |
1035 |
mat[2][1]+=r[3*i+2]*f[3*i+1]; |
1036 |
mat[0][2]+=r[3*i] *f[3*i+2]; |
1037 |
mat[1][2]+=r[3*i+1]*f[3*i+2]; |
1038 |
mat[2][2]+=r[3*i+2]*f[3*i+2]; |
1039 |
} |
1040 |
|
1041 |
d2=mat[0][0]*(mat[1][1]*mat[2][2]-mat[1][2]*mat[2][1]) |
1042 |
-mat[0][1]*(mat[1][0]*mat[2][2]-mat[1][2]*mat[2][0]) |
1043 |
+mat[0][2]*(mat[1][0]*mat[2][1]-mat[1][1]*mat[2][0]); |
1044 |
|
1045 |
|
1046 |
/* square matrix= ((mat transpose) * mat) */ |
1047 |
for(i=0;i<3;i++) |
1048 |
for(j=0;j<3;j++) |
1049 |
{ |
1050 |
x=mat[0][i]*mat[0][j]+mat[1][i]*mat[1][j]+mat[2][i]*mat[2][j]; |
1051 |
mat2[i][j]=mat[i][j]; |
1052 |
rmat[i][j]=x; |
1053 |
} |
1054 |
get_roots_3_3(rmat,roots); |
1055 |
|
1056 |
roots[0]=(roots[0]<0.0001) ? 0.0: (roots[0]); |
1057 |
roots[1]=(roots[1]<0.0001) ? 0.0: (roots[1]); |
1058 |
roots[2]=(roots[2]<0.0001) ? 0.0: (roots[2]); |
1059 |
|
1060 |
/* make sqrt of rmat, store in mat*/ |
1061 |
|
1062 |
roots[0]=roots[0]<0.0001? 0.0: 1.0/(double)sqrt(roots[0]); |
1063 |
roots[1]=roots[1]<0.0001? 0.0: 1.0/(double)sqrt(roots[1]); |
1064 |
roots[2]=roots[2]<0.0001? 0.0: 1.0/(double)sqrt(roots[2]); |
1065 |
|
1066 |
if(d2<0.0) |
1067 |
{ |
1068 |
if( (roots[0]>=roots[1]) && (roots[0]>=roots[2]) ) |
1069 |
roots[0]*=-1.0; |
1070 |
if( (roots[1]>roots[0]) && (roots[1]>=roots[2]) ) |
1071 |
roots[1]*=-1.0; |
1072 |
if( (roots[2]>roots[1]) && (roots[2]>roots[0]) ) |
1073 |
roots[2]*=-1.0; |
1074 |
} |
1075 |
|
1076 |
for(i=0;i<3;i++) |
1077 |
for(j=0;j<3;j++) |
1078 |
mat[i][j]=roots[0]*rmat[i][0]*rmat[j][0]+ |
1079 |
roots[1]*rmat[i][1]*rmat[j][1]+ |
1080 |
roots[2]*rmat[i][2]*rmat[j][2]; |
1081 |
|
1082 |
/* and multiply into original inertial cross matrix, mat2 */ |
1083 |
for(i=0;i<3;i++) |
1084 |
for(j=0;j<3;j++) |
1085 |
rmat[i][j]=mat[0][j]*mat2[i][0]+ |
1086 |
mat[1][j]*mat2[i][1]+ |
1087 |
mat[2][j]*mat2[i][2]; |
1088 |
|
1089 |
/* rotate all coordinates */ |
1090 |
d2 = 0.0; |
1091 |
for(i=0;i<size;i++) |
1092 |
{ |
1093 |
x=f[3*i]*rmat[0][0]+f[3*i+1]*rmat[0][1]+f[3*i+2]*rmat[0][2]; |
1094 |
y=f[3*i]*rmat[1][0]+f[3*i+1]*rmat[1][1]+f[3*i+2]*rmat[1][2]; |
1095 |
z=f[3*i]*rmat[2][0]+f[3*i+1]*rmat[2][1]+f[3*i+2]*rmat[2][2]; |
1096 |
f[3*i ]=x; |
1097 |
f[3*i+1]=y; |
1098 |
f[3*i+2]=z; |
1099 |
|
1100 |
x = r[i*3] - f[i*3]; |
1101 |
y = r[i*3+1] - f[i*3+1]; |
1102 |
z = r[i*3+2] - f[i*3+2]; |
1103 |
d2 += x*x+y*y+z*z; |
1104 |
} |
1105 |
|
1106 |
d2 /= (double) size; |
1107 |
|
1108 |
return((double)sqrt(d2)); |
1109 |
} |
1110 |
|
1111 |
OBAPI void get_rmat(double *rvec,double *r,double *f,int size) |
1112 |
{ |
1113 |
int i,j; |
1114 |
double x,d2; |
1115 |
double mat[3][3],rmat[3][3],mat2[3][3],roots[3]; |
1116 |
|
1117 |
/* make inertial cross tensor */ |
1118 |
for(i=0;i<3;i++) |
1119 |
for(j=0;j<3;j++) |
1120 |
mat[i][j]=0.0; |
1121 |
|
1122 |
for(i=0;i < size;i++) |
1123 |
{ |
1124 |
mat[0][0]+=r[3*i] *f[3*i]; |
1125 |
mat[1][0]+=r[3*i+1]*f[3*i]; |
1126 |
mat[2][0]+=r[3*i+2]*f[3*i]; |
1127 |
mat[0][1]+=r[3*i] *f[3*i+1]; |
1128 |
mat[1][1]+=r[3*i+1]*f[3*i+1]; |
1129 |
mat[2][1]+=r[3*i+2]*f[3*i+1]; |
1130 |
mat[0][2]+=r[3*i] *f[3*i+2]; |
1131 |
mat[1][2]+=r[3*i+1]*f[3*i+2]; |
1132 |
mat[2][2]+=r[3*i+2]*f[3*i+2]; |
1133 |
} |
1134 |
|
1135 |
d2=mat[0][0]*(mat[1][1]*mat[2][2]-mat[1][2]*mat[2][1]) |
1136 |
-mat[0][1]*(mat[1][0]*mat[2][2]-mat[1][2]*mat[2][0]) |
1137 |
+mat[0][2]*(mat[1][0]*mat[2][1]-mat[1][1]*mat[2][0]); |
1138 |
|
1139 |
/* square matrix= ((mat transpose) * mat) */ |
1140 |
for(i=0;i<3;i++) |
1141 |
for(j=0;j<3;j++) |
1142 |
{ |
1143 |
x=mat[0][i]*mat[0][j]+mat[1][i]*mat[1][j]+mat[2][i]*mat[2][j]; |
1144 |
mat2[i][j]=mat[i][j]; |
1145 |
rmat[i][j]=x; |
1146 |
} |
1147 |
get_roots_3_3(rmat,roots); |
1148 |
|
1149 |
roots[0]=(roots[0]<0.0001) ? 0.0: (roots[0]); |
1150 |
roots[1]=(roots[1]<0.0001) ? 0.0: (roots[1]); |
1151 |
roots[2]=(roots[2]<0.0001) ? 0.0: (roots[2]); |
1152 |
|
1153 |
/* make sqrt of rmat, store in mat*/ |
1154 |
|
1155 |
roots[0]=(roots[0]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[0]); |
1156 |
roots[1]=(roots[1]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[1]); |
1157 |
roots[2]=(roots[2]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[2]); |
1158 |
|
1159 |
if(d2<0.0) |
1160 |
{ |
1161 |
if( (roots[0]>=roots[1]) && (roots[0]>=roots[2]) ) |
1162 |
roots[0]*=-1.0; |
1163 |
if( (roots[1]>roots[0]) && (roots[1]>=roots[2]) ) |
1164 |
roots[1]*=-1.0; |
1165 |
if( (roots[2]>roots[1]) && (roots[2]>roots[0]) ) |
1166 |
roots[2]*=-1.0; |
1167 |
} |
1168 |
|
1169 |
for(i=0;i<3;i++) |
1170 |
for(j=0;j<3;j++) |
1171 |
mat[i][j]=roots[0]*rmat[i][0]*rmat[j][0]+ |
1172 |
roots[1]*rmat[i][1]*rmat[j][1]+ |
1173 |
roots[2]*rmat[i][2]*rmat[j][2]; |
1174 |
|
1175 |
/* and multiply into original inertial cross matrix, mat2 */ |
1176 |
for(i=0;i<3;i++) |
1177 |
for(j=0;j<3;j++) |
1178 |
rmat[i][j]=mat[0][j]*mat2[i][0]+ |
1179 |
mat[1][j]*mat2[i][1]+ |
1180 |
mat[2][j]*mat2[i][2]; |
1181 |
|
1182 |
rvec[0] = rmat[0][0]; |
1183 |
rvec[1] = rmat[0][1]; |
1184 |
rvec[2] = rmat[0][2]; |
1185 |
rvec[3] = rmat[1][0]; |
1186 |
rvec[4] = rmat[1][1]; |
1187 |
rvec[5] = rmat[1][2]; |
1188 |
rvec[6] = rmat[2][0]; |
1189 |
rvec[7] = rmat[2][1]; |
1190 |
rvec[8] = rmat[2][2]; |
1191 |
} |
1192 |
|
1193 |
} // end namespace OpenBabel |
1194 |
|
1195 |
//! \file obutil.cpp |
1196 |
//! \brief Various utility methods. |