| 1 | 
tim | 
741 | 
/********************************************************************** | 
| 2 | 
  | 
  | 
matrix.cpp - Operations on arbitrary-sized matrix. | 
| 3 | 
  | 
  | 
  | 
| 4 | 
  | 
  | 
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. | 
| 5 | 
  | 
  | 
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison | 
| 6 | 
  | 
  | 
  | 
| 7 | 
  | 
  | 
This file is part of the Open Babel project. | 
| 8 | 
  | 
  | 
For more information, see <http://openbabel.sourceforge.net/> | 
| 9 | 
  | 
  | 
  | 
| 10 | 
  | 
  | 
This program is free software; you can redistribute it and/or modify | 
| 11 | 
  | 
  | 
it under the terms of the GNU General Public License as published by | 
| 12 | 
  | 
  | 
the Free Software Foundation version 2 of the License. | 
| 13 | 
  | 
  | 
  | 
| 14 | 
  | 
  | 
This program is distributed in the hope that it will be useful, | 
| 15 | 
  | 
  | 
but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 16 | 
  | 
  | 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 17 | 
  | 
  | 
GNU General Public License for more details. | 
| 18 | 
  | 
  | 
***********************************************************************/ | 
| 19 | 
  | 
  | 
 | 
| 20 | 
  | 
  | 
#include "matrix.hpp" | 
| 21 | 
  | 
  | 
#include "vector3.hpp" | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
using namespace std; | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
namespace OpenBabel | 
| 26 | 
  | 
  | 
{ | 
| 27 | 
  | 
  | 
 | 
| 28 | 
  | 
  | 
void print_matrix(std::vector<std::vector<double> > &m) | 
| 29 | 
  | 
  | 
{ | 
| 30 | 
  | 
  | 
    unsigned int i,j; | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
    for (i = 0; i < m.size(); i++) | 
| 33 | 
  | 
  | 
    { | 
| 34 | 
  | 
  | 
        for (j = 0; j < m[i].size(); j++) | 
| 35 | 
  | 
  | 
            printf("%5.2f",m[i][j]); | 
| 36 | 
  | 
  | 
        printf("\n"); | 
| 37 | 
  | 
  | 
    } | 
| 38 | 
  | 
  | 
} | 
| 39 | 
  | 
  | 
 | 
| 40 | 
  | 
  | 
void print_matrix_f(double *m, int rows, int cols) | 
| 41 | 
  | 
  | 
{ | 
| 42 | 
  | 
  | 
    int i,j,idx; | 
| 43 | 
  | 
  | 
 | 
| 44 | 
  | 
  | 
    for (i = 0; i < rows; i++) | 
| 45 | 
  | 
  | 
    { | 
| 46 | 
  | 
  | 
        idx = i * cols; | 
| 47 | 
  | 
  | 
        for (j = 0; j < cols; j++) | 
| 48 | 
  | 
  | 
            printf("%5.2f",m[idx+j]); | 
| 49 | 
  | 
  | 
        printf("\n"); | 
| 50 | 
  | 
  | 
    } | 
| 51 | 
  | 
  | 
} | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
void print_matrix_ff(double **m, int rows, int cols) | 
| 54 | 
  | 
  | 
{ | 
| 55 | 
  | 
  | 
    int i,j; | 
| 56 | 
  | 
  | 
 | 
| 57 | 
  | 
  | 
    for (i = 0; i < rows; i++) | 
| 58 | 
  | 
  | 
    { | 
| 59 | 
  | 
  | 
        for (j = 0; j < cols; j++) | 
| 60 | 
  | 
  | 
            printf("%5.2f",m[i][j]); | 
| 61 | 
  | 
  | 
        printf("\n"); | 
| 62 | 
  | 
  | 
    } | 
| 63 | 
  | 
  | 
} | 
| 64 | 
  | 
  | 
 | 
| 65 | 
  | 
  | 
bool mult_matrix(std::vector<std::vector<double> > &c, | 
| 66 | 
  | 
  | 
                 std::vector<std::vector<double> > &a, | 
| 67 | 
  | 
  | 
                 std::vector<std::vector<double> > &b) | 
| 68 | 
  | 
  | 
{ | 
| 69 | 
  | 
  | 
    unsigned int i,j,k; | 
| 70 | 
  | 
  | 
 | 
| 71 | 
  | 
  | 
    if (a.size() != b.size()) | 
| 72 | 
  | 
  | 
        return(false); | 
| 73 | 
  | 
  | 
 | 
| 74 | 
  | 
  | 
    c.resize(a.size()); | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
    for (i = 0; i < a.size(); i++) | 
| 77 | 
  | 
  | 
    { | 
| 78 | 
  | 
  | 
        c[i].resize(b[i].size()); | 
| 79 | 
  | 
  | 
        for (j = 0; j < b[i].size(); j++) | 
| 80 | 
  | 
  | 
        { | 
| 81 | 
  | 
  | 
            c[i][j] = 0.0; | 
| 82 | 
  | 
  | 
            for (k = 0; k < a[i].size(); k++) | 
| 83 | 
  | 
  | 
                c[i][j] = c[i][j] + a[i][k] * b[k][j]; | 
| 84 | 
  | 
  | 
        } | 
| 85 | 
  | 
  | 
    } | 
| 86 | 
  | 
  | 
 | 
| 87 | 
  | 
  | 
    return(true); | 
| 88 | 
  | 
  | 
} | 
| 89 | 
  | 
  | 
 | 
| 90 | 
  | 
  | 
bool mult_matrix_f(double *c, double *a, double *b, int rows, int cols) | 
| 91 | 
  | 
  | 
{ | 
| 92 | 
  | 
  | 
    int i,j,k,idx; | 
| 93 | 
  | 
  | 
 | 
| 94 | 
  | 
  | 
    for ( i = 0 ; i < rows ; i++ ) | 
| 95 | 
  | 
  | 
    { | 
| 96 | 
  | 
  | 
        idx = i * cols; | 
| 97 | 
  | 
  | 
        for ( j = 0; j < cols ; j++ ) | 
| 98 | 
  | 
  | 
        { | 
| 99 | 
  | 
  | 
            c[idx+j] = 0.0; | 
| 100 | 
  | 
  | 
            for ( k = 0; k < cols ; k++ ) | 
| 101 | 
  | 
  | 
                c[idx+j] = c[idx+j] + a[idx+k] * b[(k*cols)+j]; | 
| 102 | 
  | 
  | 
        } | 
| 103 | 
  | 
  | 
    } | 
| 104 | 
  | 
  | 
 | 
| 105 | 
  | 
  | 
    return(true); | 
| 106 | 
  | 
  | 
} | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
bool mult_matrix_ff(double **c, double **a, double **b, int rows, int cols) | 
| 109 | 
  | 
  | 
{ | 
| 110 | 
  | 
  | 
    int i,j,k; | 
| 111 | 
  | 
  | 
 | 
| 112 | 
  | 
  | 
    for ( i = 0 ; i < rows ; i++ ) | 
| 113 | 
  | 
  | 
        for ( j = 0; j < cols ; j++ ) | 
| 114 | 
  | 
  | 
        { | 
| 115 | 
  | 
  | 
            c[i][j] = 0.0; | 
| 116 | 
  | 
  | 
            for ( k = 0; k < cols ; k++ ) | 
| 117 | 
  | 
  | 
                c[i][j] = c[i][j] + a[i][k] * b[k][j]; | 
| 118 | 
  | 
  | 
        } | 
| 119 | 
  | 
  | 
 | 
| 120 | 
  | 
  | 
    return(true); | 
| 121 | 
  | 
  | 
} | 
| 122 | 
  | 
  | 
 | 
| 123 | 
  | 
  | 
bool invert_matrix(std::vector<std::vector<double> > &mat, double &det) | 
| 124 | 
  | 
  | 
{ | 
| 125 | 
  | 
  | 
    int  i, j, k, m, n, row = 0, col = 0; | 
| 126 | 
  | 
  | 
    double tempo, big, pvt; | 
| 127 | 
  | 
  | 
 | 
| 128 | 
  | 
  | 
    vector<int> pvt_ind; | 
| 129 | 
  | 
  | 
    vector<vector<int> > index; | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
    int cols = mat[0].size(); | 
| 132 | 
  | 
  | 
    int rows = mat.size(); | 
| 133 | 
  | 
  | 
 | 
| 134 | 
  | 
  | 
    pvt_ind.resize(mat[0].size()); | 
| 135 | 
  | 
  | 
 | 
| 136 | 
  | 
  | 
    index.resize(mat.size()); | 
| 137 | 
  | 
  | 
    for (i = 0; (unsigned)i < mat.size(); i++) | 
| 138 | 
  | 
  | 
        index[i].resize(2); | 
| 139 | 
  | 
  | 
 | 
| 140 | 
  | 
  | 
    // make sure we have a square matrix | 
| 141 | 
  | 
  | 
    // #rows == #cols; | 
| 142 | 
  | 
  | 
    if (cols != rows) | 
| 143 | 
  | 
  | 
    { | 
| 144 | 
  | 
  | 
        det = 0.0; | 
| 145 | 
  | 
  | 
        return(false); | 
| 146 | 
  | 
  | 
    } | 
| 147 | 
  | 
  | 
 | 
| 148 | 
  | 
  | 
    det = 1.0; | 
| 149 | 
  | 
  | 
 | 
| 150 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 151 | 
  | 
  | 
        pvt_ind[i] = rows+1; | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 154 | 
  | 
  | 
    { | 
| 155 | 
  | 
  | 
        big = 0.0; | 
| 156 | 
  | 
  | 
        for (j = 0; j < cols; j++) | 
| 157 | 
  | 
  | 
        { | 
| 158 | 
  | 
  | 
            if (pvt_ind[j] != 0) | 
| 159 | 
  | 
  | 
                for (k = 0; k < cols; k++) | 
| 160 | 
  | 
  | 
                { | 
| 161 | 
  | 
  | 
                    if (fabs(big) < fabs(mat[j][k])) | 
| 162 | 
  | 
  | 
                    { | 
| 163 | 
  | 
  | 
                        row = j; | 
| 164 | 
  | 
  | 
                        col = k; | 
| 165 | 
  | 
  | 
                        big = mat[j][k]; | 
| 166 | 
  | 
  | 
                    } | 
| 167 | 
  | 
  | 
                } | 
| 168 | 
  | 
  | 
        } | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
        pvt_ind[col]++; | 
| 171 | 
  | 
  | 
        if (row != col) | 
| 172 | 
  | 
  | 
        { | 
| 173 | 
  | 
  | 
            det = -det; | 
| 174 | 
  | 
  | 
            for (m = 0; m < cols; m++) | 
| 175 | 
  | 
  | 
            { | 
| 176 | 
  | 
  | 
                tempo = mat[row][m]; | 
| 177 | 
  | 
  | 
                mat[row][m] = mat[col][m]; | 
| 178 | 
  | 
  | 
                mat[col][m] = tempo; | 
| 179 | 
  | 
  | 
            } | 
| 180 | 
  | 
  | 
        } | 
| 181 | 
  | 
  | 
 | 
| 182 | 
  | 
  | 
        index[i][0] = row; | 
| 183 | 
  | 
  | 
        index[i][1] = col; | 
| 184 | 
  | 
  | 
        pvt = mat[col][col]; | 
| 185 | 
  | 
  | 
        det *= pvt; | 
| 186 | 
  | 
  | 
 | 
| 187 | 
  | 
  | 
        mat[col][col] = 1.0; | 
| 188 | 
  | 
  | 
 | 
| 189 | 
  | 
  | 
        for (m = 0; m < cols; m++) | 
| 190 | 
  | 
  | 
            mat[col][m] /= pvt; | 
| 191 | 
  | 
  | 
 | 
| 192 | 
  | 
  | 
        for (n = 0; n < cols; n++) | 
| 193 | 
  | 
  | 
            if (n != col) | 
| 194 | 
  | 
  | 
            { | 
| 195 | 
  | 
  | 
                tempo = mat[n][col]; | 
| 196 | 
  | 
  | 
                mat[n][col] = 0.0; | 
| 197 | 
  | 
  | 
                for (m = 0; m < cols; m++) | 
| 198 | 
  | 
  | 
                    mat[n][m] -= mat[col][m] * tempo; | 
| 199 | 
  | 
  | 
            } | 
| 200 | 
  | 
  | 
    } | 
| 201 | 
  | 
  | 
 | 
| 202 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 203 | 
  | 
  | 
    { | 
| 204 | 
  | 
  | 
        m = cols - 1; | 
| 205 | 
  | 
  | 
        if (index[m][0] != index[m][1]) | 
| 206 | 
  | 
  | 
        { | 
| 207 | 
  | 
  | 
            row = index[m][0]; | 
| 208 | 
  | 
  | 
            col = index[m][1]; | 
| 209 | 
  | 
  | 
            for (k = 0; k < cols; k++) | 
| 210 | 
  | 
  | 
            { | 
| 211 | 
  | 
  | 
                tempo = mat[k][row]; | 
| 212 | 
  | 
  | 
                mat[k][row] = mat[k][col]; | 
| 213 | 
  | 
  | 
                mat[k][col] = tempo; | 
| 214 | 
  | 
  | 
            } | 
| 215 | 
  | 
  | 
        } | 
| 216 | 
  | 
  | 
    } | 
| 217 | 
  | 
  | 
 | 
| 218 | 
  | 
  | 
    return(true); | 
| 219 | 
  | 
  | 
} | 
| 220 | 
  | 
  | 
 | 
| 221 | 
  | 
  | 
bool invert_matrix_f(double *mat, double &det, int rows, int cols) | 
| 222 | 
  | 
  | 
{ | 
| 223 | 
  | 
  | 
    int  i, j, k, m, n, row = 0, col = 0, idx1, idx2; | 
| 224 | 
  | 
  | 
    double tempo, big, pvt; | 
| 225 | 
  | 
  | 
 | 
| 226 | 
  | 
  | 
    vector<int> pvt_ind; | 
| 227 | 
  | 
  | 
    vector<vector<int> > index; | 
| 228 | 
  | 
  | 
 | 
| 229 | 
  | 
  | 
    pvt_ind.resize(cols); | 
| 230 | 
  | 
  | 
    index.resize(rows); | 
| 231 | 
  | 
  | 
 | 
| 232 | 
  | 
  | 
    for (i = 0; i < rows; i++) | 
| 233 | 
  | 
  | 
        index[i].resize(2); | 
| 234 | 
  | 
  | 
 | 
| 235 | 
  | 
  | 
    // make sure we have a square matrix | 
| 236 | 
  | 
  | 
    // #rows == #cols; | 
| 237 | 
  | 
  | 
    if (cols != rows) | 
| 238 | 
  | 
  | 
    { | 
| 239 | 
  | 
  | 
        det = 0.0; | 
| 240 | 
  | 
  | 
        return(false); | 
| 241 | 
  | 
  | 
    } | 
| 242 | 
  | 
  | 
 | 
| 243 | 
  | 
  | 
    det = 1.0; | 
| 244 | 
  | 
  | 
 | 
| 245 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 246 | 
  | 
  | 
        pvt_ind[i] = rows+1; | 
| 247 | 
  | 
  | 
 | 
| 248 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 249 | 
  | 
  | 
    { | 
| 250 | 
  | 
  | 
        big = 0.0; | 
| 251 | 
  | 
  | 
        for (j = 0; j < cols; j++) | 
| 252 | 
  | 
  | 
        { | 
| 253 | 
  | 
  | 
            if (pvt_ind[j] != 0) | 
| 254 | 
  | 
  | 
            { | 
| 255 | 
  | 
  | 
                idx1 = (j * cols); | 
| 256 | 
  | 
  | 
                for (k = 0; k < cols; k++) | 
| 257 | 
  | 
  | 
                { | 
| 258 | 
  | 
  | 
                    idx2 = idx1 + k; | 
| 259 | 
  | 
  | 
                    if (fabs(big) < fabs(mat[idx2])) | 
| 260 | 
  | 
  | 
                    { | 
| 261 | 
  | 
  | 
                        row = j; | 
| 262 | 
  | 
  | 
                        col = k; | 
| 263 | 
  | 
  | 
                        big = mat[idx2]; | 
| 264 | 
  | 
  | 
                    } | 
| 265 | 
  | 
  | 
                } | 
| 266 | 
  | 
  | 
            } | 
| 267 | 
  | 
  | 
        } | 
| 268 | 
  | 
  | 
 | 
| 269 | 
  | 
  | 
        pvt_ind[col]++; | 
| 270 | 
  | 
  | 
        if (row != col) | 
| 271 | 
  | 
  | 
        { | 
| 272 | 
  | 
  | 
            det  = -det; | 
| 273 | 
  | 
  | 
            idx1 = row * cols; | 
| 274 | 
  | 
  | 
            idx2 = col * cols; | 
| 275 | 
  | 
  | 
            for (m = 0; m < cols; m++) | 
| 276 | 
  | 
  | 
            { | 
| 277 | 
  | 
  | 
                tempo = mat[idx1+m]; | 
| 278 | 
  | 
  | 
                mat[idx1+m] = mat[idx2+m]; | 
| 279 | 
  | 
  | 
                mat[idx2+m] = tempo; | 
| 280 | 
  | 
  | 
            } | 
| 281 | 
  | 
  | 
        } | 
| 282 | 
  | 
  | 
 | 
| 283 | 
  | 
  | 
        index[i][0] = row; | 
| 284 | 
  | 
  | 
        index[i][1] = col; | 
| 285 | 
  | 
  | 
 | 
| 286 | 
  | 
  | 
        idx1 = (col*cols); | 
| 287 | 
  | 
  | 
        pvt  = mat[idx1+col]; | 
| 288 | 
  | 
  | 
        det *= pvt; | 
| 289 | 
  | 
  | 
 | 
| 290 | 
  | 
  | 
        mat[idx1+col] = 1.0; | 
| 291 | 
  | 
  | 
 | 
| 292 | 
  | 
  | 
        for (m = 0; m < cols; m++) | 
| 293 | 
  | 
  | 
            mat[idx1+m] /= pvt; | 
| 294 | 
  | 
  | 
 | 
| 295 | 
  | 
  | 
        for (n = 0; n < cols; n++) | 
| 296 | 
  | 
  | 
            if (n != col) | 
| 297 | 
  | 
  | 
            { | 
| 298 | 
  | 
  | 
                idx1  = n * cols; | 
| 299 | 
  | 
  | 
                tempo = mat[idx1 + col]; | 
| 300 | 
  | 
  | 
                mat[idx1 + col] = 0.0; | 
| 301 | 
  | 
  | 
 | 
| 302 | 
  | 
  | 
                idx2 = col * cols; | 
| 303 | 
  | 
  | 
                for (m = 0; m < cols; m++) | 
| 304 | 
  | 
  | 
                    mat[idx1 + m] -= mat[idx2 + m] * tempo; | 
| 305 | 
  | 
  | 
            } | 
| 306 | 
  | 
  | 
    } | 
| 307 | 
  | 
  | 
 | 
| 308 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 309 | 
  | 
  | 
    { | 
| 310 | 
  | 
  | 
        m = cols - 1; | 
| 311 | 
  | 
  | 
        if (index[m][0] != index[m][1]) | 
| 312 | 
  | 
  | 
        { | 
| 313 | 
  | 
  | 
            row = index[m][0]; | 
| 314 | 
  | 
  | 
            col = index[m][1]; | 
| 315 | 
  | 
  | 
            for (k = 0; k < cols; k++) | 
| 316 | 
  | 
  | 
            { | 
| 317 | 
  | 
  | 
                idx1  = (k * cols); | 
| 318 | 
  | 
  | 
                idx2  = idx1 + col; | 
| 319 | 
  | 
  | 
                idx1 += row; | 
| 320 | 
  | 
  | 
 | 
| 321 | 
  | 
  | 
                tempo = mat[idx1]; | 
| 322 | 
  | 
  | 
                mat[idx1] = mat[idx2]; | 
| 323 | 
  | 
  | 
                mat[idx2] = tempo; | 
| 324 | 
  | 
  | 
            } | 
| 325 | 
  | 
  | 
        } | 
| 326 | 
  | 
  | 
    } | 
| 327 | 
  | 
  | 
 | 
| 328 | 
  | 
  | 
    return(true); | 
| 329 | 
  | 
  | 
} | 
| 330 | 
  | 
  | 
 | 
| 331 | 
  | 
  | 
bool invert_matrix_ff(double **mat, double &det, int rows, int cols) | 
| 332 | 
  | 
  | 
{ | 
| 333 | 
  | 
  | 
    int  i, j, k, m, n, row = 0, col = 0; | 
| 334 | 
  | 
  | 
    double tempo, big, pvt; | 
| 335 | 
  | 
  | 
 | 
| 336 | 
  | 
  | 
    vector<int> pvt_ind; | 
| 337 | 
  | 
  | 
    vector<vector<int> > index; | 
| 338 | 
  | 
  | 
 | 
| 339 | 
  | 
  | 
    pvt_ind.resize(cols); | 
| 340 | 
  | 
  | 
    index.resize(rows); | 
| 341 | 
  | 
  | 
 | 
| 342 | 
  | 
  | 
    for (i = 0; i < rows; i++) | 
| 343 | 
  | 
  | 
        index[i].resize(2); | 
| 344 | 
  | 
  | 
 | 
| 345 | 
  | 
  | 
    // make sure we have a square matrix | 
| 346 | 
  | 
  | 
    // #rows == #cols; | 
| 347 | 
  | 
  | 
    if (cols != rows) | 
| 348 | 
  | 
  | 
    { | 
| 349 | 
  | 
  | 
        det = 0.0; | 
| 350 | 
  | 
  | 
        return(false); | 
| 351 | 
  | 
  | 
    } | 
| 352 | 
  | 
  | 
 | 
| 353 | 
  | 
  | 
    det = 1.0; | 
| 354 | 
  | 
  | 
 | 
| 355 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 356 | 
  | 
  | 
        pvt_ind[i] = rows+1; | 
| 357 | 
  | 
  | 
 | 
| 358 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 359 | 
  | 
  | 
    { | 
| 360 | 
  | 
  | 
        big = 0.0; | 
| 361 | 
  | 
  | 
        for (j = 0; j < cols; j++) | 
| 362 | 
  | 
  | 
        { | 
| 363 | 
  | 
  | 
            if (pvt_ind[j] != 0) | 
| 364 | 
  | 
  | 
                for (k = 0; k < cols; k++) | 
| 365 | 
  | 
  | 
                { | 
| 366 | 
  | 
  | 
                    if (fabs(big) < fabs(mat[j][k])) | 
| 367 | 
  | 
  | 
                    { | 
| 368 | 
  | 
  | 
                        row = j; | 
| 369 | 
  | 
  | 
                        col = k; | 
| 370 | 
  | 
  | 
                        big = mat[j][k]; | 
| 371 | 
  | 
  | 
                    } | 
| 372 | 
  | 
  | 
                } | 
| 373 | 
  | 
  | 
        } | 
| 374 | 
  | 
  | 
 | 
| 375 | 
  | 
  | 
        pvt_ind[col]++; | 
| 376 | 
  | 
  | 
        if (row != col) | 
| 377 | 
  | 
  | 
        { | 
| 378 | 
  | 
  | 
            det = -det; | 
| 379 | 
  | 
  | 
            for (m = 0; m < cols; m++) | 
| 380 | 
  | 
  | 
            { | 
| 381 | 
  | 
  | 
                tempo = mat[row][m]; | 
| 382 | 
  | 
  | 
                mat[row][m] = mat[col][m]; | 
| 383 | 
  | 
  | 
                mat[col][m] = tempo; | 
| 384 | 
  | 
  | 
            } | 
| 385 | 
  | 
  | 
        } | 
| 386 | 
  | 
  | 
 | 
| 387 | 
  | 
  | 
        index[i][0] = row; | 
| 388 | 
  | 
  | 
        index[i][1] = col; | 
| 389 | 
  | 
  | 
        pvt = mat[col][col]; | 
| 390 | 
  | 
  | 
        det *= pvt; | 
| 391 | 
  | 
  | 
 | 
| 392 | 
  | 
  | 
        mat[col][col] = 1.0; | 
| 393 | 
  | 
  | 
 | 
| 394 | 
  | 
  | 
        for (m = 0; m < cols; m++) | 
| 395 | 
  | 
  | 
            mat[col][m] /= pvt; | 
| 396 | 
  | 
  | 
 | 
| 397 | 
  | 
  | 
        for (n = 0; n < cols; n++) | 
| 398 | 
  | 
  | 
            if (n != col) | 
| 399 | 
  | 
  | 
            { | 
| 400 | 
  | 
  | 
                tempo = mat[n][col]; | 
| 401 | 
  | 
  | 
                mat[n][col] = 0.0; | 
| 402 | 
  | 
  | 
                for (m = 0; m < cols; m++) | 
| 403 | 
  | 
  | 
                    mat[n][m] -= mat[col][m] * tempo; | 
| 404 | 
  | 
  | 
            } | 
| 405 | 
  | 
  | 
    } | 
| 406 | 
  | 
  | 
 | 
| 407 | 
  | 
  | 
    for (i = 0; i < cols; i++) | 
| 408 | 
  | 
  | 
    { | 
| 409 | 
  | 
  | 
        m = cols - 1; | 
| 410 | 
  | 
  | 
        if (index[m][0] != index[m][1]) | 
| 411 | 
  | 
  | 
        { | 
| 412 | 
  | 
  | 
            row = index[m][0]; | 
| 413 | 
  | 
  | 
            col = index[m][1]; | 
| 414 | 
  | 
  | 
            for (k = 0; k < cols; k++) | 
| 415 | 
  | 
  | 
            { | 
| 416 | 
  | 
  | 
                tempo = mat[k][row]; | 
| 417 | 
  | 
  | 
                mat[k][row] = mat[k][col]; | 
| 418 | 
  | 
  | 
                mat[k][col] = tempo; | 
| 419 | 
  | 
  | 
            } | 
| 420 | 
  | 
  | 
        } | 
| 421 | 
  | 
  | 
    } | 
| 422 | 
  | 
  | 
 | 
| 423 | 
  | 
  | 
    return(true); | 
| 424 | 
  | 
  | 
} | 
| 425 | 
  | 
  | 
 | 
| 426 | 
  | 
  | 
bool convert_matrix_f(std::vector<std::vector<double> > &src, double *dst) | 
| 427 | 
  | 
  | 
{ | 
| 428 | 
  | 
  | 
  unsigned int i, j, idx = 0; | 
| 429 | 
  | 
  | 
 | 
| 430 | 
  | 
  | 
    for ( i = 0 ; i < src.size() ; i++ ) | 
| 431 | 
  | 
  | 
      for ( j = 0 ; j < src[i].size() ; j++ ) | 
| 432 | 
  | 
  | 
            dst[idx++] = src[i][j]; | 
| 433 | 
  | 
  | 
 | 
| 434 | 
  | 
  | 
    return true; | 
| 435 | 
  | 
  | 
} | 
| 436 | 
  | 
  | 
 | 
| 437 | 
  | 
  | 
bool convert_matrix_ff(std::vector<std::vector<double> > &src, double **dst) | 
| 438 | 
  | 
  | 
{ | 
| 439 | 
  | 
  | 
    unsigned int i, j; | 
| 440 | 
  | 
  | 
 | 
| 441 | 
  | 
  | 
    for ( i = 0 ; i < src.size() ; i++ ) | 
| 442 | 
  | 
  | 
        for ( j = 0 ; j < src[i].size() ; j++ ) | 
| 443 | 
  | 
  | 
            dst[i][j] = src[i][j]; | 
| 444 | 
  | 
  | 
 | 
| 445 | 
  | 
  | 
    return true; | 
| 446 | 
  | 
  | 
} | 
| 447 | 
  | 
  | 
 | 
| 448 | 
  | 
  | 
bool convert_matrix_f(double *src, std::vector<std::vector<double> > &dst, | 
| 449 | 
  | 
  | 
                      int rows, int cols) | 
| 450 | 
  | 
  | 
{ | 
| 451 | 
  | 
  | 
    int i, j, idx; | 
| 452 | 
  | 
  | 
 | 
| 453 | 
  | 
  | 
    dst.resize(rows); | 
| 454 | 
  | 
  | 
    for ( i = 0 ; i < rows ; i++ ) | 
| 455 | 
  | 
  | 
    { | 
| 456 | 
  | 
  | 
        idx = i * cols; | 
| 457 | 
  | 
  | 
        dst[i].resize(cols); | 
| 458 | 
  | 
  | 
        for ( j = 0 ; j < cols ; j++ ) | 
| 459 | 
  | 
  | 
            dst[i][j] = src[idx+j]; | 
| 460 | 
  | 
  | 
    } | 
| 461 | 
  | 
  | 
 | 
| 462 | 
  | 
  | 
    return true; | 
| 463 | 
  | 
  | 
} | 
| 464 | 
  | 
  | 
 | 
| 465 | 
  | 
  | 
bool convert_matrix_ff(double **src, std::vector<std::vector<double> > &dst,  | 
| 466 | 
  | 
  | 
                       int rows, int cols) | 
| 467 | 
  | 
  | 
{ | 
| 468 | 
  | 
  | 
    int i, j; | 
| 469 | 
  | 
  | 
 | 
| 470 | 
  | 
  | 
    dst.resize(rows); | 
| 471 | 
  | 
  | 
    for ( i = 0 ; i < rows ; i++ ) | 
| 472 | 
  | 
  | 
    { | 
| 473 | 
  | 
  | 
        dst[i].resize(cols); | 
| 474 | 
  | 
  | 
        for ( j = 0 ; j < cols ; j++ ) | 
| 475 | 
  | 
  | 
            dst[i][j] = src[i][j]; | 
| 476 | 
  | 
  | 
    } | 
| 477 | 
  | 
  | 
 | 
| 478 | 
  | 
  | 
    return true; | 
| 479 | 
  | 
  | 
} | 
| 480 | 
  | 
  | 
 | 
| 481 | 
  | 
  | 
bool convert_matrix_f_ff(double *src, double **dst, int rows, int cols) | 
| 482 | 
  | 
  | 
{ | 
| 483 | 
  | 
  | 
    int i, j, idx; | 
| 484 | 
  | 
  | 
 | 
| 485 | 
  | 
  | 
    for ( i = 0 ; i < rows ; i++ ) | 
| 486 | 
  | 
  | 
    { | 
| 487 | 
  | 
  | 
        idx = i * cols; | 
| 488 | 
  | 
  | 
        for ( j = 0 ; j < cols ; j++ ) | 
| 489 | 
  | 
  | 
            dst[i][j] = src[idx+j]; | 
| 490 | 
  | 
  | 
    } | 
| 491 | 
  | 
  | 
 | 
| 492 | 
  | 
  | 
    return true; | 
| 493 | 
  | 
  | 
} | 
| 494 | 
  | 
  | 
 | 
| 495 | 
  | 
  | 
bool convert_matrix_ff_f(double **src, double *dst, int rows, int cols) | 
| 496 | 
  | 
  | 
{ | 
| 497 | 
  | 
  | 
    int i, j, idx; | 
| 498 | 
  | 
  | 
 | 
| 499 | 
  | 
  | 
    for ( i = 0 ; i < rows ; i++ ) | 
| 500 | 
  | 
  | 
    { | 
| 501 | 
  | 
  | 
        idx = i * cols; | 
| 502 | 
  | 
  | 
        for ( j = 0 ; j < cols ; j++ ) | 
| 503 | 
  | 
  | 
            dst[idx+j] = src[i][j]; | 
| 504 | 
  | 
  | 
    } | 
| 505 | 
  | 
  | 
 | 
| 506 | 
  | 
  | 
    return true; | 
| 507 | 
  | 
  | 
} | 
| 508 | 
  | 
  | 
 | 
| 509 | 
  | 
  | 
} // end namespace OpenBabel | 
| 510 | 
  | 
  | 
 | 
| 511 | 
  | 
  | 
//! \file matrix.cpp | 
| 512 | 
  | 
  | 
//! \brief Operations on arbitrary-sized matrix. | 
| 513 | 
  | 
  | 
 |