1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Sticky.hpp" |
48 |
#include "nonbonded/LJ.hpp" |
49 |
#include "types/StickyAdapter.hpp" |
50 |
#include "utils/simError.h" |
51 |
|
52 |
using namespace std; |
53 |
namespace OpenMD { |
54 |
|
55 |
Sticky::Sticky() : initialized_(false), forceField_(NULL), name_("Sticky") {} |
56 |
|
57 |
void Sticky::initialize() { |
58 |
Stypes.clear(); |
59 |
Stids.clear(); |
60 |
MixingMap.clear(); |
61 |
nSticky_=0; |
62 |
|
63 |
Stids.resize( forceField_->getNAtomType(), -1); |
64 |
|
65 |
// Sticky handles all of the Sticky-Sticky interactions |
66 |
|
67 |
set<AtomType*>::iterator at; |
68 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
69 |
if ((*at)->isSticky()) nSticky_++; |
70 |
} |
71 |
|
72 |
MixingMap.resize(nSticky_); |
73 |
|
74 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
75 |
if ((*at)->isSticky()) addType( *at ); |
76 |
} |
77 |
|
78 |
initialized_ = true; |
79 |
} |
80 |
|
81 |
void Sticky::addType(AtomType* atomType){ |
82 |
StickyAdapter sticky1 = StickyAdapter(atomType); |
83 |
|
84 |
// add it to the map: |
85 |
|
86 |
int atid = atomType->getIdent(); |
87 |
int stid = Stypes.size(); |
88 |
|
89 |
pair<set<int>::iterator,bool> ret; |
90 |
ret = Stypes.insert( atid ); |
91 |
if (ret.second == false) { |
92 |
sprintf( painCave.errMsg, |
93 |
"Sticky already had a previous entry with ident %d\n", |
94 |
atid) ; |
95 |
painCave.severity = OPENMD_INFO; |
96 |
painCave.isFatal = 0; |
97 |
simError(); |
98 |
} |
99 |
|
100 |
Stids[atid] = stid; |
101 |
MixingMap[stid].resize( nSticky_ ); |
102 |
|
103 |
|
104 |
// Now, iterate over all known types and add to the mixing map: |
105 |
|
106 |
std::set<int>::iterator it; |
107 |
for( it = Stypes.begin(); it != Stypes.end(); ++it) { |
108 |
|
109 |
|
110 |
int stid2 = Stids[ (*it) ]; |
111 |
AtomType* atype2 = forceField_->getAtomType( (*it) ); |
112 |
StickyAdapter sticky2 = StickyAdapter(atype2); |
113 |
|
114 |
StickyInteractionData mixer; |
115 |
|
116 |
// Mixing two different sticky types is silly, but if you want 2 |
117 |
// sticky types in your simulation, we'll let you do it with the |
118 |
// Lorentz- Berthelot mixing rules (which happen to do the right thing |
119 |
// when atomType and atype2 happen to be the same. |
120 |
|
121 |
mixer.rl = 0.5 * ( sticky1.getRl() + sticky2.getRl() ); |
122 |
mixer.ru = 0.5 * ( sticky1.getRu() + sticky2.getRu() ); |
123 |
mixer.rlp = 0.5 * ( sticky1.getRlp() + sticky2.getRlp() ); |
124 |
mixer.rup = 0.5 * ( sticky1.getRup() + sticky2.getRup() ); |
125 |
mixer.rbig = max(mixer.ru, mixer.rup); |
126 |
mixer.w0 = sqrt( sticky1.getW0() * sticky2.getW0() ); |
127 |
mixer.v0 = sqrt( sticky1.getV0() * sticky2.getV0() ); |
128 |
mixer.v0p = sqrt( sticky1.getV0p() * sticky2.getV0p() ); |
129 |
mixer.isPower = sticky1.isStickyPower() && sticky2.isStickyPower(); |
130 |
|
131 |
CubicSpline* s = new CubicSpline(); |
132 |
s->addPoint(mixer.rl, 1.0); |
133 |
s->addPoint(mixer.ru, 0.0); |
134 |
mixer.s = s; |
135 |
|
136 |
CubicSpline* sp = new CubicSpline(); |
137 |
sp->addPoint(mixer.rlp, 1.0); |
138 |
sp->addPoint(mixer.rup, 0.0); |
139 |
mixer.sp = sp; |
140 |
|
141 |
MixingMap[stid2].resize( nSticky_ ); |
142 |
|
143 |
MixingMap[stid][stid2] = mixer; |
144 |
if (stid2 != stid) { |
145 |
MixingMap[stid2][stid] = mixer; |
146 |
} |
147 |
} |
148 |
} |
149 |
|
150 |
/** |
151 |
* This function does the sticky portion of the SSD potential |
152 |
* [Chandra and Ichiye, Journal of Chemical Physics 111, 2701 |
153 |
* (1999)]. The Lennard-Jones and dipolar interaction must be |
154 |
* handled separately. We assume that the rotation matrices have |
155 |
* already been calculated and placed in the A1 & A2 entries in the |
156 |
* idat structure. |
157 |
*/ |
158 |
|
159 |
void Sticky::calcForce(InteractionData &idat) { |
160 |
|
161 |
if (!initialized_) initialize(); |
162 |
|
163 |
StickyInteractionData &mixer = MixingMap[Stids[idat.atid1]][Stids[idat.atid2]]; |
164 |
|
165 |
RealType w0 = mixer.w0; |
166 |
RealType v0 = mixer.v0; |
167 |
RealType v0p = mixer.v0p; |
168 |
RealType rl = mixer.rl; |
169 |
RealType ru = mixer.ru; |
170 |
RealType rlp = mixer.rlp; |
171 |
RealType rup = mixer.rup; |
172 |
RealType rbig = mixer.rbig; |
173 |
bool isPower = mixer.isPower; |
174 |
|
175 |
if ( *(idat.rij) <= rbig) { |
176 |
|
177 |
RealType r3 = *(idat.r2) * *(idat.rij); |
178 |
RealType r5 = r3 * *(idat.r2); |
179 |
|
180 |
RotMat3x3d A1trans = idat.A1->transpose(); |
181 |
RotMat3x3d A2trans = idat.A2->transpose(); |
182 |
|
183 |
// rotate the inter-particle separation into the two different |
184 |
// body-fixed coordinate systems: |
185 |
|
186 |
Vector3d ri = *(idat.A1) * *(idat.d); |
187 |
|
188 |
// negative sign because this is the vector from j to i: |
189 |
|
190 |
Vector3d rj = - *(idat.A2) * *(idat.d); |
191 |
|
192 |
RealType xi = ri.x(); |
193 |
RealType yi = ri.y(); |
194 |
RealType zi = ri.z(); |
195 |
|
196 |
RealType xj = rj.x(); |
197 |
RealType yj = rj.y(); |
198 |
RealType zj = rj.z(); |
199 |
|
200 |
RealType xi2 = xi * xi; |
201 |
RealType yi2 = yi * yi; |
202 |
RealType zi2 = zi * zi; |
203 |
|
204 |
RealType xj2 = xj * xj; |
205 |
RealType yj2 = yj * yj; |
206 |
RealType zj2 = zj * zj; |
207 |
|
208 |
// calculate the switching info. from the splines |
209 |
|
210 |
RealType s = 0.0; |
211 |
RealType dsdr = 0.0; |
212 |
RealType sp = 0.0; |
213 |
RealType dspdr = 0.0; |
214 |
|
215 |
if ( *(idat.rij) < ru) { |
216 |
if ( *(idat.rij) < rl) { |
217 |
s = 1.0; |
218 |
dsdr = 0.0; |
219 |
} else { |
220 |
// we are in the switching region |
221 |
mixer.s->getValueAndDerivativeAt(*(idat.rij), s, dsdr); |
222 |
} |
223 |
} |
224 |
|
225 |
if (*(idat.rij) < rup) { |
226 |
if ( *(idat.rij) < rlp) { |
227 |
sp = 1.0; |
228 |
dspdr = 0.0; |
229 |
} else { |
230 |
// we are in the switching region |
231 |
mixer.sp->getValueAndDerivativeAt( *(idat.rij), sp, dspdr); |
232 |
} |
233 |
} |
234 |
|
235 |
|
236 |
RealType wi = 2.0*(xi2-yi2)*zi / r3; |
237 |
RealType wj = 2.0*(xj2-yj2)*zj / r3; |
238 |
RealType w = wi+wj; |
239 |
|
240 |
|
241 |
RealType zif = zi/ *(idat.rij) - 0.6; |
242 |
RealType zis = zi/ *(idat.rij) + 0.8; |
243 |
|
244 |
RealType zjf = zj/ *(idat.rij) - 0.6; |
245 |
RealType zjs = zj/ *(idat.rij) + 0.8; |
246 |
|
247 |
RealType wip = zif*zif*zis*zis - w0; |
248 |
RealType wjp = zjf*zjf*zjs*zjs - w0; |
249 |
RealType wp = wip + wjp; |
250 |
|
251 |
Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5, |
252 |
- 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5, |
253 |
2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5); |
254 |
|
255 |
Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5, |
256 |
- 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5, |
257 |
2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5); |
258 |
|
259 |
RealType uglyi = zif*zif*zis + zif*zis*zis; |
260 |
RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs; |
261 |
|
262 |
Vector3d dwip(-2.0*xi*zi*uglyi/r3, |
263 |
-2.0*yi*zi*uglyi/r3, |
264 |
2.0*(1.0/ *(idat.rij) - zi2/r3)*uglyi); |
265 |
|
266 |
Vector3d dwjp(-2.0*xj*zj*uglyj/r3, |
267 |
-2.0*yj*zj*uglyj/r3, |
268 |
2.0*(1.0/ *(idat.rij) - zj2/r3)*uglyj); |
269 |
|
270 |
Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3, |
271 |
4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3, |
272 |
- 8.0*xi*yi*zi/r3); |
273 |
|
274 |
Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3, |
275 |
4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3, |
276 |
- 8.0*xj*yj*zj/r3); |
277 |
|
278 |
Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) , |
279 |
-2.0*xi*uglyi/ *(idat.rij) , |
280 |
0.0); |
281 |
|
282 |
Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) , |
283 |
-2.0*xj*uglyj/ *(idat.rij) , |
284 |
0.0); |
285 |
|
286 |
if (isPower) { |
287 |
cerr << "This is probably an error!\n"; |
288 |
RealType frac1 = 0.25; |
289 |
RealType frac2 = 0.75; |
290 |
RealType wi2 = wi*wi; |
291 |
RealType wj2 = wj*wj; |
292 |
// sticky power has no w' function: |
293 |
w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p; |
294 |
wp = 0.0; |
295 |
dwi = frac1*RealType(3.0)*wi2*dwi + frac2*dwi; |
296 |
dwj = frac1*RealType(3.0)*wj2*dwi + frac2*dwi; |
297 |
dwip = V3Zero; |
298 |
dwjp = V3Zero; |
299 |
dwidu = frac1*RealType(3.0)*wi2*dwidu + frac2*dwidu; |
300 |
dwidu = frac1*RealType(3.0)*wj2*dwjdu + frac2*dwjdu; |
301 |
dwipdu = V3Zero; |
302 |
dwjpdu = V3Zero; |
303 |
sp = 0.0; |
304 |
dspdr = 0.0; |
305 |
} |
306 |
|
307 |
|
308 |
|
309 |
*(idat.vpair) += RealType(0.5)*(v0*s*w + v0p*sp*wp); |
310 |
(*(idat.pot))[HYDROGENBONDING_FAMILY] += RealType(0.5)*(v0*s*w + v0p*sp*wp)* *(idat.sw) ; |
311 |
|
312 |
// do the torques first since they are easy: |
313 |
// remember that these are still in the body-fixed axes |
314 |
|
315 |
Vector3d ti = RealType(0.5)* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu); |
316 |
Vector3d tj = RealType(0.5)* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu); |
317 |
|
318 |
// go back to lab frame using transpose of rotation matrix: |
319 |
|
320 |
*(idat.t1) += A1trans * ti; |
321 |
*(idat.t2) += A2trans * tj; |
322 |
|
323 |
// Now, on to the forces: |
324 |
|
325 |
// first rotate the i terms back into the lab frame: |
326 |
|
327 |
Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * *(idat.sw); |
328 |
Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * *(idat.sw); |
329 |
|
330 |
Vector3d fii = A1trans * radcomi; |
331 |
Vector3d fjj = A2trans * radcomj; |
332 |
|
333 |
// now assemble these with the radial-only terms: |
334 |
|
335 |
*(idat.f1) += RealType(0.5) * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) / |
336 |
*(idat.rij) + fii - fjj); |
337 |
|
338 |
} |
339 |
|
340 |
return; |
341 |
} |
342 |
|
343 |
RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
344 |
if (!initialized_) initialize(); |
345 |
int atid1 = atypes.first->getIdent(); |
346 |
int atid2 = atypes.second->getIdent(); |
347 |
int stid1 = Stids[atid1]; |
348 |
int stid2 = Stids[atid2]; |
349 |
|
350 |
if (stid1 == -1 || stid2 == -1) return 0.0; |
351 |
else { |
352 |
return MixingMap[stid1][stid2].rbig; |
353 |
} |
354 |
} |
355 |
} |