ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Sticky.cpp
(Generate patch)

Comparing:
branches/development/src/nonbonded/Sticky.cpp (file contents), Revision 1485 by gezelter, Wed Jul 28 19:52:00 2010 UTC vs.
trunk/src/nonbonded/Sticky.cpp (file contents), Revision 2071 by gezelter, Sat Mar 7 21:41:51 2015 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 45 | Line 46
46   #include <cmath>
47   #include "nonbonded/Sticky.hpp"
48   #include "nonbonded/LJ.hpp"
49 + #include "types/StickyAdapter.hpp"
50   #include "utils/simError.h"
51  
52   using namespace std;
53   namespace OpenMD {
52
53  bool Sticky::initialized_ = false;
54  ForceField* Sticky::forceField_ = NULL;
55  map<int, AtomType*> Sticky::StickyMap;
56  map<pair<AtomType*, AtomType*>, StickyInteractionData> Sticky::MixingMap;
54    
55 <  Sticky* Sticky::_instance = NULL;
59 <  
60 <  Sticky* Sticky::Instance() {
61 <    if (!_instance) {
62 <      _instance = new Sticky();
63 <    }
64 <    return _instance;
65 <  }
66 <  
67 <  StickyParam Sticky::getStickyParam(AtomType* atomType) {
55 >  Sticky::Sticky() : initialized_(false), forceField_(NULL), name_("Sticky") {}
56      
69    // Do sanity checking on the AtomType we were passed before
70    // building any data structures:
71    if (!atomType->isSticky() && !atomType->isStickyPower()) {
72      sprintf( painCave.errMsg,
73               "Sticky::getStickyParam was passed an atomType (%s) that does\n"
74               "\tnot appear to be a Sticky atom.\n",
75               atomType->getName().c_str());
76      painCave.severity = OPENMD_ERROR;
77      painCave.isFatal = 1;
78      simError();
79    }
80    
81    DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
82    GenericData* data = daType->getPropertyByName("Sticky");
83    if (data == NULL) {
84      sprintf( painCave.errMsg, "Sticky::getStickyParam could not find\n"
85               "\tSticky parameters for atomType %s.\n",
86               daType->getName().c_str());
87      painCave.severity = OPENMD_ERROR;
88      painCave.isFatal = 1;
89      simError();
90    }
91    
92    StickyParamGenericData* stickyData = dynamic_cast<StickyParamGenericData*>(data);
93    if (stickyData == NULL) {
94      sprintf( painCave.errMsg,
95               "Sticky::getStickyParam could not convert GenericData to\n"
96               "\tStickyParamGenericData for atom type %s\n",
97               daType->getName().c_str());
98      painCave.severity = OPENMD_ERROR;
99      painCave.isFatal = 1;
100      simError();          
101    }
102    
103    return stickyData->getData();
104  }
105  
57    void Sticky::initialize() {    
58 <    
59 <    ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
60 <    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
61 <    ForceField::AtomTypeContainer::MapTypeIterator i;
111 <    AtomType* at;
58 >    Stypes.clear();
59 >    Stids.clear();
60 >    MixingMap.clear();
61 >    nSticky_=0;
62  
63 +    Stids.resize( forceField_->getNAtomType(), -1);
64 +
65      // Sticky handles all of the Sticky-Sticky interactions
66  
67 <    for (at = atomTypes->beginType(i); at != NULL;
68 <         at = atomTypes->nextType(i)) {
69 <      
118 <      if (at->isSticky() || at->isStickyPower())
119 <        addType(at);
67 >    set<AtomType*>::iterator at;
68 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
69 >      if ((*at)->isSticky()) nSticky_++;
70      }
71 +
72 +    MixingMap.resize(nSticky_);
73 +
74 +    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
75 +      if ((*at)->isSticky()) addType( *at );
76 +    }
77      
78      initialized_ = true;
79    }
80        
81    void Sticky::addType(AtomType* atomType){
82 +    StickyAdapter sticky1 = StickyAdapter(atomType);
83 +
84      // add it to the map:
127    AtomTypeProperties atp = atomType->getATP();    
85      
86 <    pair<map<int,AtomType*>::iterator,bool> ret;    
87 <    ret = StickyMap.insert( pair<int, AtomType*>(atp.ident, atomType) );
86 >    int atid = atomType->getIdent();
87 >    int stid = Stypes.size();
88 >  
89 >    pair<set<int>::iterator,bool> ret;    
90 >    ret = Stypes.insert( atid );
91      if (ret.second == false) {
92        sprintf( painCave.errMsg,
93                 "Sticky already had a previous entry with ident %d\n",
94 <               atp.ident);
94 >               atid) ;
95        painCave.severity = OPENMD_INFO;
96        painCave.isFatal = 0;
97        simError();        
98      }
139    
140    RealType w0i, v0i, v0pi, rli, rui, rlpi, rupi;
141    
142    StickyParam sticky1 = getStickyParam(atomType);
99  
100 +    Stids[atid] = stid;
101 +    MixingMap[stid].resize( nSticky_ );    
102 +
103 +
104      // Now, iterate over all known types and add to the mixing map:
105      
106 <    map<int, AtomType*>::iterator it;
107 <    for( it = StickyMap.begin(); it != StickyMap.end(); ++it) {
106 >    std::set<int>::iterator it;
107 >    for( it = Stypes.begin(); it != Stypes.end(); ++it) {
108        
149      AtomType* atype2 = (*it).second;
150    
151      StickyParam sticky2 = getStickyParam(atype2);
109  
110 +      int stid2 = Stids[ (*it) ];
111 +      AtomType* atype2 = forceField_->getAtomType( (*it) );
112 +      StickyAdapter sticky2 = StickyAdapter(atype2);
113 +
114        StickyInteractionData mixer;        
115            
116        // Mixing two different sticky types is silly, but if you want 2
# Line 157 | Line 118 | namespace OpenMD {
118        // Lorentz- Berthelot mixing rules (which happen to do the right thing
119        // when atomType and atype2 happen to be the same.
120        
121 <      mixer.rl   = 0.5 * ( sticky1.rl + sticky2.rl );
122 <      mixer.ru   = 0.5 * ( sticky1.ru + sticky2.ru );
123 <      mixer.rlp  = 0.5 * ( sticky1.rlp + sticky2.rlp );
124 <      mixer.rup  = 0.5 * ( sticky1.rup + sticky2.rup );
121 >      mixer.rl   = 0.5 * ( sticky1.getRl() + sticky2.getRl() );
122 >      mixer.ru   = 0.5 * ( sticky1.getRu() + sticky2.getRu() );
123 >      mixer.rlp  = 0.5 * ( sticky1.getRlp() + sticky2.getRlp() );
124 >      mixer.rup  = 0.5 * ( sticky1.getRup() + sticky2.getRup() );
125        mixer.rbig = max(mixer.ru, mixer.rup);
126 <      mixer.w0  = sqrt( sticky1.w0   * sticky2.w0  );
127 <      mixer.v0  = sqrt( sticky1.v0   * sticky2.v0  );
128 <      mixer.v0p = sqrt( sticky1.v0p  * sticky2.v0p );
129 <      mixer.isPower = atomType->isStickyPower() && atype2->isStickyPower();
126 >      mixer.w0  = sqrt( sticky1.getW0()   * sticky2.getW0()  );
127 >      mixer.v0  = sqrt( sticky1.getV0()   * sticky2.getV0()  );
128 >      mixer.v0p = sqrt( sticky1.getV0p()  * sticky2.getV0p() );
129 >      mixer.isPower = sticky1.isStickyPower() && sticky2.isStickyPower();
130  
131        CubicSpline* s = new CubicSpline();
132        s->addPoint(mixer.rl, 1.0);
# Line 177 | Line 138 | namespace OpenMD {
138        sp->addPoint(mixer.rup, 0.0);
139        mixer.sp = sp;
140  
141 <      
142 <      pair<AtomType*, AtomType*> key1, key2;
143 <      key1 = make_pair(atomType, atype2);
144 <      key2 = make_pair(atype2, atomType);
145 <      
185 <      MixingMap[key1] = mixer;
186 <      if (key2 != key1) {
187 <        MixingMap[key2] = mixer;
141 >      MixingMap[stid2].resize( nSticky_ );
142 >
143 >      MixingMap[stid][stid2] = mixer;
144 >      if (stid2 != stid) {
145 >        MixingMap[stid2][stid] = mixer;
146        }
147      }
148    }
149  
150 <  RealType Sticky::getStickyCut(int atid) {
150 >  /**
151 >   * This function does the sticky portion of the SSD potential
152 >   * [Chandra and Ichiye, Journal of Chemical Physics 111, 2701
153 >   * (1999)].  The Lennard-Jones and dipolar interaction must be
154 >   * handled separately.  We assume that the rotation matrices have
155 >   * already been calculated and placed in the A1 & A2 entries in the
156 >   * idat structure.
157 >   */
158 >  
159 >  void Sticky::calcForce(InteractionData &idat) {
160 >  
161      if (!initialized_) initialize();
194    std::map<int, AtomType*> :: const_iterator it;
195    it = StickyMap.find(atid);
196    if (it == StickyMap.end()) {
197      sprintf( painCave.errMsg,
198               "Sticky::getStickyCut could not find atid %d in StickyMap\n",
199               (atid));
200      painCave.severity = OPENMD_ERROR;
201      painCave.isFatal = 1;
202      simError();          
203    }
204
205    AtomType* atype = it->second;
206    return MixingMap[make_pair(atype, atype)].rbig;
207  }
208
209
210  void Sticky::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
211                         RealType rij, RealType r2, RealType sw,
212                         RealType &vpair, RealType &pot,
213                         RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1,
214                         Vector3d &t1, Vector3d &t2) {
215
216    // This routine does only the sticky portion of the SSD potential
217    // [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
218    // The Lennard-Jones and dipolar interaction must be handled separately.
162      
163 <    // We assume that the rotation matrices have already been calculated
221 <    // and placed in the A array.
163 >    StickyInteractionData &mixer = MixingMap[Stids[idat.atid1]][Stids[idat.atid2]];
164      
223    if (!initialized_) initialize();
224    
225    pair<AtomType*, AtomType*> key = make_pair(at1, at2);
226    StickyInteractionData mixer = MixingMap[key];
227
165      RealType w0  = mixer.w0;
166      RealType v0  = mixer.v0;
167      RealType v0p = mixer.v0p;
# Line 234 | Line 171 | namespace OpenMD {
171      RealType rup = mixer.rup;
172      RealType rbig = mixer.rbig;
173      bool isPower = mixer.isPower;
174 <
175 <    if (rij <= rbig) {
176 <
177 <      RealType r3 = r2 * rij;
178 <      RealType r5 = r3 * r2;
179 <          
180 <      RotMat3x3d A1trans = A1.transpose();
181 <      RotMat3x3d A2trans = A2.transpose();
182 <
174 >    
175 >    if ( *(idat.rij) <= rbig) {
176 >      
177 >      RealType r3 = *(idat.r2) * *(idat.rij);
178 >      RealType r5 = r3 * *(idat.r2);
179 >      
180 >      RotMat3x3d A1trans = idat.A1->transpose();
181 >      RotMat3x3d A2trans = idat.A2->transpose();
182 >      
183        // rotate the inter-particle separation into the two different
184        // body-fixed coordinate systems:
185 <
186 <      Vector3d ri = A1 * d;
187 <
185 >      
186 >      Vector3d ri = *(idat.A1) * *(idat.d);
187 >      
188        // negative sign because this is the vector from j to i:
189 <
190 <      Vector3d rj = -A2 * d;
191 <
189 >      
190 >      Vector3d rj = - *(idat.A2) * *(idat.d);
191 >      
192        RealType xi = ri.x();
193        RealType yi = ri.y();
194        RealType zi = ri.z();
195 <
195 >      
196        RealType xj = rj.x();
197        RealType yj = rj.y();
198        RealType zj = rj.z();
199 <
199 >      
200        RealType xi2 = xi * xi;
201        RealType yi2 = yi * yi;
202        RealType zi2 = zi * zi;
203 <
203 >      
204        RealType xj2 = xj * xj;
205        RealType yj2 = yj * yj;
206        RealType zj2 = zj * zj;    
207 <
207 >      
208        // calculate the switching info. from the splines
209 <
209 >      
210        RealType s = 0.0;
211        RealType dsdr = 0.0;
212        RealType sp = 0.0;
213        RealType dspdr = 0.0;
214 <
215 <      if (rij < ru) {
216 <        if (rij < rl) {
214 >      
215 >      if ( *(idat.rij) < ru) {
216 >        if ( *(idat.rij) < rl) {
217            s = 1.0;
218            dsdr = 0.0;
219          } else {          
220 <          // we are in the switching region
221 <
285 <          pair<RealType, RealType> res = mixer.s->getValueAndDerivativeAt(rij);
286 <          s = res.first;
287 <          dsdr = res.second;
220 >          // we are in the switching region          
221 >          mixer.s->getValueAndDerivativeAt(*(idat.rij), s, dsdr);
222          }
223        }
224 <
225 <      if (rij < rup) {
226 <        if (rij < rlp) {
224 >      
225 >      if (*(idat.rij) < rup) {
226 >        if ( *(idat.rij) < rlp) {
227            sp = 1.0;
228            dspdr = 0.0;
229          } else {
230 <          // we are in the switching region
231 <
298 <          pair<RealType, RealType> res =mixer.sp->getValueAndDerivativeAt(rij);
299 <          sp = res.first;
300 <          dspdr = res.second;
230 >          // we are in the switching region          
231 >          mixer.sp->getValueAndDerivativeAt( *(idat.rij), sp, dspdr);
232          }
233        }
234 <
234 >      
235 >      
236        RealType wi = 2.0*(xi2-yi2)*zi / r3;
237        RealType wj = 2.0*(xj2-yj2)*zj / r3;
238        RealType w = wi+wj;
239 <
240 <
241 <      RealType zif = zi/rij - 0.6;
242 <      RealType zis = zi/rij + 0.8;
243 <
244 <      RealType zjf = zj/rij - 0.6;
245 <      RealType zjs = zj/rij + 0.8;
246 <
239 >      
240 >      
241 >      RealType zif = zi/ *(idat.rij)  - 0.6;
242 >      RealType zis = zi/ *(idat.rij)  + 0.8;
243 >      
244 >      RealType zjf = zj/ *(idat.rij)  - 0.6;
245 >      RealType zjs = zj/ *(idat.rij)  + 0.8;
246 >      
247        RealType wip = zif*zif*zis*zis - w0;
248        RealType wjp = zjf*zjf*zjs*zjs - w0;
249        RealType wp = wip + wjp;
250 <
250 >      
251        Vector3d dwi(4.0*xi*zi/r3  - 6.0*xi*zi*(xi2-yi2)/r5,
252                     - 4.0*yi*zi/r3  - 6.0*yi*zi*(xi2-yi2)/r5,
253                     2.0*(xi2-yi2)/r3  - 6.0*zi2*(xi2-yi2)/r5);
# Line 323 | Line 255 | namespace OpenMD {
255        Vector3d dwj(4.0*xj*zj/r3  - 6.0*xj*zj*(xj2-yj2)/r5,
256                     - 4.0*yj*zj/r3  - 6.0*yj*zj*(xj2-yj2)/r5,
257                     2.0*(xj2-yj2)/r3  - 6.0*zj2*(xj2-yj2)/r5);
258 <
258 >      
259        RealType uglyi = zif*zif*zis + zif*zis*zis;
260        RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs;
261 <
261 >      
262        Vector3d dwip(-2.0*xi*zi*uglyi/r3,
263                      -2.0*yi*zi*uglyi/r3,
264 <                    2.0*(1.0/rij - zi2/r3)*uglyi);
265 <
264 >                    2.0*(1.0/ *(idat.rij)  - zi2/r3)*uglyi);
265 >      
266        Vector3d dwjp(-2.0*xj*zj*uglyj/r3,
267                      -2.0*yj*zj*uglyj/r3,
268 <                    2.0*(1.0/rij - zj2/r3)*uglyj);
269 <
268 >                    2.0*(1.0/ *(idat.rij)  - zj2/r3)*uglyj);
269 >      
270        Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3,
271                       4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3,
272                       - 8.0*xi*yi*zi/r3);
273 <
273 >      
274        Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3,
275                       4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3,
276                       - 8.0*xj*yj*zj/r3);
277        
278 <      Vector3d dwipdu(2.0*yi*uglyi/rij,
279 <                      -2.0*xi*uglyi/rij,
278 >      Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) ,
279 >                      -2.0*xi*uglyi/ *(idat.rij) ,
280                        0.0);
281 <
282 <      Vector3d dwjpdu(2.0*yj*uglyj/rij,
283 <                      -2.0*xj*uglyj/rij,
281 >      
282 >      Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) ,
283 >                      -2.0*xj*uglyj/ *(idat.rij) ,
284                        0.0);
285 <
285 >      
286        if (isPower) {
287 +        cerr << "This is probably an error!\n";
288          RealType frac1 = 0.25;
289          RealType frac2 = 0.75;      
290          RealType wi2 = wi*wi;
# Line 359 | Line 292 | namespace OpenMD {
292          // sticky power has no w' function:
293          w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p;
294          wp = 0.0;
295 <        dwi = frac1*3.0*wi2*dwi + frac2*dwi;
296 <        dwj = frac1*3.0*wj2*dwi + frac2*dwi;
295 >        dwi = frac1*RealType(3.0)*wi2*dwi + frac2*dwi;
296 >        dwj = frac1*RealType(3.0)*wj2*dwi + frac2*dwi;
297          dwip = V3Zero;
298          dwjp = V3Zero;
299 <        dwidu = frac1*3.0*wi2*dwidu + frac2*dwidu;
300 <        dwidu = frac1*3.0*wj2*dwjdu + frac2*dwjdu;
299 >        dwidu = frac1*RealType(3.0)*wi2*dwidu + frac2*dwidu;
300 >        dwidu = frac1*RealType(3.0)*wj2*dwjdu + frac2*dwjdu;
301          dwipdu = V3Zero;
302          dwjpdu = V3Zero;
303          sp = 0.0;
304          dspdr = 0.0;
305        }
306 <
307 <      vpair += 0.5*(v0*s*w + v0p*sp*wp);
308 <      pot += 0.5*(v0*s*w + v0p*sp*wp)*sw;
309 <
306 >      
307 >      
308 >      
309 >      *(idat.vpair) += RealType(0.5)*(v0*s*w + v0p*sp*wp);
310 >      (*(idat.pot))[HYDROGENBONDING_FAMILY] += RealType(0.5)*(v0*s*w + v0p*sp*wp)* *(idat.sw) ;
311 >      
312        // do the torques first since they are easy:
313        // remember that these are still in the body-fixed axes
314 <
315 <      Vector3d ti = 0.5*sw*(v0*s*dwidu + v0p*sp*dwipdu);
316 <      Vector3d tj = 0.5*sw*(v0*s*dwjdu + v0p*sp*dwjpdu);
317 <
314 >      
315 >      Vector3d ti = RealType(0.5)* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu);
316 >      Vector3d tj = RealType(0.5)* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu);
317 >      
318        // go back to lab frame using transpose of rotation matrix:
319 <
320 <      t1 += A1trans * ti;
321 <      t2 += A2trans * tj;
322 <
319 >      
320 >      *(idat.t1) += A1trans * ti;
321 >      *(idat.t2) += A2trans * tj;
322 >      
323        // Now, on to the forces:
324 <
324 >      
325        // first rotate the i terms back into the lab frame:
326 <
327 <      Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * sw;
328 <      Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * sw;
329 <
326 >      
327 >      Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) *  *(idat.sw);
328 >      Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) *  *(idat.sw);
329 >      
330        Vector3d fii = A1trans * radcomi;
331        Vector3d fjj = A2trans * radcomj;
332        
333        // now assemble these with the radial-only terms:
334        
335 <      f1 += 0.5 * ((v0*dsdr*w + v0p*dspdr*wp) * d / rij + fii - fjj);
336 <
402 <    }
335 >      *(idat.f1) += RealType(0.5) * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) /
336 >                                     *(idat.rij)  + fii - fjj);
337        
338 <    return;
338 >    }
339      
340 +    return;      
341    }
407
408  void Sticky::do_sticky_pair(int *atid1, int *atid2, RealType *d,
409                              RealType *r, RealType *r2, RealType *sw,
410                              RealType *vpair, RealType *pot, RealType *A1,
411                              RealType *A2, RealType *f1,
412                              RealType *t1, RealType *t2) {
413    
414    if (!initialized_) initialize();
415    
416    AtomType* atype1 = StickyMap[*atid1];
417    AtomType* atype2 = StickyMap[*atid2];
418    
419    Vector3d disp(d);
420    Vector3d frc(f1);
421    Vector3d trq1(t1);
422    Vector3d trq2(t2);
423    RotMat3x3d Ai(A1);
424    RotMat3x3d Aj(A2);
425  
426    calcForce(atype1, atype2, disp, *r, *r2, *sw, *vpair, *pot,
427              Ai, Aj, frc, trq1, trq2);
428      
429    f1[0] = frc.x();
430    f1[1] = frc.y();
431    f1[2] = frc.z();
432
433    t1[0] = trq1.x();
434    t1[1] = trq1.y();
435    t1[2] = trq1.z();
436
437    t2[0] = trq2.x();
438    t2[1] = trq2.y();
439    t2[2] = trq2.z();
440
441    return;    
442  }
443 }
444
445 extern "C" {
342    
343 < #define fortranGetStickyCut FC_FUNC(getstickycut, GETSTICKYCUT)
344 < #define fortranDoStickyPair FC_FUNC(do_sticky_pair, DO_STICKY_PAIR)
345 <  
346 <  RealType fortranGetStickyCut(int* atid) {
347 <    return OpenMD::Sticky::Instance()->getStickyCut(*atid);
348 <  }
453 <
454 <  void fortranDoStickyPair(int *atid1, int *atid2, RealType *d, RealType *r,
455 <                       RealType *r2, RealType *sw, RealType *vpair, RealType *pot,
456 <                       RealType *A1, RealType *A2, RealType *f1,
457 <                       RealType *t1, RealType *t2){
343 >  RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
344 >    if (!initialized_) initialize();  
345 >    int atid1 = atypes.first->getIdent();
346 >    int atid2 = atypes.second->getIdent();
347 >    int stid1 = Stids[atid1];
348 >    int stid2 = Stids[atid2];
349      
350 <    return OpenMD::Sticky::Instance()->do_sticky_pair(atid1, atid2, d, r, r2,
351 <                                                      sw, vpair, pot, A1, A2,
352 <                                                      f1, t1, t2);
350 >    if (stid1 == -1 || stid2 == -1) return 0.0;
351 >    else {      
352 >      return MixingMap[stid1][stid2].rbig;
353 >    }
354    }
355   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines