ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Sticky.cpp
Revision: 1895
Committed: Mon Jul 1 21:09:37 2013 UTC (12 years, 1 month ago) by gezelter
File size: 11924 byte(s)
Log Message:
Speed!

File Contents

# User Rev Content
1 gezelter 1485 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1485 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Sticky.hpp"
48     #include "nonbonded/LJ.hpp"
49 gezelter 1710 #include "types/StickyAdapter.hpp"
50 gezelter 1485 #include "utils/simError.h"
51    
52     using namespace std;
53     namespace OpenMD {
54    
55 gezelter 1502 Sticky::Sticky() : name_("Sticky"), initialized_(false), forceField_(NULL) {}
56 gezelter 1485
57     void Sticky::initialize() {
58 gezelter 1895 Stypes.clear();
59     Stids.clear();
60     MixingMap.clear();
61     nSticky_=0;
62 gezelter 1485
63 gezelter 1895 Stids.resize( forceField_->getNAtomType(), -1);
64    
65 gezelter 1485 // Sticky handles all of the Sticky-Sticky interactions
66    
67 gezelter 1895 set<AtomType*>::iterator at;
68     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
69     if ((*at)->isSticky()) nSticky_++;
70 gezelter 1485 }
71 gezelter 1895
72     MixingMap.resize(nSticky_);
73    
74     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
75     if ((*at)->isSticky()) addType( *at );
76     }
77 gezelter 1485
78     initialized_ = true;
79     }
80    
81     void Sticky::addType(AtomType* atomType){
82 gezelter 1895 StickyAdapter sticky1 = StickyAdapter(atomType);
83    
84 gezelter 1485 // add it to the map:
85    
86 gezelter 1895 int atid = atomType->getIdent();
87     int stid = Stypes.size();
88    
89     pair<set<int>::iterator,bool> ret;
90     ret = Stypes.insert( atid );
91 gezelter 1485 if (ret.second == false) {
92     sprintf( painCave.errMsg,
93     "Sticky already had a previous entry with ident %d\n",
94 gezelter 1895 atid) ;
95 gezelter 1485 painCave.severity = OPENMD_INFO;
96     painCave.isFatal = 0;
97     simError();
98 gezelter 1895 }
99 gezelter 1485
100 gezelter 1895 Stids[atid] = stid;
101     MixingMap[stid].resize( nSticky_ );
102    
103    
104 gezelter 1485 // Now, iterate over all known types and add to the mixing map:
105    
106 gezelter 1895 std::set<int>::iterator it;
107     for( it = Stypes.begin(); it != Stypes.end(); ++it) {
108 gezelter 1485
109 gezelter 1895
110     int stid2 = Stids[ (*it) ];
111     AtomType* atype2 = forceField_->getAtomType( (*it) );
112 gezelter 1710 StickyAdapter sticky2 = StickyAdapter(atype2);
113 gezelter 1485
114     StickyInteractionData mixer;
115    
116     // Mixing two different sticky types is silly, but if you want 2
117     // sticky types in your simulation, we'll let you do it with the
118     // Lorentz- Berthelot mixing rules (which happen to do the right thing
119     // when atomType and atype2 happen to be the same.
120    
121 gezelter 1710 mixer.rl = 0.5 * ( sticky1.getRl() + sticky2.getRl() );
122     mixer.ru = 0.5 * ( sticky1.getRu() + sticky2.getRu() );
123     mixer.rlp = 0.5 * ( sticky1.getRlp() + sticky2.getRlp() );
124     mixer.rup = 0.5 * ( sticky1.getRup() + sticky2.getRup() );
125 gezelter 1485 mixer.rbig = max(mixer.ru, mixer.rup);
126 gezelter 1710 mixer.w0 = sqrt( sticky1.getW0() * sticky2.getW0() );
127 gezelter 1834 mixer.v0 = sqrt( sticky1.getV0() * sticky2.getV0() );
128 gezelter 1710 mixer.v0p = sqrt( sticky1.getV0p() * sticky2.getV0p() );
129     mixer.isPower = sticky1.isStickyPower() && sticky2.isStickyPower();
130 gezelter 1485
131     CubicSpline* s = new CubicSpline();
132     s->addPoint(mixer.rl, 1.0);
133     s->addPoint(mixer.ru, 0.0);
134     mixer.s = s;
135    
136     CubicSpline* sp = new CubicSpline();
137     sp->addPoint(mixer.rlp, 1.0);
138     sp->addPoint(mixer.rup, 0.0);
139     mixer.sp = sp;
140    
141 gezelter 1895 MixingMap[stid2].resize( nSticky_ );
142    
143     MixingMap[stid][stid2] = mixer;
144     if (stid2 != stid) {
145     MixingMap[stid2][stid] = mixer;
146 gezelter 1485 }
147     }
148     }
149    
150 gezelter 1502 /**
151     * This function does the sticky portion of the SSD potential
152     * [Chandra and Ichiye, Journal of Chemical Physics 111, 2701
153     * (1999)]. The Lennard-Jones and dipolar interaction must be
154     * handled separately. We assume that the rotation matrices have
155     * already been calculated and placed in the A1 & A2 entries in the
156     * idat structure.
157     */
158    
159 gezelter 1536 void Sticky::calcForce(InteractionData &idat) {
160 gezelter 1502
161 gezelter 1485 if (!initialized_) initialize();
162    
163 gezelter 1895 StickyInteractionData &mixer = MixingMap[Stids[idat.atid1]][Stids[idat.atid2]];
164    
165     RealType w0 = mixer.w0;
166     RealType v0 = mixer.v0;
167     RealType v0p = mixer.v0p;
168     RealType rl = mixer.rl;
169     RealType ru = mixer.ru;
170     RealType rlp = mixer.rlp;
171     RealType rup = mixer.rup;
172     RealType rbig = mixer.rbig;
173     bool isPower = mixer.isPower;
174    
175     if ( *(idat.rij) <= rbig) {
176 gezelter 1505
177 gezelter 1895 RealType r3 = *(idat.r2) * *(idat.rij);
178     RealType r5 = r3 * *(idat.r2);
179 gezelter 1505
180 gezelter 1895 RotMat3x3d A1trans = idat.A1->transpose();
181     RotMat3x3d A2trans = idat.A2->transpose();
182    
183     // rotate the inter-particle separation into the two different
184     // body-fixed coordinate systems:
185    
186     Vector3d ri = *(idat.A1) * *(idat.d);
187    
188     // negative sign because this is the vector from j to i:
189    
190     Vector3d rj = - *(idat.A2) * *(idat.d);
191    
192     RealType xi = ri.x();
193     RealType yi = ri.y();
194     RealType zi = ri.z();
195    
196     RealType xj = rj.x();
197     RealType yj = rj.y();
198     RealType zj = rj.z();
199    
200     RealType xi2 = xi * xi;
201     RealType yi2 = yi * yi;
202     RealType zi2 = zi * zi;
203    
204     RealType xj2 = xj * xj;
205     RealType yj2 = yj * yj;
206     RealType zj2 = zj * zj;
207    
208     // calculate the switching info. from the splines
209    
210     RealType s = 0.0;
211     RealType dsdr = 0.0;
212     RealType sp = 0.0;
213     RealType dspdr = 0.0;
214    
215     if ( *(idat.rij) < ru) {
216     if ( *(idat.rij) < rl) {
217     s = 1.0;
218     dsdr = 0.0;
219     } else {
220     // we are in the switching region
221     mixer.s->getValueAndDerivativeAt(*(idat.rij), s, dsdr);
222 gezelter 1485 }
223 gezelter 1895 }
224    
225     if (*(idat.rij) < rup) {
226     if ( *(idat.rij) < rlp) {
227     sp = 1.0;
228 gezelter 1485 dspdr = 0.0;
229 gezelter 1895 } else {
230     // we are in the switching region
231     mixer.sp->getValueAndDerivativeAt( *(idat.rij), sp, dspdr);
232 gezelter 1485 }
233     }
234 gezelter 1895
235    
236     RealType wi = 2.0*(xi2-yi2)*zi / r3;
237     RealType wj = 2.0*(xj2-yj2)*zj / r3;
238     RealType w = wi+wj;
239    
240    
241     RealType zif = zi/ *(idat.rij) - 0.6;
242     RealType zis = zi/ *(idat.rij) + 0.8;
243    
244     RealType zjf = zj/ *(idat.rij) - 0.6;
245     RealType zjs = zj/ *(idat.rij) + 0.8;
246    
247     RealType wip = zif*zif*zis*zis - w0;
248     RealType wjp = zjf*zjf*zjs*zjs - w0;
249     RealType wp = wip + wjp;
250    
251     Vector3d dwi(4.0*xi*zi/r3 - 6.0*xi*zi*(xi2-yi2)/r5,
252     - 4.0*yi*zi/r3 - 6.0*yi*zi*(xi2-yi2)/r5,
253     2.0*(xi2-yi2)/r3 - 6.0*zi2*(xi2-yi2)/r5);
254    
255     Vector3d dwj(4.0*xj*zj/r3 - 6.0*xj*zj*(xj2-yj2)/r5,
256     - 4.0*yj*zj/r3 - 6.0*yj*zj*(xj2-yj2)/r5,
257     2.0*(xj2-yj2)/r3 - 6.0*zj2*(xj2-yj2)/r5);
258    
259     RealType uglyi = zif*zif*zis + zif*zis*zis;
260     RealType uglyj = zjf*zjf*zjs + zjf*zjs*zjs;
261    
262     Vector3d dwip(-2.0*xi*zi*uglyi/r3,
263     -2.0*yi*zi*uglyi/r3,
264     2.0*(1.0/ *(idat.rij) - zi2/r3)*uglyi);
265    
266     Vector3d dwjp(-2.0*xj*zj*uglyj/r3,
267     -2.0*yj*zj*uglyj/r3,
268     2.0*(1.0/ *(idat.rij) - zj2/r3)*uglyj);
269    
270     Vector3d dwidu(4.0*(yi*zi2 + 0.5*yi*(xi2-yi2))/r3,
271     4.0*(xi*zi2 - 0.5*xi*(xi2-yi2))/r3,
272     - 8.0*xi*yi*zi/r3);
273    
274     Vector3d dwjdu(4.0*(yj*zj2 + 0.5*yj*(xj2-yj2))/r3,
275     4.0*(xj*zj2 - 0.5*xj*(xj2-yj2))/r3,
276     - 8.0*xj*yj*zj/r3);
277    
278     Vector3d dwipdu(2.0*yi*uglyi/ *(idat.rij) ,
279     -2.0*xi*uglyi/ *(idat.rij) ,
280     0.0);
281    
282     Vector3d dwjpdu(2.0*yj*uglyj/ *(idat.rij) ,
283     -2.0*xj*uglyj/ *(idat.rij) ,
284     0.0);
285    
286     if (isPower) {
287     cerr << "This is probably an error!\n";
288     RealType frac1 = 0.25;
289     RealType frac2 = 0.75;
290     RealType wi2 = wi*wi;
291     RealType wj2 = wj*wj;
292     // sticky power has no w' function:
293     w = frac1 * wi * wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj + v0p;
294     wp = 0.0;
295     dwi = frac1*RealType(3.0)*wi2*dwi + frac2*dwi;
296     dwj = frac1*RealType(3.0)*wj2*dwi + frac2*dwi;
297     dwip = V3Zero;
298     dwjp = V3Zero;
299     dwidu = frac1*RealType(3.0)*wi2*dwidu + frac2*dwidu;
300     dwidu = frac1*RealType(3.0)*wj2*dwjdu + frac2*dwjdu;
301     dwipdu = V3Zero;
302     dwjpdu = V3Zero;
303     sp = 0.0;
304     dspdr = 0.0;
305     }
306    
307    
308    
309     *(idat.vpair) += RealType(0.5)*(v0*s*w + v0p*sp*wp);
310     (*(idat.pot))[HYDROGENBONDING_FAMILY] += RealType(0.5)*(v0*s*w + v0p*sp*wp)* *(idat.sw) ;
311    
312     // do the torques first since they are easy:
313     // remember that these are still in the body-fixed axes
314    
315     Vector3d ti = RealType(0.5)* *(idat.sw) *(v0*s*dwidu + v0p*sp*dwipdu);
316     Vector3d tj = RealType(0.5)* *(idat.sw) *(v0*s*dwjdu + v0p*sp*dwjpdu);
317    
318     // go back to lab frame using transpose of rotation matrix:
319    
320     *(idat.t1) += A1trans * ti;
321     *(idat.t2) += A2trans * tj;
322    
323     // Now, on to the forces:
324    
325     // first rotate the i terms back into the lab frame:
326    
327     Vector3d radcomi = (v0 * s * dwi + v0p * sp * dwip) * *(idat.sw);
328     Vector3d radcomj = (v0 * s * dwj + v0p * sp * dwjp) * *(idat.sw);
329    
330     Vector3d fii = A1trans * radcomi;
331     Vector3d fjj = A2trans * radcomj;
332    
333     // now assemble these with the radial-only terms:
334    
335     *(idat.f1) += RealType(0.5) * ((v0*dsdr*w + v0p*dspdr*wp) * *(idat.d) /
336     *(idat.rij) + fii - fjj);
337    
338 gezelter 1485 }
339    
340 gezelter 1505 return;
341 gezelter 1485 }
342 gezelter 1895
343 gezelter 1545 RealType Sticky::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
344 gezelter 1505 if (!initialized_) initialize();
345 gezelter 1895 int atid1 = atypes.first->getIdent();
346     int atid2 = atypes.second->getIdent();
347     int stid1 = Stids[atid1];
348     int stid2 = Stids[atid2];
349    
350     if (stid1 == -1 || stid2 == -1) return 0.0;
351     else {
352     return MixingMap[stid1][stid2].rbig;
353 gezelter 1505 }
354     }
355 gezelter 1485 }

Properties

Name Value
svn:eol-style native