| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
*/ |
| 42 |
|
| 43 |
#include <stdio.h> |
| 44 |
#include <string.h> |
| 45 |
|
| 46 |
#include <cmath> |
| 47 |
#include "nonbonded/RepulsivePower.hpp" |
| 48 |
#include "utils/simError.h" |
| 49 |
#include "types/RepulsivePowerInteractionType.hpp" |
| 50 |
|
| 51 |
using namespace std; |
| 52 |
|
| 53 |
namespace OpenMD { |
| 54 |
|
| 55 |
RepulsivePower::RepulsivePower() : name_("RepulsivePower"), |
| 56 |
initialized_(false), forceField_(NULL) {} |
| 57 |
|
| 58 |
void RepulsivePower::initialize() { |
| 59 |
|
| 60 |
RPtypes.clear(); |
| 61 |
RPtids.clear(); |
| 62 |
MixingMap.clear(); |
| 63 |
RPtids.resize( forceField_->getNAtomType(), -1); |
| 64 |
|
| 65 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
| 66 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
| 67 |
ForceField::NonBondedInteractionTypeContainer::KeyType keys; |
| 68 |
NonBondedInteractionType* nbt; |
| 69 |
int rptid1, rptid2; |
| 70 |
|
| 71 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
| 72 |
nbt = nbiTypes->nextType(j)) { |
| 73 |
|
| 74 |
if (nbt->isRepulsivePower()) { |
| 75 |
keys = nbiTypes->getKeys(j); |
| 76 |
AtomType* at1 = forceField_->getAtomType(keys[0]); |
| 77 |
AtomType* at2 = forceField_->getAtomType(keys[1]); |
| 78 |
|
| 79 |
int atid1 = at1->getIdent(); |
| 80 |
if (RPtids[atid1] == -1) { |
| 81 |
rptid1 = RPtypes.size(); |
| 82 |
RPtypes.insert(atid1); |
| 83 |
RPtids[atid1] = rptid1; |
| 84 |
} |
| 85 |
int atid2 = at2->getIdent(); |
| 86 |
if (RPtids[atid2] == -1) { |
| 87 |
rptid2 = RPtypes.size(); |
| 88 |
RPtypes.insert(atid2); |
| 89 |
RPtids[atid2] = rptid2; |
| 90 |
} |
| 91 |
|
| 92 |
RepulsivePowerInteractionType* rpit = dynamic_cast<RepulsivePowerInteractionType*>(nbt); |
| 93 |
if (rpit == NULL) { |
| 94 |
sprintf( painCave.errMsg, |
| 95 |
"RepulsivePower::initialize could not convert NonBondedInteractionType\n" |
| 96 |
"\tto RepulsivePowerInteractionType for %s - %s interaction.\n", |
| 97 |
at1->getName().c_str(), |
| 98 |
at2->getName().c_str()); |
| 99 |
painCave.severity = OPENMD_ERROR; |
| 100 |
painCave.isFatal = 1; |
| 101 |
simError(); |
| 102 |
} |
| 103 |
|
| 104 |
RealType sigma = rpit->getSigma(); |
| 105 |
RealType epsilon = rpit->getEpsilon(); |
| 106 |
int nRep = rpit->getNrep(); |
| 107 |
|
| 108 |
addExplicitInteraction(at1, at2, sigma, epsilon, nRep); |
| 109 |
} |
| 110 |
} |
| 111 |
initialized_ = true; |
| 112 |
} |
| 113 |
|
| 114 |
void RepulsivePower::addExplicitInteraction(AtomType* atype1, |
| 115 |
AtomType* atype2, |
| 116 |
RealType sigma, |
| 117 |
RealType epsilon, |
| 118 |
int nRep) { |
| 119 |
|
| 120 |
RPInteractionData mixer; |
| 121 |
mixer.sigma = sigma; |
| 122 |
mixer.epsilon = epsilon; |
| 123 |
mixer.sigmai = 1.0 / mixer.sigma; |
| 124 |
mixer.nRep = nRep; |
| 125 |
|
| 126 |
int rptid1 = RPtids[atype1->getIdent()]; |
| 127 |
int rptid2 = RPtids[atype2->getIdent()]; |
| 128 |
int nRP = RPtypes.size(); |
| 129 |
|
| 130 |
MixingMap.resize(nRP); |
| 131 |
MixingMap[rptid1].resize(nRP); |
| 132 |
|
| 133 |
MixingMap[rptid1][rptid2] = mixer; |
| 134 |
if (rptid2 != rptid1) { |
| 135 |
MixingMap[rptid2].resize(nRP); |
| 136 |
MixingMap[rptid2][rptid1] = mixer; |
| 137 |
} |
| 138 |
} |
| 139 |
|
| 140 |
void RepulsivePower::calcForce(InteractionData &idat) { |
| 141 |
|
| 142 |
if (!initialized_) initialize(); |
| 143 |
|
| 144 |
RPInteractionData &mixer = MixingMap[RPtids[idat.atid1]][RPtids[idat.atid2]]; |
| 145 |
RealType sigmai = mixer.sigmai; |
| 146 |
RealType epsilon = mixer.epsilon; |
| 147 |
int nRep = mixer.nRep; |
| 148 |
|
| 149 |
RealType ros; |
| 150 |
RealType rcos; |
| 151 |
RealType myPot = 0.0; |
| 152 |
RealType myPotC = 0.0; |
| 153 |
RealType myDeriv = 0.0; |
| 154 |
RealType myDerivC = 0.0; |
| 155 |
|
| 156 |
ros = *(idat.rij) * sigmai; |
| 157 |
|
| 158 |
getNRepulsionFunc(ros, nRep, myPot, myDeriv); |
| 159 |
|
| 160 |
if (idat.shiftedPot) { |
| 161 |
rcos = *(idat.rcut) * sigmai; |
| 162 |
getNRepulsionFunc(rcos, nRep, myPotC, myDerivC); |
| 163 |
myDerivC = 0.0; |
| 164 |
} else if (idat.shiftedForce) { |
| 165 |
rcos = *(idat.rcut) * sigmai; |
| 166 |
getNRepulsionFunc(rcos, nRep, myPotC, myDerivC); |
| 167 |
myPotC = myPotC + myDerivC * (*(idat.rij) - *(idat.rcut)) * sigmai; |
| 168 |
} else { |
| 169 |
myPotC = 0.0; |
| 170 |
myDerivC = 0.0; |
| 171 |
} |
| 172 |
|
| 173 |
RealType pot_temp = *(idat.vdwMult) * epsilon * (myPot - myPotC); |
| 174 |
*(idat.vpair) += pot_temp; |
| 175 |
|
| 176 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * epsilon * (myDeriv - |
| 177 |
myDerivC)*sigmai; |
| 178 |
|
| 179 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
| 180 |
*(idat.f1) = *(idat.d) * dudr / *(idat.rij); |
| 181 |
|
| 182 |
return; |
| 183 |
} |
| 184 |
|
| 185 |
void RepulsivePower::getNRepulsionFunc(const RealType &r, int &n, RealType &pot, RealType &deriv) { |
| 186 |
|
| 187 |
RealType ri = 1.0 / r; |
| 188 |
RealType rin = pow(ri, n); |
| 189 |
RealType rin1 = rin * ri; |
| 190 |
|
| 191 |
pot = rin; |
| 192 |
deriv = -n * rin1; |
| 193 |
|
| 194 |
return; |
| 195 |
} |
| 196 |
|
| 197 |
|
| 198 |
RealType RepulsivePower::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
| 199 |
if (!initialized_) initialize(); |
| 200 |
|
| 201 |
int atid1 = atypes.first->getIdent(); |
| 202 |
int atid2 = atypes.second->getIdent(); |
| 203 |
int rptid1 = RPtids[atid1]; |
| 204 |
int rptid2 = RPtids[atid2]; |
| 205 |
|
| 206 |
if (rptid1 == -1 || rptid2 == -1) return 0.0; |
| 207 |
else { |
| 208 |
RPInteractionData mixer = MixingMap[rptid1][rptid2]; |
| 209 |
return 2.5 * mixer.sigma; |
| 210 |
} |
| 211 |
} |
| 212 |
} |
| 213 |
|