1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Morse.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/MorseInteractionType.hpp" |
50 |
|
51 |
using namespace std; |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
Morse::Morse() : name_("Morse"), initialized_(false), forceField_(NULL) {} |
56 |
|
57 |
void Morse::initialize() { |
58 |
|
59 |
Mtypes.clear(); |
60 |
Mtids.clear(); |
61 |
MixingMap.clear(); |
62 |
Mtids.resize( forceField_->getNAtomType(), -1); |
63 |
|
64 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
65 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
66 |
ForceField::NonBondedInteractionTypeContainer::KeyType keys; |
67 |
NonBondedInteractionType* nbt; |
68 |
int mtid1, mtid2; |
69 |
|
70 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
71 |
nbt = nbiTypes->nextType(j)) { |
72 |
|
73 |
if (nbt->isMorse()) { |
74 |
keys = nbiTypes->getKeys(j); |
75 |
AtomType* at1 = forceField_->getAtomType(keys[0]); |
76 |
AtomType* at2 = forceField_->getAtomType(keys[1]); |
77 |
|
78 |
int atid1 = at1->getIdent(); |
79 |
if (Mtids[atid1] == -1) { |
80 |
mtid1 = Mtypes.size(); |
81 |
Mtypes.insert(atid1); |
82 |
Mtids[atid1] = mtid1; |
83 |
} |
84 |
int atid2 = at2->getIdent(); |
85 |
if (Mtids[atid2] == -1) { |
86 |
mtid2 = Mtypes.size(); |
87 |
Mtypes.insert(atid2); |
88 |
Mtids[atid2] = mtid2; |
89 |
} |
90 |
|
91 |
MorseInteractionType* mit = dynamic_cast<MorseInteractionType*>(nbt); |
92 |
|
93 |
if (mit == NULL) { |
94 |
sprintf( painCave.errMsg, |
95 |
"Morse::initialize could not convert NonBondedInteractionType\n" |
96 |
"\tto MorseInteractionType for %s - %s interaction.\n", |
97 |
at1->getName().c_str(), |
98 |
at2->getName().c_str()); |
99 |
painCave.severity = OPENMD_ERROR; |
100 |
painCave.isFatal = 1; |
101 |
simError(); |
102 |
} |
103 |
|
104 |
RealType De = mit->getD(); |
105 |
RealType Re = mit->getR(); |
106 |
RealType beta = mit->getBeta(); |
107 |
|
108 |
MorseType variant = mit->getInteractionType(); |
109 |
addExplicitInteraction(at1, at2, De, Re, beta, variant ); |
110 |
} |
111 |
} |
112 |
initialized_ = true; |
113 |
} |
114 |
|
115 |
void Morse::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
116 |
RealType De, RealType Re, RealType beta, |
117 |
MorseType mt) { |
118 |
|
119 |
MorseInteractionData mixer; |
120 |
mixer.De = De; |
121 |
mixer.Re = Re; |
122 |
mixer.beta = beta; |
123 |
mixer.variant = mt; |
124 |
|
125 |
int mtid1 = Mtids[atype1->getIdent()]; |
126 |
int mtid2 = Mtids[atype2->getIdent()]; |
127 |
int nM = Mtypes.size(); |
128 |
|
129 |
MixingMap.resize(nM); |
130 |
MixingMap[mtid1].resize(nM); |
131 |
|
132 |
MixingMap[mtid1][mtid2] = mixer; |
133 |
if (mtid2 != mtid1) { |
134 |
MixingMap[mtid2].resize(nM); |
135 |
MixingMap[mtid2][mtid1] = mixer; |
136 |
} |
137 |
} |
138 |
|
139 |
void Morse::calcForce(InteractionData &idat) { |
140 |
|
141 |
if (!initialized_) initialize(); |
142 |
|
143 |
MorseInteractionData &mixer = MixingMap[Mtids[idat.atid1]][Mtids[idat.atid2]]; |
144 |
|
145 |
RealType myPot = 0.0; |
146 |
RealType myPotC = 0.0; |
147 |
RealType myDeriv = 0.0; |
148 |
RealType myDerivC = 0.0; |
149 |
|
150 |
RealType De = mixer.De; |
151 |
RealType Re = mixer.Re; |
152 |
RealType beta = mixer.beta; |
153 |
MorseType variant = mixer.variant; |
154 |
|
155 |
// V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2) |
156 |
|
157 |
RealType expt = -beta*( *(idat.rij) - Re); |
158 |
RealType expfnc = exp(expt); |
159 |
RealType expfnc2 = expfnc*expfnc; |
160 |
|
161 |
RealType exptC = 0.0; |
162 |
RealType expfncC = 0.0; |
163 |
RealType expfnc2C = 0.0; |
164 |
|
165 |
if (idat.shiftedPot || idat.shiftedForce) { |
166 |
exptC = -beta*( *(idat.rcut) - Re); |
167 |
expfncC = exp(exptC); |
168 |
expfnc2C = expfncC*expfncC; |
169 |
} |
170 |
|
171 |
|
172 |
switch(variant) { |
173 |
case mtShifted : { |
174 |
|
175 |
myPot = De * (expfnc2 - 2.0 * expfnc); |
176 |
myDeriv = 2.0 * De * beta * (expfnc - expfnc2); |
177 |
|
178 |
if (idat.shiftedPot) { |
179 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
180 |
myDerivC = 0.0; |
181 |
} else if (idat.shiftedForce) { |
182 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
183 |
myDerivC = 2.0 * De * beta * (expfncC - expfnc2C); |
184 |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) ); |
185 |
} else { |
186 |
myPotC = 0.0; |
187 |
myDerivC = 0.0; |
188 |
} |
189 |
|
190 |
break; |
191 |
} |
192 |
case mtRepulsive : { |
193 |
|
194 |
myPot = De * expfnc2; |
195 |
myDeriv = -2.0 * De * beta * expfnc2; |
196 |
|
197 |
if (idat.shiftedPot) { |
198 |
myPotC = De * expfnc2C; |
199 |
myDerivC = 0.0; |
200 |
} else if (idat.shiftedForce) { |
201 |
myPotC = De * expfnc2C; |
202 |
myDerivC = -2.0 * De * beta * expfnc2C; |
203 |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut)); |
204 |
} else { |
205 |
myPotC = 0.0; |
206 |
myDerivC = 0.0; |
207 |
} |
208 |
|
209 |
break; |
210 |
} |
211 |
case mtUnknown: { |
212 |
// don't know what to do so don't do anything |
213 |
break; |
214 |
} |
215 |
} |
216 |
|
217 |
|
218 |
RealType pot_temp = *(idat.vdwMult) * (myPot - myPotC); |
219 |
*(idat.vpair) += pot_temp; |
220 |
|
221 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * (myDeriv - myDerivC); |
222 |
|
223 |
|
224 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
225 |
*(idat.f1) = *(idat.d) * dudr / *(idat.rij); |
226 |
|
227 |
return; |
228 |
} |
229 |
|
230 |
RealType Morse::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
231 |
if (!initialized_) initialize(); |
232 |
|
233 |
int atid1 = atypes.first->getIdent(); |
234 |
int atid2 = atypes.second->getIdent(); |
235 |
int mtid1 = Mtids[atid1]; |
236 |
int mtid2 = Mtids[atid2]; |
237 |
|
238 |
if ( mtid1 == -1 || mtid2 == -1) return 0.0; |
239 |
else { |
240 |
MorseInteractionData mixer = MixingMap[mtid1][mtid2]; |
241 |
RealType Re = mixer.Re; |
242 |
RealType beta = mixer.beta; |
243 |
// This value of the r corresponds to an energy about 1.48% of |
244 |
// the energy at the bottom of the Morse well. For comparison, the |
245 |
// Lennard-Jones function is about 1.63% of it's minimum value at |
246 |
// a distance of 2.5 sigma. |
247 |
return (4.9 + beta * Re) / beta; |
248 |
} |
249 |
} |
250 |
} |
251 |
|