ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/MAW.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 4 months ago) by gezelter
File size: 10475 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45 #include <cmath>
46
47 #include "nonbonded/MAW.hpp"
48 #include "utils/simError.h"
49
50 using namespace std;
51
52 namespace OpenMD {
53
54 MAW::MAW() : initialized_(false), forceField_(NULL), name_("MAW") {}
55
56 void MAW::initialize() {
57
58 MAWtypes.clear();
59 MAWtids.clear();
60 MixingMap.clear();
61 MAWtids.resize( forceField_->getNAtomType(), -1);
62
63 ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
64 ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
65 ForceField::NonBondedInteractionTypeContainer::KeyType keys;
66 NonBondedInteractionType* nbt;
67 int mtid1, mtid2;
68
69 for (nbt = nbiTypes->beginType(j); nbt != NULL;
70 nbt = nbiTypes->nextType(j)) {
71
72 if (nbt->isMAW()) {
73 keys = nbiTypes->getKeys(j);
74 AtomType* at1 = forceField_->getAtomType(keys[0]);
75 AtomType* at2 = forceField_->getAtomType(keys[1]);
76
77 int atid1 = at1->getIdent();
78 if (MAWtids[atid1] == -1) {
79 mtid1 = MAWtypes.size();
80 MAWtypes.insert(atid1);
81 MAWtids[atid1] = mtid1;
82 }
83 int atid2 = at2->getIdent();
84 if (MAWtids[atid2] == -1) {
85 mtid2 = MAWtypes.size();
86 MAWtypes.insert(atid2);
87 MAWtids[atid2] = mtid2;
88 }
89
90 MAWInteractionType* mit = dynamic_cast<MAWInteractionType*>(nbt);
91
92 if (mit == NULL) {
93 sprintf( painCave.errMsg,
94 "MAW::initialize could not convert NonBondedInteractionType\n"
95 "\tto MAWInteractionType for %s - %s interaction.\n",
96 at1->getName().c_str(),
97 at2->getName().c_str());
98 painCave.severity = OPENMD_ERROR;
99 painCave.isFatal = 1;
100 simError();
101 }
102
103 RealType De = mit->getD();
104 RealType beta = mit->getBeta();
105 RealType Re = mit->getR();
106 RealType ca1 = mit->getCA1();
107 RealType cb1 = mit->getCB1();
108
109 addExplicitInteraction(at1, at2,
110 De, beta, Re, ca1, cb1);
111 }
112 }
113 initialized_ = true;
114 }
115
116 void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
117 RealType De, RealType beta, RealType Re,
118 RealType ca1, RealType cb1) {
119
120 MAWInteractionData mixer;
121 mixer.De = De;
122 mixer.beta = beta;
123 mixer.Re = Re;
124 mixer.ca1 = ca1;
125 mixer.cb1 = cb1;
126 mixer.j_is_Metal = atype2->isMetal();
127
128 int mtid1 = MAWtids[atype1->getIdent()];
129 int mtid2 = MAWtids[atype2->getIdent()];
130 int nM = MAWtypes.size();
131
132 MixingMap.resize(nM);
133 MixingMap[mtid1].resize(nM);
134
135 MixingMap[mtid1][mtid2] = mixer;
136 if (mtid2 != mtid1) {
137 MixingMap[mtid2].resize(nM);
138 mixer.j_is_Metal = atype1->isMetal();
139 MixingMap[mtid2][mtid1] = mixer;
140 }
141 }
142
143 void MAW::calcForce(InteractionData &idat) {
144
145 if (!initialized_) initialize();
146
147 MAWInteractionData &mixer = MixingMap[MAWtids[idat.atid1]][MAWtids[idat.atid2]];
148
149 RealType myPot = 0.0;
150 RealType myPotC = 0.0;
151 RealType myDeriv = 0.0;
152 RealType myDerivC = 0.0;
153
154 RealType D_e = mixer.De;
155 RealType R_e = mixer.Re;
156 RealType beta = mixer.beta;
157 RealType ca1 = mixer.ca1;
158 RealType cb1 = mixer.cb1;
159
160 Vector3d r;
161 RotMat3x3d Atrans;
162 if (mixer.j_is_Metal) {
163 // rotate the inter-particle separation into the two different
164 // body-fixed coordinate systems:
165 r = *(idat.A1) * *(idat.d);
166 Atrans = idat.A1->transpose();
167 } else {
168 // negative sign because this is the vector from j to i:
169 r = -*(idat.A2) * *(idat.d);
170 Atrans = idat.A2->transpose();
171 }
172
173 // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
174
175 RealType expt = -beta*( *(idat.rij) - R_e);
176 RealType expfnc = exp(expt);
177 RealType expfnc2 = expfnc*expfnc;
178
179 RealType exptC = 0.0;
180 RealType expfncC = 0.0;
181 RealType expfnc2C = 0.0;
182
183 myPot = D_e * (expfnc2 - 2.0 * expfnc);
184 myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
185
186 if (idat.shiftedPot || idat.shiftedForce) {
187 exptC = -beta*( *(idat.rcut) - R_e);
188 expfncC = exp(exptC);
189 expfnc2C = expfncC*expfncC;
190 }
191
192 if (idat.shiftedPot) {
193 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
194 myDerivC = 0.0;
195 } else if (idat.shiftedForce) {
196 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
197 myDerivC = 2.0 * D_e * beta * (expfncC - expfnc2C);
198 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
199 } else {
200 myPotC = 0.0;
201 myDerivC = 0.0;
202 }
203
204 RealType x = r.x();
205 RealType y = r.y();
206 RealType z = r.z();
207 RealType x2 = x * x;
208 RealType z2 = z * z;
209
210 RealType r3 = *(idat.r2) * *(idat.rij) ;
211 RealType r4 = *(idat.r2) * *(idat.r2);
212
213 // angular modulation of morse part of potential to approximate
214 // the squares of the two HOMO lone pair orbitals in water:
215 //********************** old form*************************
216 // s = 1 / (4 pi)
217 // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
218 // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
219 //********************** old form*************************
220 // we'll leave out the 4 pi for now
221
222 // new functional form just using the p orbitals.
223 // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
224 // which is
225 // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
226 // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
227
228 RealType Vmorse = (myPot - myPotC);
229 RealType Vang = ca1 * x2 / *(idat.r2) +
230 cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
231
232 RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
233 *(idat.vpair) += pot_temp;
234 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
235
236 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
237
238 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
239 -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
240 -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
241
242 // chain rule to put these back on x, y, z
243
244 Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
245
246 // Torques for Vang using method of Price:
247 // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
248
249 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
250 2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
251 -2.0 * ca1 * y * x / *(idat.r2));
252
253 // do the torques first since they are easy:
254 // remember that these are still in the body fixed axes
255
256 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
257
258 // go back to lab frame using transpose of rotation matrix:
259
260 if (mixer.j_is_Metal) {
261 *(idat.t1) += Atrans * trq;
262 } else {
263 *(idat.t2) += Atrans * trq;
264 }
265
266 // Now, on to the forces (still in body frame of water)
267
268 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
269
270 // rotate the terms back into the lab frame:
271 Vector3d flab;
272 if (mixer.j_is_Metal) {
273 flab = Atrans * ftmp;
274 } else {
275 flab = - Atrans * ftmp;
276 }
277
278 *(idat.f1) += flab;
279
280 return;
281 }
282
283 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
284 if (!initialized_) initialize();
285 int atid1 = atypes.first->getIdent();
286 int atid2 = atypes.second->getIdent();
287 int mtid1 = MAWtids[atid1];
288 int mtid2 = MAWtids[atid2];
289
290 if ( mtid1 == -1 || mtid2 == -1) return 0.0;
291 else {
292 MAWInteractionData mixer = MixingMap[mtid1][mtid2];
293 RealType R_e = mixer.Re;
294 RealType beta = mixer.beta;
295 // This value of the r corresponds to an energy about 1.48% of
296 // the energy at the bottom of the Morse well. For comparison, the
297 // Lennard-Jones function is about 1.63% of it's minimum value at
298 // a distance of 2.5 sigma.
299 return (4.9 + beta * R_e) / beta;
300 }
301 }
302 }
303

Properties

Name Value
svn:eol-style native