ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/GB.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 4 months ago) by gezelter
File size: 14065 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/GB.hpp"
48 #include "utils/simError.h"
49 #include "types/LennardJonesAdapter.hpp"
50 #include "types/GayBerneAdapter.hpp"
51
52 using namespace std;
53 namespace OpenMD {
54
55 /* GB is the Gay-Berne interaction for ellipsoidal particles. The original
56 * paper (for identical uniaxial particles) is:
57 * J. G. Gay and B. J. Berne, J. Chem. Phys., 74, 3316-3319 (1981).
58 * A more-general GB potential for dissimilar uniaxial particles:
59 * D. J. Cleaver, C. M. Care, M. P. Allen and M. P. Neal, Phys. Rev. E,
60 * 54, 559-567 (1996).
61 * Further parameterizations can be found in:
62 * A. P. J. Emerson, G. R. Luckhurst and S. G. Whatling, Mol. Phys.,
63 * 82, 113-124 (1994).
64 * And a nice force expression:
65 * G. R. Luckhurst and R. A. Stephens, Liq. Cryst. 8, 451-464 (1990).
66 * Even clearer force and torque expressions:
67 * P. A. Golubkov and P. Y. Ren, J. Chem. Phys., 125, 64103 (2006).
68 * New expressions for cross interactions of strength parameters:
69 * J. Wu, X. Zhen, H. Shen, G. Li, and P. Ren, J. Chem. Phys.,
70 * 135, 155104 (2011).
71 *
72 * In this version of the GB interaction, each uniaxial ellipsoidal type
73 * is described using a set of 6 parameters:
74 * d: range parameter for side-by-side (S) and cross (X) configurations
75 * l: range parameter for end-to-end (E) configuration
76 * epsilon_X: well-depth parameter for cross (X) configuration
77 * epsilon_S: well-depth parameter for side-by-side (S) configuration
78 * epsilon_E: well depth parameter for end-to-end (E) configuration
79 * dw: "softness" of the potential
80 *
81 * Additionally, there are two "universal" paramters to govern the overall
82 * importance of the purely orientational (nu) and the mixed
83 * orientational / translational (mu) parts of strength of the interactions.
84 * These parameters have default or "canonical" values, but may be changed
85 * as a force field option:
86 * nu_: purely orientational part : defaults to 1
87 * mu_: mixed orientational / translational part : defaults to 2
88 */
89
90
91 GB::GB() : initialized_(false), name_("GB"), forceField_(NULL),
92 mu_(2.0), nu_(1.0) {}
93
94 void GB::initialize() {
95
96 GBtypes.clear();
97 GBtids.clear();
98 MixingMap.clear();
99 nGB_ = 0;
100
101 GBtids.resize( forceField_->getNAtomType(), -1);
102
103 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
104 mu_ = fopts.getGayBerneMu();
105 nu_ = fopts.getGayBerneNu();
106
107 // GB handles all of the GB-GB interactions as well as GB-LJ cross
108 // interactions:
109 set<AtomType*>::iterator at;
110 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
111 if ((*at)->isGayBerne()) nGB_++;
112 if ((*at)->isLennardJones()) nGB_++;
113 }
114
115 MixingMap.resize(nGB_);
116 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
117 if ((*at)->isGayBerne() || (*at)->isLennardJones()) addType( *at );
118 }
119
120 initialized_ = true;
121 }
122
123 void GB::addType(AtomType* atomType){
124
125 // add it to the map:
126 int atid = atomType->getIdent();
127 int gbtid = GBtypes.size();
128
129 pair<set<int>::iterator,bool> ret;
130 ret = GBtypes.insert( atid );
131 if (ret.second == false) {
132 sprintf( painCave.errMsg,
133 "GB already had a previous entry with ident %d\n",
134 atid) ;
135 painCave.severity = OPENMD_INFO;
136 painCave.isFatal = 0;
137 simError();
138 }
139
140 GBtids[atid] = gbtid;
141 MixingMap[gbtid].resize( nGB_ );
142
143 RealType d1(0.0), l1(0.0), eX1(0.0), eS1(0.0), eE1(0.0), dw1(0.0);
144
145 LennardJonesAdapter lja1 = LennardJonesAdapter(atomType);
146 GayBerneAdapter gba1 = GayBerneAdapter(atomType);
147 if (gba1.isGayBerne()) {
148 d1 = gba1.getD();
149 l1 = gba1.getL();
150 eX1 = gba1.getEpsX();
151 eS1 = gba1.getEpsS();
152 eE1 = gba1.getEpsE();
153 dw1 = gba1.getDw();
154 } else if (lja1.isLennardJones()) {
155 d1 = lja1.getSigma() / sqrt(2.0);
156 l1 = d1;
157 eX1 = lja1.getEpsilon();
158 eS1 = eX1;
159 eE1 = eX1;
160 dw1 = 1.0;
161 } else {
162 sprintf( painCave.errMsg,
163 "GB::addType was passed an atomType (%s) that does not\n"
164 "\tappear to be a Gay-Berne or Lennard-Jones atom.\n",
165 atomType->getName().c_str());
166 painCave.severity = OPENMD_ERROR;
167 painCave.isFatal = 1;
168 simError();
169 }
170
171
172 // Now, iterate over all known types and add to the mixing map:
173
174 std::set<int>::iterator it;
175 for( it = GBtypes.begin(); it != GBtypes.end(); ++it) {
176
177 int gbtid2 = GBtids[ (*it) ];
178 AtomType* atype2 = forceField_->getAtomType( (*it) );
179
180 LennardJonesAdapter lja2 = LennardJonesAdapter(atype2);
181 GayBerneAdapter gba2 = GayBerneAdapter(atype2);
182 RealType d2(0.0), l2(0.0), eX2(0.0), eS2(0.0), eE2(0.0), dw2(0.0);
183
184 if (gba2.isGayBerne()) {
185 d2 = gba2.getD();
186 l2 = gba2.getL();
187 eX2 = gba2.getEpsX();
188 eS2 = gba2.getEpsS();
189 eE2 = gba2.getEpsE();
190 dw2 = gba2.getDw();
191 } else if (lja2.isLennardJones()) {
192 d2 = lja2.getSigma() / sqrt(2.0);
193 l2 = d2;
194 eX2 = lja2.getEpsilon();
195 eS2 = eX2;
196 eE2 = eX2;
197 dw2 = 1.0;
198 } else {
199 sprintf( painCave.errMsg,
200 "GB::addType found an atomType (%s) that does not\n"
201 "\tappear to be a Gay-Berne or Lennard-Jones atom.\n",
202 atype2->getName().c_str());
203 painCave.severity = OPENMD_ERROR;
204 painCave.isFatal = 1;
205 simError();
206 }
207
208
209 GBInteractionData mixer1, mixer2;
210
211 // Cleaver paper uses sqrt of squares to get sigma0 for
212 // mixed interactions.
213
214 mixer1.sigma0 = sqrt(d1*d1 + d2*d2);
215 mixer1.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2);
216 mixer1.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1);
217 mixer1.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) /
218 ((l2*l2 + d1*d1) * (l1*l1 + d2*d2));
219
220 mixer2.sigma0 = mixer1.sigma0;
221 // xa2 and xai2 for j-i pairs are reversed from the same i-j pairing.
222 // Swapping the particles reverses the anisotropy parameters:
223 mixer2.xa2 = mixer1.xai2;
224 mixer2.xai2 = mixer1.xa2;
225 mixer2.x2 = mixer1.x2;
226
227 // assumed LB mixing rules for now:
228
229 mixer1.dw = 0.5 * (dw1 + dw2);
230 mixer1.eps0 = sqrt(eX1 * eX2);
231
232 mixer2.dw = mixer1.dw;
233 mixer2.eps0 = mixer1.eps0;
234
235 RealType mi = RealType(1.0)/mu_;
236
237 mixer1.xpap2 = (pow(eS1, mi) - pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi));
238 mixer1.xpapi2 = (pow(eS2, mi) - pow(eE2, mi)) / (pow(eS2, mi) + pow(eE1, mi));
239 mixer1.xp2 = (pow(eS1, mi) - pow(eE1, mi)) * (pow(eS2, mi) - pow(eE2, mi)) /
240 (pow(eS2, mi) + pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)) ;
241
242 // xpap2 and xpapi2 for j-i pairs are reversed from the same i-j pairing.
243 // Swapping the particles reverses the anisotropy parameters:
244 mixer2.xpap2 = mixer1.xpapi2;
245 mixer2.xpapi2 = mixer1.xpap2;
246 mixer2.xp2 = mixer1.xp2;
247 // keep track of who is the LJ atom:
248 mixer1.i_is_LJ = atomType->isLennardJones();
249 mixer1.j_is_LJ = atype2->isLennardJones();
250 mixer2.i_is_LJ = mixer1.j_is_LJ;
251 mixer2.j_is_LJ = mixer1.i_is_LJ;
252
253
254 // only add this pairing if at least one of the atoms is a Gay-Berne atom
255
256 if (gba1.isGayBerne() || gba2.isGayBerne()) {
257 MixingMap[gbtid2].resize( nGB_ );
258 MixingMap[gbtid][gbtid2] = mixer1;
259 if (gbtid2 != gbtid) {
260 MixingMap[gbtid2][gbtid] = mixer2;
261 }
262 }
263 }
264 }
265
266 void GB::calcForce(InteractionData &idat) {
267
268 if (!initialized_) initialize();
269
270 GBInteractionData &mixer = MixingMap[GBtids[idat.atid1]][GBtids[idat.atid2]];
271
272 RealType sigma0 = mixer.sigma0;
273 RealType dw = mixer.dw;
274 RealType eps0 = mixer.eps0;
275 RealType x2 = mixer.x2;
276 RealType xa2 = mixer.xa2;
277 RealType xai2 = mixer.xai2;
278 RealType xp2 = mixer.xp2;
279 RealType xpap2 = mixer.xpap2;
280 RealType xpapi2 = mixer.xpapi2;
281
282 Vector3d ul1 = idat.A1->getRow(2);
283 Vector3d ul2 = idat.A2->getRow(2);
284
285 RealType a, b, g;
286
287 if (mixer.i_is_LJ) {
288 a = 0.0;
289 ul1 = V3Zero;
290 } else {
291 a = dot(*(idat.d), ul1);
292 }
293
294 if (mixer.j_is_LJ) {
295 b = 0.0;
296 ul2 = V3Zero;
297 } else {
298 b = dot(*(idat.d), ul2);
299 }
300
301 if (mixer.i_is_LJ || mixer.j_is_LJ)
302 g = 0.0;
303 else
304 g = dot(ul1, ul2);
305
306 RealType au = a / *(idat.rij);
307 RealType bu = b / *(idat.rij);
308
309 RealType au2 = au * au;
310 RealType bu2 = bu * bu;
311 RealType g2 = g * g;
312
313 RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
314 RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
315
316 RealType sigma = sigma0 / sqrt(1.0 - H);
317 RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
318 RealType e2 = 1.0 - Hp;
319 RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
320 RealType BigR = dw*sigma0 / (*(idat.rij) - sigma + dw*sigma0);
321
322 RealType R3 = BigR*BigR*BigR;
323 RealType R6 = R3*R3;
324 RealType R7 = R6 * BigR;
325 RealType R12 = R6*R6;
326 RealType R13 = R6*R7;
327
328 RealType U = *(idat.vdwMult) * 4.0 * eps * (R12 - R6);
329
330 RealType s3 = sigma*sigma*sigma;
331 RealType s03 = sigma0*sigma0*sigma0;
332
333 RealType pref1 = - *(idat.vdwMult) * 8.0 * eps * mu_ * (R12 - R6) /
334 (e2 * *(idat.rij));
335
336 RealType pref2 = *(idat.vdwMult) * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /
337 (dw* *(idat.rij) * s03);
338
339 RealType dUdr = - (pref1 * Hp + pref2 * (sigma0 * sigma0 *
340 *(idat.rij) / s3 + H));
341
342 RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
343 + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
344
345 RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
346 + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
347
348 RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
349 + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
350 (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
351 (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
352
353 Vector3d rhat = *(idat.d) / *(idat.rij);
354 Vector3d rxu1 = cross(*(idat.d), ul1);
355 Vector3d rxu2 = cross(*(idat.d), ul2);
356 Vector3d uxu = cross(ul1, ul2);
357
358 (*(idat.pot))[VANDERWAALS_FAMILY] += U * *(idat.sw);
359 *(idat.f1) += (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw);
360 *(idat.t1) += (dUda * rxu1 - dUdg * uxu) * *(idat.sw);
361 *(idat.t2) += (dUdb * rxu2 + dUdg * uxu) * *(idat.sw);
362 *(idat.vpair) += U;
363
364 return;
365
366 }
367
368 RealType GB::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
369 if (!initialized_) initialize();
370
371 RealType cut = 0.0;
372
373 LennardJonesAdapter lja1 = LennardJonesAdapter(atypes.first);
374 GayBerneAdapter gba1 = GayBerneAdapter(atypes.first);
375 LennardJonesAdapter lja2 = LennardJonesAdapter(atypes.second);
376 GayBerneAdapter gba2 = GayBerneAdapter(atypes.second);
377
378 if (gba1.isGayBerne()) {
379 RealType d1 = gba1.getD();
380 RealType l1 = gba1.getL();
381 // sigma is actually sqrt(2)*l for prolate ellipsoids
382 cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d1, l1));
383 } else if (lja1.isLennardJones()) {
384 cut = max(cut, RealType(2.5) * lja1.getSigma());
385 }
386
387 if (gba2.isGayBerne()) {
388 RealType d2 = gba2.getD();
389 RealType l2 = gba2.getL();
390 cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d2, l2));
391 } else if (lja2.isLennardJones()) {
392 cut = max(cut, RealType(2.5) * lja2.getSigma());
393 }
394
395 return cut;
396 }
397 }
398

Properties

Name Value
svn:eol-style native