1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/GB.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/LennardJonesAdapter.hpp" |
50 |
#include "types/GayBerneAdapter.hpp" |
51 |
|
52 |
using namespace std; |
53 |
namespace OpenMD { |
54 |
|
55 |
/* GB is the Gay-Berne interaction for ellipsoidal particles. The original |
56 |
* paper (for identical uniaxial particles) is: |
57 |
* J. G. Gay and B. J. Berne, J. Chem. Phys., 74, 3316-3319 (1981). |
58 |
* A more-general GB potential for dissimilar uniaxial particles: |
59 |
* D. J. Cleaver, C. M. Care, M. P. Allen and M. P. Neal, Phys. Rev. E, |
60 |
* 54, 559-567 (1996). |
61 |
* Further parameterizations can be found in: |
62 |
* A. P. J. Emerson, G. R. Luckhurst and S. G. Whatling, Mol. Phys., |
63 |
* 82, 113-124 (1994). |
64 |
* And a nice force expression: |
65 |
* G. R. Luckhurst and R. A. Stephens, Liq. Cryst. 8, 451-464 (1990). |
66 |
* Even clearer force and torque expressions: |
67 |
* P. A. Golubkov and P. Y. Ren, J. Chem. Phys., 125, 64103 (2006). |
68 |
* New expressions for cross interactions of strength parameters: |
69 |
* J. Wu, X. Zhen, H. Shen, G. Li, and P. Ren, J. Chem. Phys., |
70 |
* 135, 155104 (2011). |
71 |
* |
72 |
* In this version of the GB interaction, each uniaxial ellipsoidal type |
73 |
* is described using a set of 6 parameters: |
74 |
* d: range parameter for side-by-side (S) and cross (X) configurations |
75 |
* l: range parameter for end-to-end (E) configuration |
76 |
* epsilon_X: well-depth parameter for cross (X) configuration |
77 |
* epsilon_S: well-depth parameter for side-by-side (S) configuration |
78 |
* epsilon_E: well depth parameter for end-to-end (E) configuration |
79 |
* dw: "softness" of the potential |
80 |
* |
81 |
* Additionally, there are two "universal" paramters to govern the overall |
82 |
* importance of the purely orientational (nu) and the mixed |
83 |
* orientational / translational (mu) parts of strength of the interactions. |
84 |
* These parameters have default or "canonical" values, but may be changed |
85 |
* as a force field option: |
86 |
* nu_: purely orientational part : defaults to 1 |
87 |
* mu_: mixed orientational / translational part : defaults to 2 |
88 |
*/ |
89 |
|
90 |
|
91 |
GB::GB() : initialized_(false), name_("GB"), forceField_(NULL), |
92 |
mu_(2.0), nu_(1.0) {} |
93 |
|
94 |
void GB::initialize() { |
95 |
|
96 |
GBtypes.clear(); |
97 |
GBtids.clear(); |
98 |
MixingMap.clear(); |
99 |
nGB_ = 0; |
100 |
|
101 |
GBtids.resize( forceField_->getNAtomType(), -1); |
102 |
|
103 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
104 |
mu_ = fopts.getGayBerneMu(); |
105 |
nu_ = fopts.getGayBerneNu(); |
106 |
|
107 |
// GB handles all of the GB-GB interactions as well as GB-LJ cross |
108 |
// interactions: |
109 |
set<AtomType*>::iterator at; |
110 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
111 |
if ((*at)->isGayBerne()) nGB_++; |
112 |
if ((*at)->isLennardJones()) nGB_++; |
113 |
} |
114 |
|
115 |
MixingMap.resize(nGB_); |
116 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
117 |
if ((*at)->isGayBerne() || (*at)->isLennardJones()) addType( *at ); |
118 |
} |
119 |
|
120 |
initialized_ = true; |
121 |
} |
122 |
|
123 |
void GB::addType(AtomType* atomType){ |
124 |
|
125 |
// add it to the map: |
126 |
int atid = atomType->getIdent(); |
127 |
int gbtid = GBtypes.size(); |
128 |
|
129 |
pair<set<int>::iterator,bool> ret; |
130 |
ret = GBtypes.insert( atid ); |
131 |
if (ret.second == false) { |
132 |
sprintf( painCave.errMsg, |
133 |
"GB already had a previous entry with ident %d\n", |
134 |
atid) ; |
135 |
painCave.severity = OPENMD_INFO; |
136 |
painCave.isFatal = 0; |
137 |
simError(); |
138 |
} |
139 |
|
140 |
GBtids[atid] = gbtid; |
141 |
MixingMap[gbtid].resize( nGB_ ); |
142 |
|
143 |
RealType d1(0.0), l1(0.0), eX1(0.0), eS1(0.0), eE1(0.0), dw1(0.0); |
144 |
|
145 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atomType); |
146 |
GayBerneAdapter gba1 = GayBerneAdapter(atomType); |
147 |
if (gba1.isGayBerne()) { |
148 |
d1 = gba1.getD(); |
149 |
l1 = gba1.getL(); |
150 |
eX1 = gba1.getEpsX(); |
151 |
eS1 = gba1.getEpsS(); |
152 |
eE1 = gba1.getEpsE(); |
153 |
dw1 = gba1.getDw(); |
154 |
} else if (lja1.isLennardJones()) { |
155 |
d1 = lja1.getSigma() / sqrt(2.0); |
156 |
l1 = d1; |
157 |
eX1 = lja1.getEpsilon(); |
158 |
eS1 = eX1; |
159 |
eE1 = eX1; |
160 |
dw1 = 1.0; |
161 |
} else { |
162 |
sprintf( painCave.errMsg, |
163 |
"GB::addType was passed an atomType (%s) that does not\n" |
164 |
"\tappear to be a Gay-Berne or Lennard-Jones atom.\n", |
165 |
atomType->getName().c_str()); |
166 |
painCave.severity = OPENMD_ERROR; |
167 |
painCave.isFatal = 1; |
168 |
simError(); |
169 |
} |
170 |
|
171 |
|
172 |
// Now, iterate over all known types and add to the mixing map: |
173 |
|
174 |
std::set<int>::iterator it; |
175 |
for( it = GBtypes.begin(); it != GBtypes.end(); ++it) { |
176 |
|
177 |
int gbtid2 = GBtids[ (*it) ]; |
178 |
AtomType* atype2 = forceField_->getAtomType( (*it) ); |
179 |
|
180 |
LennardJonesAdapter lja2 = LennardJonesAdapter(atype2); |
181 |
GayBerneAdapter gba2 = GayBerneAdapter(atype2); |
182 |
RealType d2(0.0), l2(0.0), eX2(0.0), eS2(0.0), eE2(0.0), dw2(0.0); |
183 |
|
184 |
if (gba2.isGayBerne()) { |
185 |
d2 = gba2.getD(); |
186 |
l2 = gba2.getL(); |
187 |
eX2 = gba2.getEpsX(); |
188 |
eS2 = gba2.getEpsS(); |
189 |
eE2 = gba2.getEpsE(); |
190 |
dw2 = gba2.getDw(); |
191 |
} else if (lja2.isLennardJones()) { |
192 |
d2 = lja2.getSigma() / sqrt(2.0); |
193 |
l2 = d2; |
194 |
eX2 = lja2.getEpsilon(); |
195 |
eS2 = eX2; |
196 |
eE2 = eX2; |
197 |
dw2 = 1.0; |
198 |
} else { |
199 |
sprintf( painCave.errMsg, |
200 |
"GB::addType found an atomType (%s) that does not\n" |
201 |
"\tappear to be a Gay-Berne or Lennard-Jones atom.\n", |
202 |
atype2->getName().c_str()); |
203 |
painCave.severity = OPENMD_ERROR; |
204 |
painCave.isFatal = 1; |
205 |
simError(); |
206 |
} |
207 |
|
208 |
|
209 |
GBInteractionData mixer1, mixer2; |
210 |
|
211 |
// Cleaver paper uses sqrt of squares to get sigma0 for |
212 |
// mixed interactions. |
213 |
|
214 |
mixer1.sigma0 = sqrt(d1*d1 + d2*d2); |
215 |
mixer1.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2); |
216 |
mixer1.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1); |
217 |
mixer1.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / |
218 |
((l2*l2 + d1*d1) * (l1*l1 + d2*d2)); |
219 |
|
220 |
mixer2.sigma0 = mixer1.sigma0; |
221 |
// xa2 and xai2 for j-i pairs are reversed from the same i-j pairing. |
222 |
// Swapping the particles reverses the anisotropy parameters: |
223 |
mixer2.xa2 = mixer1.xai2; |
224 |
mixer2.xai2 = mixer1.xa2; |
225 |
mixer2.x2 = mixer1.x2; |
226 |
|
227 |
// assumed LB mixing rules for now: |
228 |
|
229 |
mixer1.dw = 0.5 * (dw1 + dw2); |
230 |
mixer1.eps0 = sqrt(eX1 * eX2); |
231 |
|
232 |
mixer2.dw = mixer1.dw; |
233 |
mixer2.eps0 = mixer1.eps0; |
234 |
|
235 |
RealType mi = RealType(1.0)/mu_; |
236 |
|
237 |
mixer1.xpap2 = (pow(eS1, mi) - pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)); |
238 |
mixer1.xpapi2 = (pow(eS2, mi) - pow(eE2, mi)) / (pow(eS2, mi) + pow(eE1, mi)); |
239 |
mixer1.xp2 = (pow(eS1, mi) - pow(eE1, mi)) * (pow(eS2, mi) - pow(eE2, mi)) / |
240 |
(pow(eS2, mi) + pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)) ; |
241 |
|
242 |
// xpap2 and xpapi2 for j-i pairs are reversed from the same i-j pairing. |
243 |
// Swapping the particles reverses the anisotropy parameters: |
244 |
mixer2.xpap2 = mixer1.xpapi2; |
245 |
mixer2.xpapi2 = mixer1.xpap2; |
246 |
mixer2.xp2 = mixer1.xp2; |
247 |
// keep track of who is the LJ atom: |
248 |
mixer1.i_is_LJ = atomType->isLennardJones(); |
249 |
mixer1.j_is_LJ = atype2->isLennardJones(); |
250 |
mixer2.i_is_LJ = mixer1.j_is_LJ; |
251 |
mixer2.j_is_LJ = mixer1.i_is_LJ; |
252 |
|
253 |
|
254 |
// only add this pairing if at least one of the atoms is a Gay-Berne atom |
255 |
|
256 |
if (gba1.isGayBerne() || gba2.isGayBerne()) { |
257 |
MixingMap[gbtid2].resize( nGB_ ); |
258 |
MixingMap[gbtid][gbtid2] = mixer1; |
259 |
if (gbtid2 != gbtid) { |
260 |
MixingMap[gbtid2][gbtid] = mixer2; |
261 |
} |
262 |
} |
263 |
} |
264 |
} |
265 |
|
266 |
void GB::calcForce(InteractionData &idat) { |
267 |
|
268 |
if (!initialized_) initialize(); |
269 |
|
270 |
GBInteractionData &mixer = MixingMap[GBtids[idat.atid1]][GBtids[idat.atid2]]; |
271 |
|
272 |
RealType sigma0 = mixer.sigma0; |
273 |
RealType dw = mixer.dw; |
274 |
RealType eps0 = mixer.eps0; |
275 |
RealType x2 = mixer.x2; |
276 |
RealType xa2 = mixer.xa2; |
277 |
RealType xai2 = mixer.xai2; |
278 |
RealType xp2 = mixer.xp2; |
279 |
RealType xpap2 = mixer.xpap2; |
280 |
RealType xpapi2 = mixer.xpapi2; |
281 |
|
282 |
Vector3d ul1 = idat.A1->getRow(2); |
283 |
Vector3d ul2 = idat.A2->getRow(2); |
284 |
|
285 |
RealType a, b, g; |
286 |
|
287 |
if (mixer.i_is_LJ) { |
288 |
a = 0.0; |
289 |
ul1 = V3Zero; |
290 |
} else { |
291 |
a = dot(*(idat.d), ul1); |
292 |
} |
293 |
|
294 |
if (mixer.j_is_LJ) { |
295 |
b = 0.0; |
296 |
ul2 = V3Zero; |
297 |
} else { |
298 |
b = dot(*(idat.d), ul2); |
299 |
} |
300 |
|
301 |
if (mixer.i_is_LJ || mixer.j_is_LJ) |
302 |
g = 0.0; |
303 |
else |
304 |
g = dot(ul1, ul2); |
305 |
|
306 |
RealType au = a / *(idat.rij); |
307 |
RealType bu = b / *(idat.rij); |
308 |
|
309 |
RealType au2 = au * au; |
310 |
RealType bu2 = bu * bu; |
311 |
RealType g2 = g * g; |
312 |
|
313 |
RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2); |
314 |
RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2); |
315 |
|
316 |
RealType sigma = sigma0 / sqrt(1.0 - H); |
317 |
RealType e1 = 1.0 / sqrt(1.0 - x2*g2); |
318 |
RealType e2 = 1.0 - Hp; |
319 |
RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_); |
320 |
RealType BigR = dw*sigma0 / (*(idat.rij) - sigma + dw*sigma0); |
321 |
|
322 |
RealType R3 = BigR*BigR*BigR; |
323 |
RealType R6 = R3*R3; |
324 |
RealType R7 = R6 * BigR; |
325 |
RealType R12 = R6*R6; |
326 |
RealType R13 = R6*R7; |
327 |
|
328 |
RealType U = *(idat.vdwMult) * 4.0 * eps * (R12 - R6); |
329 |
|
330 |
RealType s3 = sigma*sigma*sigma; |
331 |
RealType s03 = sigma0*sigma0*sigma0; |
332 |
|
333 |
RealType pref1 = - *(idat.vdwMult) * 8.0 * eps * mu_ * (R12 - R6) / |
334 |
(e2 * *(idat.rij)); |
335 |
|
336 |
RealType pref2 = *(idat.vdwMult) * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) / |
337 |
(dw* *(idat.rij) * s03); |
338 |
|
339 |
RealType dUdr = - (pref1 * Hp + pref2 * (sigma0 * sigma0 * |
340 |
*(idat.rij) / s3 + H)); |
341 |
|
342 |
RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2) |
343 |
+ pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2); |
344 |
|
345 |
RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2) |
346 |
+ pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2); |
347 |
|
348 |
RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2) |
349 |
+ 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / |
350 |
(1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) * |
351 |
(x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03); |
352 |
|
353 |
Vector3d rhat = *(idat.d) / *(idat.rij); |
354 |
Vector3d rxu1 = cross(*(idat.d), ul1); |
355 |
Vector3d rxu2 = cross(*(idat.d), ul2); |
356 |
Vector3d uxu = cross(ul1, ul2); |
357 |
|
358 |
(*(idat.pot))[VANDERWAALS_FAMILY] += U * *(idat.sw); |
359 |
*(idat.f1) += (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw); |
360 |
*(idat.t1) += (dUda * rxu1 - dUdg * uxu) * *(idat.sw); |
361 |
*(idat.t2) += (dUdb * rxu2 + dUdg * uxu) * *(idat.sw); |
362 |
*(idat.vpair) += U; |
363 |
|
364 |
return; |
365 |
|
366 |
} |
367 |
|
368 |
RealType GB::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
369 |
if (!initialized_) initialize(); |
370 |
|
371 |
RealType cut = 0.0; |
372 |
|
373 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atypes.first); |
374 |
GayBerneAdapter gba1 = GayBerneAdapter(atypes.first); |
375 |
LennardJonesAdapter lja2 = LennardJonesAdapter(atypes.second); |
376 |
GayBerneAdapter gba2 = GayBerneAdapter(atypes.second); |
377 |
|
378 |
if (gba1.isGayBerne()) { |
379 |
RealType d1 = gba1.getD(); |
380 |
RealType l1 = gba1.getL(); |
381 |
// sigma is actually sqrt(2)*l for prolate ellipsoids |
382 |
cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d1, l1)); |
383 |
} else if (lja1.isLennardJones()) { |
384 |
cut = max(cut, RealType(2.5) * lja1.getSigma()); |
385 |
} |
386 |
|
387 |
if (gba2.isGayBerne()) { |
388 |
RealType d2 = gba2.getD(); |
389 |
RealType l2 = gba2.getL(); |
390 |
cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d2, l2)); |
391 |
} else if (lja2.isLennardJones()) { |
392 |
cut = max(cut, RealType(2.5) * lja2.getSigma()); |
393 |
} |
394 |
|
395 |
return cut; |
396 |
} |
397 |
} |
398 |
|