ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/GB.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 5 months ago) by gezelter
File size: 14065 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# User Rev Content
1 gezelter 1483 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1483 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/GB.hpp"
48     #include "utils/simError.h"
49 gezelter 1710 #include "types/LennardJonesAdapter.hpp"
50     #include "types/GayBerneAdapter.hpp"
51 gezelter 1483
52     using namespace std;
53     namespace OpenMD {
54    
55 gezelter 1688 /* GB is the Gay-Berne interaction for ellipsoidal particles. The original
56     * paper (for identical uniaxial particles) is:
57     * J. G. Gay and B. J. Berne, J. Chem. Phys., 74, 3316-3319 (1981).
58     * A more-general GB potential for dissimilar uniaxial particles:
59     * D. J. Cleaver, C. M. Care, M. P. Allen and M. P. Neal, Phys. Rev. E,
60     * 54, 559-567 (1996).
61     * Further parameterizations can be found in:
62     * A. P. J. Emerson, G. R. Luckhurst and S. G. Whatling, Mol. Phys.,
63     * 82, 113-124 (1994).
64     * And a nice force expression:
65     * G. R. Luckhurst and R. A. Stephens, Liq. Cryst. 8, 451-464 (1990).
66     * Even clearer force and torque expressions:
67     * P. A. Golubkov and P. Y. Ren, J. Chem. Phys., 125, 64103 (2006).
68     * New expressions for cross interactions of strength parameters:
69     * J. Wu, X. Zhen, H. Shen, G. Li, and P. Ren, J. Chem. Phys.,
70     * 135, 155104 (2011).
71     *
72     * In this version of the GB interaction, each uniaxial ellipsoidal type
73     * is described using a set of 6 parameters:
74     * d: range parameter for side-by-side (S) and cross (X) configurations
75     * l: range parameter for end-to-end (E) configuration
76     * epsilon_X: well-depth parameter for cross (X) configuration
77     * epsilon_S: well-depth parameter for side-by-side (S) configuration
78     * epsilon_E: well depth parameter for end-to-end (E) configuration
79     * dw: "softness" of the potential
80     *
81     * Additionally, there are two "universal" paramters to govern the overall
82     * importance of the purely orientational (nu) and the mixed
83     * orientational / translational (mu) parts of strength of the interactions.
84     * These parameters have default or "canonical" values, but may be changed
85     * as a force field option:
86     * nu_: purely orientational part : defaults to 1
87     * mu_: mixed orientational / translational part : defaults to 2
88     */
89    
90    
91 gezelter 2071 GB::GB() : initialized_(false), name_("GB"), forceField_(NULL),
92     mu_(2.0), nu_(1.0) {}
93 gezelter 1483
94     void GB::initialize() {
95 gezelter 1502
96 gezelter 1895 GBtypes.clear();
97     GBtids.clear();
98     MixingMap.clear();
99     nGB_ = 0;
100    
101     GBtids.resize( forceField_->getNAtomType(), -1);
102    
103 gezelter 1485 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
104     mu_ = fopts.getGayBerneMu();
105     nu_ = fopts.getGayBerneNu();
106 gezelter 1483
107     // GB handles all of the GB-GB interactions as well as GB-LJ cross
108     // interactions:
109 gezelter 1895 set<AtomType*>::iterator at;
110     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
111     if ((*at)->isGayBerne()) nGB_++;
112     if ((*at)->isLennardJones()) nGB_++;
113     }
114 gezelter 1483
115 gezelter 1895 MixingMap.resize(nGB_);
116     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
117     if ((*at)->isGayBerne() || (*at)->isLennardJones()) addType( *at );
118 gezelter 1483 }
119 gezelter 1895
120 gezelter 1483 initialized_ = true;
121     }
122    
123     void GB::addType(AtomType* atomType){
124 gezelter 1895
125 gezelter 1483 // add it to the map:
126 gezelter 1895 int atid = atomType->getIdent();
127     int gbtid = GBtypes.size();
128    
129     pair<set<int>::iterator,bool> ret;
130     ret = GBtypes.insert( atid );
131 gezelter 1483 if (ret.second == false) {
132     sprintf( painCave.errMsg,
133     "GB already had a previous entry with ident %d\n",
134 gezelter 1895 atid) ;
135 gezelter 1483 painCave.severity = OPENMD_INFO;
136     painCave.isFatal = 0;
137     simError();
138     }
139 gezelter 1895
140     GBtids[atid] = gbtid;
141     MixingMap[gbtid].resize( nGB_ );
142 gezelter 1483
143 gezelter 2071 RealType d1(0.0), l1(0.0), eX1(0.0), eS1(0.0), eE1(0.0), dw1(0.0);
144 gezelter 1895
145 gezelter 1710 LennardJonesAdapter lja1 = LennardJonesAdapter(atomType);
146     GayBerneAdapter gba1 = GayBerneAdapter(atomType);
147     if (gba1.isGayBerne()) {
148     d1 = gba1.getD();
149     l1 = gba1.getL();
150     eX1 = gba1.getEpsX();
151     eS1 = gba1.getEpsS();
152     eE1 = gba1.getEpsE();
153     dw1 = gba1.getDw();
154     } else if (lja1.isLennardJones()) {
155     d1 = lja1.getSigma() / sqrt(2.0);
156 gezelter 1483 l1 = d1;
157 gezelter 1710 eX1 = lja1.getEpsilon();
158 gezelter 1688 eS1 = eX1;
159     eE1 = eX1;
160 gezelter 1483 dw1 = 1.0;
161     } else {
162     sprintf( painCave.errMsg,
163     "GB::addType was passed an atomType (%s) that does not\n"
164     "\tappear to be a Gay-Berne or Lennard-Jones atom.\n",
165     atomType->getName().c_str());
166     painCave.severity = OPENMD_ERROR;
167     painCave.isFatal = 1;
168     simError();
169     }
170    
171 gezelter 1895
172 gezelter 1483 // Now, iterate over all known types and add to the mixing map:
173    
174 gezelter 1895 std::set<int>::iterator it;
175     for( it = GBtypes.begin(); it != GBtypes.end(); ++it) {
176 gezelter 1483
177 gezelter 1895 int gbtid2 = GBtids[ (*it) ];
178     AtomType* atype2 = forceField_->getAtomType( (*it) );
179    
180 gezelter 1710 LennardJonesAdapter lja2 = LennardJonesAdapter(atype2);
181     GayBerneAdapter gba2 = GayBerneAdapter(atype2);
182 gezelter 2071 RealType d2(0.0), l2(0.0), eX2(0.0), eS2(0.0), eE2(0.0), dw2(0.0);
183 gezelter 1483
184 gezelter 1710 if (gba2.isGayBerne()) {
185     d2 = gba2.getD();
186     l2 = gba2.getL();
187     eX2 = gba2.getEpsX();
188     eS2 = gba2.getEpsS();
189     eE2 = gba2.getEpsE();
190     dw2 = gba2.getDw();
191     } else if (lja2.isLennardJones()) {
192     d2 = lja2.getSigma() / sqrt(2.0);
193 gezelter 1483 l2 = d2;
194 gezelter 1710 eX2 = lja2.getEpsilon();
195 gezelter 1688 eS2 = eX2;
196     eE2 = eX2;
197 gezelter 1483 dw2 = 1.0;
198 gezelter 1879 } else {
199     sprintf( painCave.errMsg,
200     "GB::addType found an atomType (%s) that does not\n"
201     "\tappear to be a Gay-Berne or Lennard-Jones atom.\n",
202     atype2->getName().c_str());
203     painCave.severity = OPENMD_ERROR;
204     painCave.isFatal = 1;
205     simError();
206     }
207 gezelter 1895
208    
209 gezelter 1674 GBInteractionData mixer1, mixer2;
210 gezelter 1483
211     // Cleaver paper uses sqrt of squares to get sigma0 for
212     // mixed interactions.
213 gezelter 1895
214 gezelter 1674 mixer1.sigma0 = sqrt(d1*d1 + d2*d2);
215     mixer1.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2);
216     mixer1.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1);
217     mixer1.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) /
218 gezelter 1483 ((l2*l2 + d1*d1) * (l1*l1 + d2*d2));
219 gezelter 1895
220 gezelter 1674 mixer2.sigma0 = mixer1.sigma0;
221     // xa2 and xai2 for j-i pairs are reversed from the same i-j pairing.
222     // Swapping the particles reverses the anisotropy parameters:
223     mixer2.xa2 = mixer1.xai2;
224     mixer2.xai2 = mixer1.xa2;
225     mixer2.x2 = mixer1.x2;
226 gezelter 1895
227 gezelter 1483 // assumed LB mixing rules for now:
228 gezelter 1895
229 gezelter 1674 mixer1.dw = 0.5 * (dw1 + dw2);
230 gezelter 1688 mixer1.eps0 = sqrt(eX1 * eX2);
231 gezelter 1674
232     mixer2.dw = mixer1.dw;
233     mixer2.eps0 = mixer1.eps0;
234 gezelter 1895
235 gezelter 1688 RealType mi = RealType(1.0)/mu_;
236 gezelter 1483
237 gezelter 1688 mixer1.xpap2 = (pow(eS1, mi) - pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi));
238     mixer1.xpapi2 = (pow(eS2, mi) - pow(eE2, mi)) / (pow(eS2, mi) + pow(eE1, mi));
239     mixer1.xp2 = (pow(eS1, mi) - pow(eE1, mi)) * (pow(eS2, mi) - pow(eE2, mi)) /
240     (pow(eS2, mi) + pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)) ;
241 gezelter 1895
242 gezelter 1688 // xpap2 and xpapi2 for j-i pairs are reversed from the same i-j pairing.
243     // Swapping the particles reverses the anisotropy parameters:
244     mixer2.xpap2 = mixer1.xpapi2;
245     mixer2.xpapi2 = mixer1.xpap2;
246 gezelter 1674 mixer2.xp2 = mixer1.xp2;
247 gezelter 1930 // keep track of who is the LJ atom:
248     mixer1.i_is_LJ = atomType->isLennardJones();
249     mixer1.j_is_LJ = atype2->isLennardJones();
250     mixer2.i_is_LJ = mixer1.j_is_LJ;
251     mixer2.j_is_LJ = mixer1.i_is_LJ;
252 gezelter 1587
253 gezelter 1930
254 gezelter 1483 // only add this pairing if at least one of the atoms is a Gay-Berne atom
255    
256 gezelter 1710 if (gba1.isGayBerne() || gba2.isGayBerne()) {
257 gezelter 1895 MixingMap[gbtid2].resize( nGB_ );
258     MixingMap[gbtid][gbtid2] = mixer1;
259 gezelter 1930 if (gbtid2 != gbtid) {
260 gezelter 1895 MixingMap[gbtid2][gbtid] = mixer2;
261 gezelter 1930 }
262 gezelter 1483 }
263 gezelter 1895 }
264 gezelter 1483 }
265 gezelter 1502
266 gezelter 1536 void GB::calcForce(InteractionData &idat) {
267 gezelter 1483
268     if (!initialized_) initialize();
269    
270 gezelter 1895 GBInteractionData &mixer = MixingMap[GBtids[idat.atid1]][GBtids[idat.atid2]];
271 gezelter 1483
272     RealType sigma0 = mixer.sigma0;
273     RealType dw = mixer.dw;
274     RealType eps0 = mixer.eps0;
275     RealType x2 = mixer.x2;
276     RealType xa2 = mixer.xa2;
277     RealType xai2 = mixer.xai2;
278     RealType xp2 = mixer.xp2;
279     RealType xpap2 = mixer.xpap2;
280     RealType xpapi2 = mixer.xpapi2;
281    
282 gezelter 1554 Vector3d ul1 = idat.A1->getRow(2);
283     Vector3d ul2 = idat.A2->getRow(2);
284 gezelter 1483
285     RealType a, b, g;
286 gezelter 1554
287 gezelter 1930 if (mixer.i_is_LJ) {
288 gezelter 1483 a = 0.0;
289     ul1 = V3Zero;
290     } else {
291 gezelter 1554 a = dot(*(idat.d), ul1);
292 gezelter 1483 }
293    
294 gezelter 1930 if (mixer.j_is_LJ) {
295 gezelter 1483 b = 0.0;
296     ul2 = V3Zero;
297     } else {
298 gezelter 1554 b = dot(*(idat.d), ul2);
299 gezelter 1483 }
300    
301 gezelter 1930 if (mixer.i_is_LJ || mixer.j_is_LJ)
302 gezelter 1483 g = 0.0;
303     else
304     g = dot(ul1, ul2);
305    
306 gezelter 1554 RealType au = a / *(idat.rij);
307     RealType bu = b / *(idat.rij);
308 gezelter 1483
309     RealType au2 = au * au;
310     RealType bu2 = bu * bu;
311     RealType g2 = g * g;
312 gezelter 1688
313 gezelter 1483 RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
314     RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
315    
316     RealType sigma = sigma0 / sqrt(1.0 - H);
317     RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
318     RealType e2 = 1.0 - Hp;
319     RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
320 gezelter 1554 RealType BigR = dw*sigma0 / (*(idat.rij) - sigma + dw*sigma0);
321 gezelter 1483
322     RealType R3 = BigR*BigR*BigR;
323     RealType R6 = R3*R3;
324     RealType R7 = R6 * BigR;
325     RealType R12 = R6*R6;
326     RealType R13 = R6*R7;
327    
328 gezelter 1554 RealType U = *(idat.vdwMult) * 4.0 * eps * (R12 - R6);
329 gezelter 1483
330     RealType s3 = sigma*sigma*sigma;
331     RealType s03 = sigma0*sigma0*sigma0;
332    
333 gezelter 1554 RealType pref1 = - *(idat.vdwMult) * 8.0 * eps * mu_ * (R12 - R6) /
334     (e2 * *(idat.rij));
335 gezelter 1483
336 gezelter 1554 RealType pref2 = *(idat.vdwMult) * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /
337     (dw* *(idat.rij) * s03);
338 gezelter 1483
339 gezelter 1554 RealType dUdr = - (pref1 * Hp + pref2 * (sigma0 * sigma0 *
340     *(idat.rij) / s3 + H));
341 gezelter 1483
342     RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
343     + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
344    
345     RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
346     + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
347 gezelter 1895
348 gezelter 1483 RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
349     + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
350     (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
351     (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
352 gezelter 1895
353 gezelter 1554 Vector3d rhat = *(idat.d) / *(idat.rij);
354     Vector3d rxu1 = cross(*(idat.d), ul1);
355     Vector3d rxu2 = cross(*(idat.d), ul2);
356 gezelter 1483 Vector3d uxu = cross(ul1, ul2);
357 gezelter 1895
358 gezelter 1582 (*(idat.pot))[VANDERWAALS_FAMILY] += U * *(idat.sw);
359 gezelter 1686 *(idat.f1) += (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw);
360     *(idat.t1) += (dUda * rxu1 - dUdg * uxu) * *(idat.sw);
361     *(idat.t2) += (dUdb * rxu2 + dUdg * uxu) * *(idat.sw);
362     *(idat.vpair) += U;
363 gezelter 1483
364     return;
365    
366     }
367 gezelter 1505
368 gezelter 1545 RealType GB::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
369 gezelter 1505 if (!initialized_) initialize();
370    
371     RealType cut = 0.0;
372    
373 gezelter 1710 LennardJonesAdapter lja1 = LennardJonesAdapter(atypes.first);
374     GayBerneAdapter gba1 = GayBerneAdapter(atypes.first);
375     LennardJonesAdapter lja2 = LennardJonesAdapter(atypes.second);
376     GayBerneAdapter gba2 = GayBerneAdapter(atypes.second);
377    
378     if (gba1.isGayBerne()) {
379     RealType d1 = gba1.getD();
380     RealType l1 = gba1.getL();
381 gezelter 1505 // sigma is actually sqrt(2)*l for prolate ellipsoids
382 gezelter 1668 cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d1, l1));
383 gezelter 1710 } else if (lja1.isLennardJones()) {
384     cut = max(cut, RealType(2.5) * lja1.getSigma());
385 gezelter 1505 }
386    
387 gezelter 1710 if (gba2.isGayBerne()) {
388     RealType d2 = gba2.getD();
389     RealType l2 = gba2.getL();
390 gezelter 1668 cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d2, l2));
391 gezelter 1710 } else if (lja2.isLennardJones()) {
392     cut = max(cut, RealType(2.5) * lja2.getSigma());
393 gezelter 1505 }
394    
395     return cut;
396     }
397 gezelter 1483 }
398    

Properties

Name Value
svn:eol-style native