| 40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
+ |
#ifdef IS_MPI |
| 44 |
+ |
#include <mpi.h> |
| 45 |
+ |
#endif |
| 46 |
+ |
|
| 47 |
|
#include <stdio.h> |
| 48 |
|
#include <string.h> |
| 49 |
|
|
| 61 |
|
#include "math/erfc.hpp" |
| 62 |
|
#include "math/SquareMatrix.hpp" |
| 63 |
|
#include "primitives/Molecule.hpp" |
| 64 |
< |
#ifdef IS_MPI |
| 61 |
< |
#include <mpi.h> |
| 62 |
< |
#endif |
| 64 |
> |
#include "flucq/FluctuatingChargeForces.hpp" |
| 65 |
|
|
| 66 |
|
namespace OpenMD { |
| 67 |
|
|
| 68 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
| 67 |
– |
forceField_(NULL), info_(NULL), |
| 69 |
|
haveCutoffRadius_(false), |
| 70 |
|
haveDampingAlpha_(false), |
| 71 |
|
haveDielectric_(false), |
| 72 |
< |
haveElectroSplines_(false) |
| 73 |
< |
{} |
| 72 |
> |
haveElectroSplines_(false), |
| 73 |
> |
info_(NULL), forceField_(NULL) |
| 74 |
> |
|
| 75 |
> |
{ |
| 76 |
> |
flucQ_ = new FluctuatingChargeForces(info_); |
| 77 |
> |
} |
| 78 |
|
|
| 79 |
+ |
void Electrostatic::setForceField(ForceField *ff) { |
| 80 |
+ |
forceField_ = ff; |
| 81 |
+ |
flucQ_->setForceField(forceField_); |
| 82 |
+ |
} |
| 83 |
+ |
|
| 84 |
+ |
void Electrostatic::setSimulatedAtomTypes(set<AtomType*> &simtypes) { |
| 85 |
+ |
simTypes_ = simtypes; |
| 86 |
+ |
flucQ_->setSimulatedAtomTypes(simTypes_); |
| 87 |
+ |
} |
| 88 |
+ |
|
| 89 |
|
void Electrostatic::initialize() { |
| 90 |
|
|
| 91 |
|
Globals* simParams_ = info_->getSimParams(); |
| 264 |
|
|
| 265 |
|
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
| 266 |
|
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
| 267 |
< |
RealType a2, expTerm, invArootPi; |
| 267 |
> |
RealType a2, expTerm, invArootPi(0.0); |
| 268 |
|
|
| 269 |
|
RealType r = cutoffRadius_; |
| 270 |
|
RealType r2 = r * r; |
| 769 |
|
Tb.zero(); // Torque on site b |
| 770 |
|
Ea.zero(); // Electric field at site a |
| 771 |
|
Eb.zero(); // Electric field at site b |
| 772 |
+ |
Pa = 0.0; // Site potential at site a |
| 773 |
+ |
Pb = 0.0; // Site potential at site b |
| 774 |
|
dUdCa = 0.0; // fluctuating charge force at site a |
| 775 |
|
dUdCb = 0.0; // fluctuating charge force at site a |
| 776 |
|
|
| 783 |
|
// Excluded potential that is still computed for fluctuating charges |
| 784 |
|
excluded_Pot= 0.0; |
| 785 |
|
|
| 769 |
– |
|
| 786 |
|
// some variables we'll need independent of electrostatic type: |
| 787 |
|
|
| 788 |
|
ri = 1.0 / *(idat.rij); |
| 845 |
|
if (idat.excluded) { |
| 846 |
|
*(idat.skippedCharge2) += C_a; |
| 847 |
|
} else { |
| 848 |
< |
// only do the field if we're not excluded: |
| 848 |
> |
// only do the field and site potentials if we're not excluded: |
| 849 |
|
Eb -= C_a * pre11_ * dv01 * rhat; |
| 850 |
+ |
Pb += C_a * pre11_ * v01; |
| 851 |
|
} |
| 852 |
|
} |
| 853 |
|
|
| 855 |
|
D_a = *(idat.dipole1); |
| 856 |
|
rdDa = dot(rhat, D_a); |
| 857 |
|
rxDa = cross(rhat, D_a); |
| 858 |
< |
if (!idat.excluded) |
| 858 |
> |
if (!idat.excluded) { |
| 859 |
|
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
| 860 |
+ |
Pb += pre12_ * v11 * rdDa; |
| 861 |
+ |
} |
| 862 |
+ |
|
| 863 |
|
} |
| 864 |
|
|
| 865 |
|
if (a_is_Quadrupole) { |
| 869 |
|
rQa = rhat * Q_a; |
| 870 |
|
rdQar = dot(rhat, Qar); |
| 871 |
|
rxQar = cross(rhat, Qar); |
| 872 |
< |
if (!idat.excluded) |
| 872 |
> |
if (!idat.excluded) { |
| 873 |
|
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
| 874 |
|
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
| 875 |
+ |
Pb += pre14_ * (v21 * trQa + v22 * rdQar); |
| 876 |
+ |
} |
| 877 |
|
} |
| 878 |
|
|
| 879 |
|
if (b_is_Charge) { |
| 887 |
|
} else { |
| 888 |
|
// only do the field if we're not excluded: |
| 889 |
|
Ea += C_b * pre11_ * dv01 * rhat; |
| 890 |
+ |
Pa += C_b * pre11_ * v01; |
| 891 |
+ |
|
| 892 |
|
} |
| 893 |
|
} |
| 894 |
|
|
| 896 |
|
D_b = *(idat.dipole2); |
| 897 |
|
rdDb = dot(rhat, D_b); |
| 898 |
|
rxDb = cross(rhat, D_b); |
| 899 |
< |
if (!idat.excluded) |
| 899 |
> |
if (!idat.excluded) { |
| 900 |
|
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
| 901 |
+ |
Pa += pre12_ * v11 * rdDb; |
| 902 |
+ |
} |
| 903 |
|
} |
| 904 |
|
|
| 905 |
|
if (b_is_Quadrupole) { |
| 909 |
|
rQb = rhat * Q_b; |
| 910 |
|
rdQbr = dot(rhat, Qbr); |
| 911 |
|
rxQbr = cross(rhat, Qbr); |
| 912 |
< |
if (!idat.excluded) |
| 912 |
> |
if (!idat.excluded) { |
| 913 |
|
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
| 914 |
|
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
| 915 |
+ |
Pa += pre14_ * (v21 * trQb + v22 * rdQbr); |
| 916 |
+ |
} |
| 917 |
|
} |
| 918 |
< |
|
| 918 |
> |
|
| 919 |
> |
|
| 920 |
|
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
| 921 |
|
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
| 922 |
|
} |
| 923 |
< |
|
| 923 |
> |
|
| 924 |
|
if (a_is_Charge) { |
| 925 |
|
|
| 926 |
|
if (b_is_Charge) { |
| 927 |
|
pref = pre11_ * *(idat.electroMult); |
| 928 |
|
U += C_a * C_b * pref * v01; |
| 929 |
|
F += C_a * C_b * pref * dv01 * rhat; |
| 930 |
< |
|
| 930 |
> |
|
| 931 |
|
// If this is an excluded pair, there are still indirect |
| 932 |
|
// interactions via the reaction field we must worry about: |
| 933 |
|
|
| 936 |
|
indirect_Pot += rfContrib; |
| 937 |
|
indirect_F += rfContrib * 2.0 * ri * rhat; |
| 938 |
|
} |
| 939 |
< |
|
| 939 |
> |
|
| 940 |
|
// Fluctuating charge forces are handled via Coulomb integrals |
| 941 |
|
// for excluded pairs (i.e. those connected via bonds) and |
| 942 |
|
// with the standard charge-charge interaction otherwise. |
| 943 |
|
|
| 944 |
< |
if (idat.excluded) { |
| 944 |
> |
if (idat.excluded) { |
| 945 |
|
if (a_is_Fluctuating || b_is_Fluctuating) { |
| 946 |
|
coulInt = J->getValueAt( *(idat.rij) ); |
| 947 |
< |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
| 948 |
< |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
| 949 |
< |
excluded_Pot += C_a * C_b * coulInt; |
| 921 |
< |
} |
| 947 |
> |
if (a_is_Fluctuating) dUdCa += C_b * coulInt; |
| 948 |
> |
if (b_is_Fluctuating) dUdCb += C_a * coulInt; |
| 949 |
> |
} |
| 950 |
|
} else { |
| 951 |
|
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
| 952 |
< |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
| 953 |
< |
} |
| 952 |
> |
if (b_is_Fluctuating) dUdCb += C_a * pref * v01; |
| 953 |
> |
} |
| 954 |
|
} |
| 955 |
|
|
| 956 |
|
if (b_is_Dipole) { |
| 1016 |
|
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
| 1017 |
|
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
| 1018 |
|
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
| 991 |
– |
|
| 1019 |
|
// Even if we excluded this pair from direct interactions, we |
| 1020 |
|
// still have the reaction-field-mediated dipole-dipole |
| 1021 |
|
// interaction: |
| 1075 |
|
trQaQb = QaQb.trace(); |
| 1076 |
|
rQaQb = rhat * QaQb; |
| 1077 |
|
QaQbr = QaQb * rhat; |
| 1078 |
< |
QaxQb = cross(Q_a, Q_b); |
| 1078 |
> |
QaxQb = mCross(Q_a, Q_b); |
| 1079 |
|
rQaQbr = dot(rQa, Qbr); |
| 1080 |
|
rQaxQbr = cross(rQa, Qbr); |
| 1081 |
|
|
| 1106 |
|
// + 4.0 * cross(rhat, QbQar) |
| 1107 |
|
|
| 1108 |
|
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
| 1082 |
– |
|
| 1109 |
|
} |
| 1110 |
|
} |
| 1111 |
|
|
| 1112 |
|
if (idat.doElectricField) { |
| 1113 |
|
*(idat.eField1) += Ea * *(idat.electroMult); |
| 1114 |
|
*(idat.eField2) += Eb * *(idat.electroMult); |
| 1115 |
+ |
} |
| 1116 |
+ |
|
| 1117 |
+ |
if (idat.doSitePotential) { |
| 1118 |
+ |
*(idat.sPot1) += Pa * *(idat.electroMult); |
| 1119 |
+ |
*(idat.sPot2) += Pb * *(idat.electroMult); |
| 1120 |
|
} |
| 1121 |
|
|
| 1122 |
|
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
| 1165 |
|
bool i_is_Quadrupole = data.is_Quadrupole; |
| 1166 |
|
bool i_is_Fluctuating = data.is_Fluctuating; |
| 1167 |
|
RealType C_a = data.fixedCharge; |
| 1168 |
< |
RealType self(0.0), preVal, DdD, trQ, trQQ; |
| 1168 |
> |
RealType self(0.0), preVal, DdD(0.0), trQ, trQQ; |
| 1169 |
|
|
| 1170 |
|
if (i_is_Dipole) { |
| 1171 |
|
DdD = data.dipole.lengthSquare(); |
| 1173 |
|
|
| 1174 |
|
if (i_is_Fluctuating) { |
| 1175 |
|
C_a += *(sdat.flucQ); |
| 1176 |
< |
// dVdFQ is really a force, so this is negative the derivative |
| 1177 |
< |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
| 1178 |
< |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
| 1179 |
< |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
| 1176 |
> |
|
| 1177 |
> |
flucQ_->getSelfInteraction(sdat.atid, *(sdat.flucQ), |
| 1178 |
> |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY], |
| 1179 |
> |
*(sdat.flucQfrc) ); |
| 1180 |
> |
|
| 1181 |
|
} |
| 1182 |
|
|
| 1183 |
|
switch (summationMethod_) { |
| 1280 |
|
vector<vector<RealType> > els; |
| 1281 |
|
vector<vector<RealType> > ems; |
| 1282 |
|
vector<vector<RealType> > ens; |
| 1251 |
– |
|
| 1283 |
|
|
| 1284 |
|
int nMax = info_->getNAtoms(); |
| 1285 |
|
|
| 1302 |
|
Vector3d t( 2.0 * M_PI ); |
| 1303 |
|
t.Vdiv(t, box); |
| 1304 |
|
|
| 1274 |
– |
|
| 1305 |
|
SimInfo::MoleculeIterator mi; |
| 1306 |
|
Molecule::AtomIterator ai; |
| 1307 |
|
int i; |
| 1471 |
|
dks[i] = dk * skr[i]; |
| 1472 |
|
} |
| 1473 |
|
if (data.is_Quadrupole) { |
| 1474 |
< |
Q = atom->getQuadrupole(); |
| 1475 |
< |
Q *= mPoleConverter; |
| 1446 |
< |
Qk = Q * kVec; |
| 1474 |
> |
Q = atom->getQuadrupole() * mPoleConverter; |
| 1475 |
> |
Qk = Q * kVec; |
| 1476 |
|
qk = dot(kVec, Qk); |
| 1477 |
< |
qxk[i] = cross(kVec, Qk); |
| 1477 |
> |
qxk[i] = -cross(kVec, Qk); |
| 1478 |
|
qkc[i] = qk * ckr[i]; |
| 1479 |
|
qks[i] = qk * skr[i]; |
| 1480 |
|
} |
| 1491 |
|
qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
| 1492 |
|
|
| 1493 |
|
#ifdef IS_MPI |
| 1494 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE, |
| 1495 |
< |
MPI::SUM); |
| 1496 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE, |
| 1497 |
< |
MPI::SUM); |
| 1498 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE, |
| 1499 |
< |
MPI::SUM); |
| 1500 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE, |
| 1501 |
< |
MPI::SUM); |
| 1502 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE, |
| 1503 |
< |
MPI::SUM); |
| 1504 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE, |
| 1505 |
< |
MPI::SUM); |
| 1494 |
> |
MPI_Allreduce(MPI_IN_PLACE, &ckcs, 1, MPI_REALTYPE, |
| 1495 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 1496 |
> |
MPI_Allreduce(MPI_IN_PLACE, &ckss, 1, MPI_REALTYPE, |
| 1497 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 1498 |
> |
MPI_Allreduce(MPI_IN_PLACE, &dkcs, 1, MPI_REALTYPE, |
| 1499 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 1500 |
> |
MPI_Allreduce(MPI_IN_PLACE, &dkss, 1, MPI_REALTYPE, |
| 1501 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 1502 |
> |
MPI_Allreduce(MPI_IN_PLACE, &qkcs, 1, MPI_REALTYPE, |
| 1503 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 1504 |
> |
MPI_Allreduce(MPI_IN_PLACE, &qkss, 1, MPI_REALTYPE, |
| 1505 |
> |
MPI_SUM, MPI_COMM_WORLD); |
| 1506 |
|
#endif |
| 1507 |
|
|
| 1508 |
|
// Accumulate potential energy and virial contribution: |
| 1533 |
|
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
| 1534 |
|
-ckr[i]*(ckss+dkcs-qkss)); |
| 1535 |
|
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs) |
| 1536 |
< |
+skr[i]*(ckss+dkcs-qkss)); |
| 1536 |
> |
+skr[i]*(ckss+dkcs-qkss)); |
| 1537 |
|
|
| 1538 |
|
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
| 1539 |
< |
|
| 1539 |
> |
|
| 1540 |
> |
if (atom->isFluctuatingCharge()) { |
| 1541 |
> |
atom->addFlucQFrc( - 2.0 * rvol * qtrq2 ); |
| 1542 |
> |
} |
| 1543 |
> |
|
| 1544 |
|
if (data.is_Dipole) { |
| 1545 |
|
atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] ); |
| 1546 |
|
} |
| 1557 |
|
} |
| 1558 |
|
pot += kPot; |
| 1559 |
|
} |
| 1560 |
+ |
|
| 1561 |
+ |
void Electrostatic::getSitePotentials(Atom* a1, Atom* a2, bool excluded, |
| 1562 |
+ |
RealType &spot1, RealType &spot2) { |
| 1563 |
+ |
|
| 1564 |
+ |
if (!initialized_) { |
| 1565 |
+ |
cerr << "initializing\n"; |
| 1566 |
+ |
initialize(); |
| 1567 |
+ |
cerr << "done\n"; |
| 1568 |
+ |
} |
| 1569 |
+ |
|
| 1570 |
+ |
const RealType mPoleConverter = 0.20819434; |
| 1571 |
+ |
|
| 1572 |
+ |
AtomType* atype1 = a1->getAtomType(); |
| 1573 |
+ |
AtomType* atype2 = a2->getAtomType(); |
| 1574 |
+ |
int atid1 = atype1->getIdent(); |
| 1575 |
+ |
int atid2 = atype2->getIdent(); |
| 1576 |
+ |
data1 = ElectrostaticMap[Etids[atid1]]; |
| 1577 |
+ |
data2 = ElectrostaticMap[Etids[atid2]]; |
| 1578 |
+ |
|
| 1579 |
+ |
Pa = 0.0; // Site potential at site a |
| 1580 |
+ |
Pb = 0.0; // Site potential at site b |
| 1581 |
+ |
|
| 1582 |
+ |
Vector3d d = a2->getPos() - a1->getPos(); |
| 1583 |
+ |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(d); |
| 1584 |
+ |
RealType rij = d.length(); |
| 1585 |
+ |
// some variables we'll need independent of electrostatic type: |
| 1586 |
+ |
|
| 1587 |
+ |
RealType ri = 1.0 / rij; |
| 1588 |
+ |
rhat = d * ri; |
| 1589 |
+ |
|
| 1590 |
+ |
|
| 1591 |
+ |
if ((rij >= cutoffRadius_) || excluded) { |
| 1592 |
+ |
spot1 = 0.0; |
| 1593 |
+ |
spot2 = 0.0; |
| 1594 |
+ |
return; |
| 1595 |
+ |
} |
| 1596 |
+ |
|
| 1597 |
+ |
// logicals |
| 1598 |
+ |
|
| 1599 |
+ |
a_is_Charge = data1.is_Charge; |
| 1600 |
+ |
a_is_Dipole = data1.is_Dipole; |
| 1601 |
+ |
a_is_Quadrupole = data1.is_Quadrupole; |
| 1602 |
+ |
a_is_Fluctuating = data1.is_Fluctuating; |
| 1603 |
+ |
|
| 1604 |
+ |
b_is_Charge = data2.is_Charge; |
| 1605 |
+ |
b_is_Dipole = data2.is_Dipole; |
| 1606 |
+ |
b_is_Quadrupole = data2.is_Quadrupole; |
| 1607 |
+ |
b_is_Fluctuating = data2.is_Fluctuating; |
| 1608 |
+ |
|
| 1609 |
+ |
// Obtain all of the required radial function values from the |
| 1610 |
+ |
// spline structures: |
| 1611 |
+ |
|
| 1612 |
+ |
|
| 1613 |
+ |
if (a_is_Charge || b_is_Charge) { |
| 1614 |
+ |
v01 = v01s->getValueAt(rij); |
| 1615 |
+ |
} |
| 1616 |
+ |
if (a_is_Dipole || b_is_Dipole) { |
| 1617 |
+ |
v11 = v11s->getValueAt(rij); |
| 1618 |
+ |
v11or = ri * v11; |
| 1619 |
+ |
} |
| 1620 |
+ |
if (a_is_Quadrupole || b_is_Quadrupole) { |
| 1621 |
+ |
v21 = v21s->getValueAt(rij); |
| 1622 |
+ |
v22 = v22s->getValueAt(rij); |
| 1623 |
+ |
v22or = ri * v22; |
| 1624 |
+ |
} |
| 1625 |
+ |
|
| 1626 |
+ |
if (a_is_Charge) { |
| 1627 |
+ |
C_a = data1.fixedCharge; |
| 1628 |
+ |
|
| 1629 |
+ |
if (a_is_Fluctuating) { |
| 1630 |
+ |
C_a += a1->getFlucQPos(); |
| 1631 |
+ |
} |
| 1632 |
+ |
|
| 1633 |
+ |
Pb += C_a * pre11_ * v01; |
| 1634 |
+ |
} |
| 1635 |
+ |
|
| 1636 |
+ |
if (a_is_Dipole) { |
| 1637 |
+ |
D_a = a1->getDipole() * mPoleConverter; |
| 1638 |
+ |
rdDa = dot(rhat, D_a); |
| 1639 |
+ |
Pb += pre12_ * v11 * rdDa; |
| 1640 |
+ |
} |
| 1641 |
+ |
|
| 1642 |
+ |
if (a_is_Quadrupole) { |
| 1643 |
+ |
Q_a = a1->getQuadrupole() * mPoleConverter; |
| 1644 |
+ |
trQa = Q_a.trace(); |
| 1645 |
+ |
Qar = Q_a * rhat; |
| 1646 |
+ |
rdQar = dot(rhat, Qar); |
| 1647 |
+ |
Pb += pre14_ * (v21 * trQa + v22 * rdQar); |
| 1648 |
+ |
} |
| 1649 |
+ |
|
| 1650 |
+ |
if (b_is_Charge) { |
| 1651 |
+ |
C_b = data2.fixedCharge; |
| 1652 |
+ |
|
| 1653 |
+ |
if (b_is_Fluctuating) |
| 1654 |
+ |
C_b += a2->getFlucQPos(); |
| 1655 |
+ |
|
| 1656 |
+ |
Pa += C_b * pre11_ * v01; |
| 1657 |
+ |
} |
| 1658 |
+ |
|
| 1659 |
+ |
if (b_is_Dipole) { |
| 1660 |
+ |
D_b = a2->getDipole() * mPoleConverter; |
| 1661 |
+ |
rdDb = dot(rhat, D_b); |
| 1662 |
+ |
Pa += pre12_ * v11 * rdDb; |
| 1663 |
+ |
} |
| 1664 |
+ |
|
| 1665 |
+ |
if (b_is_Quadrupole) { |
| 1666 |
+ |
Q_a = a2->getQuadrupole() * mPoleConverter; |
| 1667 |
+ |
trQb = Q_b.trace(); |
| 1668 |
+ |
Qbr = Q_b * rhat; |
| 1669 |
+ |
rdQbr = dot(rhat, Qbr); |
| 1670 |
+ |
Pa += pre14_ * (v21 * trQb + v22 * rdQbr); |
| 1671 |
+ |
} |
| 1672 |
+ |
|
| 1673 |
+ |
spot1 = Pa; |
| 1674 |
+ |
spot2 = Pb; |
| 1675 |
+ |
} |
| 1676 |
|
} |