ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing:
branches/development/src/nonbonded/Electrostatic.cpp (file contents), Revision 1545 by gezelter, Fri Apr 8 21:25:19 2011 UTC vs.
trunk/src/nonbonded/Electrostatic.cpp (file contents), Revision 1921 by gezelter, Thu Aug 1 18:23:07 2013 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
44   #include <string.h>
45  
46   #include <cmath>
47 + #include <numeric>
48   #include "nonbonded/Electrostatic.hpp"
49   #include "utils/simError.h"
50   #include "types/NonBondedInteractionType.hpp"
51 < #include "types/DirectionalAtomType.hpp"
51 > #include "types/FixedChargeAdapter.hpp"
52 > #include "types/FluctuatingChargeAdapter.hpp"
53 > #include "types/MultipoleAdapter.hpp"
54   #include "io/Globals.hpp"
55 + #include "nonbonded/SlaterIntegrals.hpp"
56 + #include "utils/PhysicalConstants.hpp"
57 + #include "math/erfc.hpp"
58 + #include "math/SquareMatrix.hpp"
59 + #include "primitives/Molecule.hpp"
60  
61 +
62   namespace OpenMD {
63    
64    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
65 <                                  forceField_(NULL) {}
65 >                                  forceField_(NULL), info_(NULL),
66 >                                  haveCutoffRadius_(false),
67 >                                  haveDampingAlpha_(false),
68 >                                  haveDielectric_(false),
69 >                                  haveElectroSplines_(false)
70 >  {}
71    
72    void Electrostatic::initialize() {
73 +    
74 +    Globals* simParams_ = info_->getSimParams();
75  
59    Globals* simParams_;
60
76      summationMap_["HARD"]               = esm_HARD;
77 +    summationMap_["NONE"]               = esm_HARD;
78      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
79      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
80      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
81 +    summationMap_["TAYLOR_SHIFTED"]     = esm_TAYLOR_SHIFTED;    
82      summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
83      summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
84      summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
# Line 76 | Line 93 | namespace OpenMD {
93      // Charge-Dipole, assuming charges are measured in electrons, and
94      // dipoles are measured in debyes
95      pre12_ = 69.13373;
96 <    // Dipole-Dipole, assuming dipoles are measured in debyes
96 >    // Dipole-Dipole, assuming dipoles are measured in Debye
97      pre22_ = 14.39325;
98      // Charge-Quadrupole, assuming charges are measured in electrons, and
99      // quadrupoles are measured in 10^-26 esu cm^2
100 <    // This unit is also known affectionately as an esu centi-barn.
100 >    // This unit is also known affectionately as an esu centibarn.
101      pre14_ = 69.13373;
102 <    
102 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
103 >    // quadrupoles in esu centibarns:
104 >    pre24_ = 14.39325;
105 >    // Quadrupole-Quadrupole, assuming esu centibarns:
106 >    pre44_ = 14.39325;
107 >
108      // conversions for the simulation box dipole moment
109      chargeToC_ = 1.60217733e-19;
110      angstromToM_ = 1.0e-10;
111      debyeToCm_ = 3.33564095198e-30;
112      
113 <    // number of points for electrostatic splines
113 >    // Default number of points for electrostatic splines
114      np_ = 100;
115      
116      // variables to handle different summation methods for long-range
# Line 96 | Line 118 | namespace OpenMD {
118      summationMethod_ = esm_HARD;    
119      screeningMethod_ = UNDAMPED;
120      dielectric_ = 1.0;
99    one_third_ = 1.0 / 3.0;
100    haveCutoffRadius_ = false;
101    haveDampingAlpha_ = false;
102    haveDielectric_ = false;  
103    haveElectroSpline_ = false;
121    
122      // check the summation method:
123      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 115 | Line 132 | namespace OpenMD {
132          sprintf( painCave.errMsg,
133                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
134                   "\t(Input file specified %s .)\n"
135 <                 "\telectrostaticSummationMethod must be one of: \"none\",\n"
136 <                 "\t\"shifted_potential\", \"shifted_force\", or \n"
137 <                 "\t\"reaction_field\".\n", myMethod.c_str() );
135 >                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
136 >                 "\t\"shifted_potential\", \"shifted_force\",\n"
137 >                 "\t\"taylor_shifted\", or \"reaction_field\".\n",
138 >                 myMethod.c_str() );
139          painCave.isFatal = 1;
140          simError();
141        }
# Line 176 | Line 194 | namespace OpenMD {
194        simError();
195      }
196            
197 <    if (screeningMethod_ == DAMPED) {      
197 >    if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
198        if (!simParams_->haveDampingAlpha()) {
199          // first set a cutoff dependent alpha value
200          // we assume alpha depends linearly with rcut from 0 to 20.5 ang
201          dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
202 <        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
185 <        
202 >        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;        
203          // throw warning
204          sprintf( painCave.errMsg,
205 <                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
206 <                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
205 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
206 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
207 >                 "\tcutoff of %f (ang).\n",
208                   dampingAlpha_, cutoffRadius_);
209          painCave.severity = OPENMD_INFO;
210          painCave.isFatal = 0;
# Line 197 | Line 215 | namespace OpenMD {
215        haveDampingAlpha_ = true;
216      }
217  
200    // find all of the Electrostatic atom Types:
201    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
202    ForceField::AtomTypeContainer::MapTypeIterator i;
203    AtomType* at;
204    
205    for (at = atomTypes->beginType(i); at != NULL;
206         at = atomTypes->nextType(i)) {
207      
208      if (at->isElectrostatic())
209        addType(at);
210    }
211    
218  
219 <    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
220 <    rcuti_ = 1.0 / cutoffRadius_;
221 <    rcuti2_ = rcuti_ * rcuti_;
222 <    rcuti3_ = rcuti2_ * rcuti_;
223 <    rcuti4_ = rcuti2_ * rcuti2_;
219 >    Etypes.clear();
220 >    Etids.clear();
221 >    FQtypes.clear();
222 >    FQtids.clear();
223 >    ElectrostaticMap.clear();
224 >    Jij.clear();
225 >    nElectro_ = 0;
226 >    nFlucq_ = 0;
227  
228 <    if (screeningMethod_ == DAMPED) {
229 <      
221 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
222 <      alpha4_ = alpha2_ * alpha2_;
223 <      alpha6_ = alpha4_ * alpha2_;
224 <      alpha8_ = alpha4_ * alpha4_;
225 <      
226 <      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
227 <      invRootPi_ = 0.56418958354775628695;
228 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
228 >    Etids.resize( forceField_->getNAtomType(), -1);
229 >    FQtids.resize( forceField_->getNAtomType(), -1);
230  
231 <      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
232 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
233 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
234 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
234 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
235 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
236 <    } else {
237 <      c1c_ = rcuti_;
238 <      c2c_ = c1c_ * rcuti_;
239 <      c3c_ = 3.0 * c2c_ * rcuti_;
240 <      c4c_ = 5.0 * c3c_ * rcuti2_;
241 <      c5c_ = 7.0 * c4c_ * rcuti2_;
242 <      c6c_ = 9.0 * c5c_ * rcuti2_;
231 >    set<AtomType*>::iterator at;
232 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {    
233 >      if ((*at)->isElectrostatic()) nElectro_++;
234 >      if ((*at)->isFluctuatingCharge()) nFlucq_++;
235      }
236 <  
236 >    
237 >    Jij.resize(nFlucq_);
238 >
239 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
240 >      if ((*at)->isElectrostatic()) addType(*at);
241 >    }  
242 >    
243      if (summationMethod_ == esm_REACTION_FIELD) {
244        preRF_ = (dielectric_ - 1.0) /
245 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
248 <      preRF2_ = 2.0 * preRF_;
245 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
246      }
247      
248 <    RealType dx = cutoffRadius_ / RealType(np_ - 1);
249 <    RealType rval;
250 <    vector<RealType> rvals;
251 <    vector<RealType> yvals;
252 <    for (int i = 0; i < np_; i++) {
253 <      rval = RealType(i) * dx;
254 <      rvals.push_back(rval);
255 <      yvals.push_back(erfc(dampingAlpha_ * rval));
248 >    RealType b0c, b1c, b2c, b3c, b4c, b5c;
249 >    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
250 >    RealType a2, expTerm, invArootPi;
251 >    
252 >    RealType r = cutoffRadius_;
253 >    RealType r2 = r * r;
254 >    RealType ric = 1.0 / r;
255 >    RealType ric2 = ric * ric;
256 >
257 >    if (screeningMethod_ == DAMPED) {      
258 >      a2 = dampingAlpha_ * dampingAlpha_;
259 >      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
260 >      expTerm = exp(-a2 * r2);
261 >      // values of Smith's B_l functions at the cutoff radius:
262 >      b0c = erfc(dampingAlpha_ * r) / r;
263 >      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
264 >      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
265 >      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
266 >      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
267 >      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
268 >      // Half the Smith self piece:
269 >      selfMult1_ = - a2 * invArootPi;
270 >      selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
271 >      selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
272 >    } else {
273 >      a2 = 0.0;
274 >      b0c = 1.0 / r;
275 >      b1c = (      b0c) / r2;
276 >      b2c = (3.0 * b1c) / r2;
277 >      b3c = (5.0 * b2c) / r2;
278 >      b4c = (7.0 * b3c) / r2;
279 >      b5c = (9.0 * b4c) / r2;
280 >      selfMult1_ = 0.0;
281 >      selfMult2_ = 0.0;
282 >      selfMult4_ = 0.0;
283      }
260    erfcSpline_ = new CubicSpline();
261    erfcSpline_->addPoints(rvals, yvals);
262    haveElectroSpline_ = true;
284  
285 <    initialized_ = true;
286 <  }
287 <      
288 <  void Electrostatic::addType(AtomType* atomType){
285 >    // higher derivatives of B_0 at the cutoff radius:
286 >    db0c_1 = -r * b1c;
287 >    db0c_2 =     -b1c + r2 * b2c;
288 >    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
289 >    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
290 >    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;  
291  
292 <    ElectrostaticAtomData electrostaticAtomData;
293 <    electrostaticAtomData.is_Charge = false;
294 <    electrostaticAtomData.is_Dipole = false;
295 <    electrostaticAtomData.is_SplitDipole = false;
296 <    electrostaticAtomData.is_Quadrupole = false;
292 >    if (summationMethod_ == esm_EWALD_FULL) {
293 >      selfMult1_ *= 2.0;
294 >      selfMult2_ *= 2.0;
295 >      selfMult4_ *= 2.0;
296 >    } else {
297 >      selfMult1_ -= b0c;
298 >      selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) /  3.0;
299 >      selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
300 >    }
301  
302 <    if (atomType->isCharge()) {
303 <      GenericData* data = atomType->getPropertyByName("Charge");
302 >    // working variables for the splines:
303 >    RealType ri, ri2;
304 >    RealType b0, b1, b2, b3, b4, b5;
305 >    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
306 >    RealType f, fc, f0;
307 >    RealType g, gc, g0, g1, g2, g3, g4;
308 >    RealType h, hc, h1, h2, h3, h4;
309 >    RealType s, sc, s2, s3, s4;
310 >    RealType t, tc, t3, t4;
311 >    RealType u, uc, u4;
312  
313 <      if (data == NULL) {
314 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
280 <                 "Charge\n"
281 <                 "\tparameters for atomType %s.\n",
282 <                 atomType->getName().c_str());
283 <        painCave.severity = OPENMD_ERROR;
284 <        painCave.isFatal = 1;
285 <        simError();                  
286 <      }
287 <      
288 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
289 <      if (doubleData == NULL) {
290 <        sprintf( painCave.errMsg,
291 <                 "Electrostatic::addType could not convert GenericData to "
292 <                 "Charge for\n"
293 <                 "\tatom type %s\n", atomType->getName().c_str());
294 <        painCave.severity = OPENMD_ERROR;
295 <        painCave.isFatal = 1;
296 <        simError();          
297 <      }
298 <      electrostaticAtomData.is_Charge = true;
299 <      electrostaticAtomData.charge = doubleData->getData();          
300 <    }
313 >    // working variables for Taylor expansion:
314 >    RealType rmRc, rmRc2, rmRc3, rmRc4;
315  
316 <    if (atomType->isDirectional()) {
317 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
318 <      
319 <      if (daType->isDipole()) {
320 <        GenericData* data = daType->getPropertyByName("Dipole");
321 <        
322 <        if (data == NULL) {
323 <          sprintf( painCave.errMsg,
324 <                   "Electrostatic::addType could not find Dipole\n"
325 <                   "\tparameters for atomType %s.\n",
326 <                   daType->getName().c_str());
327 <          painCave.severity = OPENMD_ERROR;
328 <          painCave.isFatal = 1;
329 <          simError();                  
330 <        }
331 <      
332 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
333 <        if (doubleData == NULL) {
334 <          sprintf( painCave.errMsg,
335 <                   "Electrostatic::addType could not convert GenericData to "
336 <                   "Dipole Moment\n"
337 <                   "\tfor atom type %s\n", daType->getName().c_str());
338 <          painCave.severity = OPENMD_ERROR;
339 <          painCave.isFatal = 1;
340 <          simError();          
341 <        }
342 <        electrostaticAtomData.is_Dipole = true;
343 <        electrostaticAtomData.dipole_moment = doubleData->getData();
316 >    // Approximate using splines using a maximum of 0.1 Angstroms
317 >    // between points.
318 >    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
319 >    np_ = (np_ > nptest) ? np_ : nptest;
320 >  
321 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
322 >    // have charged atoms longer than the cutoffRadius away from each
323 >    // other.  Splining is almost certainly the best choice here.
324 >    // Direct calls to erfc would be preferrable if it is a very fast
325 >    // implementation.
326 >
327 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
328 >
329 >    // Storage vectors for the computed functions    
330 >    vector<RealType> rv;
331 >    vector<RealType> v01v;
332 >    vector<RealType> v11v;
333 >    vector<RealType> v21v, v22v;
334 >    vector<RealType> v31v, v32v;
335 >    vector<RealType> v41v, v42v, v43v;
336 >
337 >    for (int i = 1; i < np_ + 1; i++) {
338 >      r = RealType(i) * dx;
339 >      rv.push_back(r);
340 >
341 >      ri = 1.0 / r;
342 >      ri2 = ri * ri;
343 >
344 >      r2 = r * r;
345 >      expTerm = exp(-a2 * r2);
346 >
347 >      // Taylor expansion factors (no need for factorials this way):
348 >      rmRc = r - cutoffRadius_;
349 >      rmRc2 = rmRc  * rmRc / 2.0;
350 >      rmRc3 = rmRc2 * rmRc / 3.0;
351 >      rmRc4 = rmRc3 * rmRc / 4.0;
352 >
353 >      // values of Smith's B_l functions at r:
354 >      if (screeningMethod_ == DAMPED) {            
355 >        b0 = erfc(dampingAlpha_ * r) * ri;
356 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
357 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
358 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
359 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
360 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
361 >      } else {
362 >        b0 = ri;
363 >        b1 = (      b0) * ri2;
364 >        b2 = (3.0 * b1) * ri2;
365 >        b3 = (5.0 * b2) * ri2;
366 >        b4 = (7.0 * b3) * ri2;
367 >        b5 = (9.0 * b4) * ri2;
368        }
369 +                
370 +      // higher derivatives of B_0 at r:
371 +      db0_1 = -r * b1;
372 +      db0_2 =     -b1 + r2 * b2;
373 +      db0_3 =          3.0*r*b2   - r2*r*b3;
374 +      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
375 +      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
376  
377 <      if (daType->isSplitDipole()) {
378 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
379 <        
380 <        if (data == NULL) {
381 <          sprintf(painCave.errMsg,
382 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
383 <                  "\tparameter for atomType %s.\n",
384 <                  daType->getName().c_str());
385 <          painCave.severity = OPENMD_ERROR;
386 <          painCave.isFatal = 1;
387 <          simError();                  
388 <        }
377 >      f = b0;
378 >      fc = b0c;
379 >      f0 = f - fc - rmRc*db0c_1;
380 >
381 >      g = db0_1;        
382 >      gc = db0c_1;
383 >      g0 = g - gc;
384 >      g1 = g0 - rmRc *db0c_2;
385 >      g2 = g1 - rmRc2*db0c_3;
386 >      g3 = g2 - rmRc3*db0c_4;
387 >      g4 = g3 - rmRc4*db0c_5;
388 >
389 >      h = db0_2;      
390 >      hc = db0c_2;
391 >      h1 = h - hc;
392 >      h2 = h1 - rmRc *db0c_3;
393 >      h3 = h2 - rmRc2*db0c_4;
394 >      h4 = h3 - rmRc3*db0c_5;
395 >
396 >      s = db0_3;      
397 >      sc = db0c_3;
398 >      s2 = s - sc;
399 >      s3 = s2 - rmRc *db0c_4;
400 >      s4 = s3 - rmRc2*db0c_5;
401 >
402 >      t = db0_4;      
403 >      tc = db0c_4;
404 >      t3 = t - tc;
405 >      t4 = t3 - rmRc *db0c_5;
406        
407 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
408 <        if (doubleData == NULL) {
409 <          sprintf( painCave.errMsg,
348 <                   "Electrostatic::addType could not convert GenericData to "
349 <                   "SplitDipoleDistance for\n"
350 <                   "\tatom type %s\n", daType->getName().c_str());
351 <          painCave.severity = OPENMD_ERROR;
352 <          painCave.isFatal = 1;
353 <          simError();          
354 <        }
355 <        electrostaticAtomData.is_SplitDipole = true;
356 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
357 <      }
407 >      u = db0_5;        
408 >      uc = db0c_5;
409 >      u4 = u - uc;
410  
411 <      if (daType->isQuadrupole()) {
412 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
411 >      // in what follows below, the various v functions are used for
412 >      // potentials and torques, while the w functions show up in the
413 >      // forces.
414 >
415 >      switch (summationMethod_) {
416 >      case esm_SHIFTED_FORCE:
417 >                
418 >        v01 = f - fc - rmRc*gc;
419 >        v11 = g - gc - rmRc*hc;
420 >        v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
421 >        v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
422 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
423 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
424 >          - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
425 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
426 >          - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
427 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
428 >          - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
429          
430 <        if (data == NULL) {
431 <          sprintf( painCave.errMsg,
432 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
433 <                   "\tparameter for atomType %s.\n",
434 <                   daType->getName().c_str());
435 <          painCave.severity = OPENMD_ERROR;
436 <          painCave.isFatal = 1;
437 <          simError();                  
438 <        }
430 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
431 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
432 >          - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
433 >
434 >        dv01 = g - gc;
435 >        dv11 = h - hc;
436 >        dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
437 >        dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);        
438 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
439 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
440 >          - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
441 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
442 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
443 >          - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
444 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
445 >          - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
446          
447 <        // Quadrupoles in OpenMD are set as the diagonal elements
373 <        // of the diagonalized traceless quadrupole moment tensor.
374 <        // The column vectors of the unitary matrix that diagonalizes
375 <        // the quadrupole moment tensor become the eFrame (or the
376 <        // electrostatic version of the body-fixed frame.
447 >        break;
448  
449 <        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
450 <        if (v3dData == NULL) {
451 <          sprintf( painCave.errMsg,
452 <                   "Electrostatic::addType could not convert GenericData to "
453 <                   "Quadrupole Moments for\n"
454 <                   "\tatom type %s\n", daType->getName().c_str());
455 <          painCave.severity = OPENMD_ERROR;
456 <          painCave.isFatal = 1;
457 <          simError();          
449 >      case esm_TAYLOR_SHIFTED:
450 >        
451 >        v01 = f0;
452 >        v11 = g1;
453 >        v21 = g2 * ri;
454 >        v22 = h2 - v21;
455 >        v31 = (h3 - g3 * ri) * ri;
456 >        v32 = s3 - 3.0*v31;
457 >        v41 = (h4 - g4 * ri) * ri2;
458 >        v42 = s4 * ri - 3.0*v41;
459 >        v43 = t4 - 6.0*v42 - 3.0*v41;
460 >
461 >        dv01 = g0;
462 >        dv11 = h1;
463 >        dv21 = (h2 - g2*ri)*ri;
464 >        dv22 = (s2 - (h2 - g2*ri)*ri);
465 >        dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
466 >        dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
467 >        dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
468 >        dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
469 >        dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
470 >
471 >        break;
472 >
473 >      case esm_SHIFTED_POTENTIAL:
474 >
475 >        v01 = f - fc;
476 >        v11 = g - gc;
477 >        v21 = g*ri - gc*ric;
478 >        v22 = h - g*ri - (hc - gc*ric);
479 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
480 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
481 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
482 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
483 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
484 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
485 >
486 >        dv01 = g;
487 >        dv11 = h;
488 >        dv21 = (h - g*ri)*ri;
489 >        dv22 = (s - (h - g*ri)*ri);
490 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
491 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
492 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
493 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
494 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
495 >
496 >        break;
497 >
498 >      case esm_SWITCHING_FUNCTION:
499 >      case esm_HARD:
500 >      case esm_EWALD_FULL:
501 >
502 >        v01 = f;
503 >        v11 = g;
504 >        v21 = g*ri;
505 >        v22 = h - g*ri;
506 >        v31 = (h-g*ri)*ri;
507 >        v32 = (s - 3.0*(h-g*ri)*ri);
508 >        v41 = (h - g*ri)*ri2;
509 >        v42 = (s-3.0*(h-g*ri)*ri)*ri;        
510 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
511 >
512 >        dv01 = g;
513 >        dv11 = h;
514 >        dv21 = (h - g*ri)*ri;
515 >        dv22 = (s - (h - g*ri)*ri);
516 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
517 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
518 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
519 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
520 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
521 >
522 >        break;
523 >
524 >      case esm_REACTION_FIELD:
525 >        
526 >        // following DL_POLY's lead for shifting the image charge potential:
527 >        f = b0 + preRF_ * r2;
528 >        fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
529 >
530 >        g = db0_1 + preRF_ * 2.0 * r;        
531 >        gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
532 >
533 >        h = db0_2 + preRF_ * 2.0;
534 >        hc = db0c_2 + preRF_ * 2.0;
535 >
536 >        v01 = f - fc;
537 >        v11 = g - gc;
538 >        v21 = g*ri - gc*ric;
539 >        v22 = h - g*ri - (hc - gc*ric);
540 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
541 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
542 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
543 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
544 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
545 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
546 >
547 >        dv01 = g;
548 >        dv11 = h;
549 >        dv21 = (h - g*ri)*ri;
550 >        dv22 = (s - (h - g*ri)*ri);
551 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
552 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
553 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
554 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
555 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
556 >
557 >        break;
558 >                
559 >      case esm_EWALD_PME:
560 >      case esm_EWALD_SPME:
561 >      default :
562 >        map<string, ElectrostaticSummationMethod>::iterator i;
563 >        std::string meth;
564 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
565 >          if ((*i).second == summationMethod_) meth = (*i).first;
566          }
567 +        sprintf( painCave.errMsg,
568 +                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
569 +                 "\thas not been implemented yet. Please select one of:\n"
570 +                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
571 +                 meth.c_str() );
572 +        painCave.isFatal = 1;
573 +        simError();
574 +        break;      
575 +      }
576 +
577 +      // Add these computed values to the storage vectors for spline creation:
578 +      v01v.push_back(v01);
579 +      v11v.push_back(v11);
580 +      v21v.push_back(v21);
581 +      v22v.push_back(v22);
582 +      v31v.push_back(v31);
583 +      v32v.push_back(v32);      
584 +      v41v.push_back(v41);
585 +      v42v.push_back(v42);
586 +      v43v.push_back(v43);
587 +    }
588 +
589 +    // construct the spline structures and fill them with the values we've
590 +    // computed:
591 +
592 +    v01s = new CubicSpline();
593 +    v01s->addPoints(rv, v01v);
594 +    v11s = new CubicSpline();
595 +    v11s->addPoints(rv, v11v);
596 +    v21s = new CubicSpline();
597 +    v21s->addPoints(rv, v21v);
598 +    v22s = new CubicSpline();
599 +    v22s->addPoints(rv, v22v);
600 +    v31s = new CubicSpline();
601 +    v31s->addPoints(rv, v31v);
602 +    v32s = new CubicSpline();
603 +    v32s->addPoints(rv, v32v);
604 +    v41s = new CubicSpline();
605 +    v41s->addPoints(rv, v41v);
606 +    v42s = new CubicSpline();
607 +    v42s->addPoints(rv, v42v);
608 +    v43s = new CubicSpline();
609 +    v43s->addPoints(rv, v43v);
610 +
611 +    haveElectroSplines_ = true;
612 +
613 +    initialized_ = true;
614 +  }
615 +      
616 +  void Electrostatic::addType(AtomType* atomType){
617 +    
618 +    ElectrostaticAtomData electrostaticAtomData;
619 +    electrostaticAtomData.is_Charge = false;
620 +    electrostaticAtomData.is_Dipole = false;
621 +    electrostaticAtomData.is_Quadrupole = false;
622 +    electrostaticAtomData.is_Fluctuating = false;
623 +
624 +    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
625 +
626 +    if (fca.isFixedCharge()) {
627 +      electrostaticAtomData.is_Charge = true;
628 +      electrostaticAtomData.fixedCharge = fca.getCharge();
629 +    }
630 +
631 +    MultipoleAdapter ma = MultipoleAdapter(atomType);
632 +    if (ma.isMultipole()) {
633 +      if (ma.isDipole()) {
634 +        electrostaticAtomData.is_Dipole = true;
635 +        electrostaticAtomData.dipole = ma.getDipole();
636 +      }
637 +      if (ma.isQuadrupole()) {
638          electrostaticAtomData.is_Quadrupole = true;
639 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
639 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
640        }
641      }
642      
643 <    AtomTypeProperties atp = atomType->getATP();    
643 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
644  
645 <    pair<map<int,AtomType*>::iterator,bool> ret;    
646 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
645 >    if (fqa.isFluctuatingCharge()) {
646 >      electrostaticAtomData.is_Fluctuating = true;
647 >      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
648 >      electrostaticAtomData.hardness = fqa.getHardness();
649 >      electrostaticAtomData.slaterN = fqa.getSlaterN();
650 >      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
651 >    }
652 >
653 >    int atid = atomType->getIdent();
654 >    int etid = Etypes.size();
655 >    int fqtid = FQtypes.size();
656 >
657 >    pair<set<int>::iterator,bool> ret;    
658 >    ret = Etypes.insert( atid );
659      if (ret.second == false) {
660        sprintf( painCave.errMsg,
661                 "Electrostatic already had a previous entry with ident %d\n",
662 <               atp.ident);
662 >               atid);
663        painCave.severity = OPENMD_INFO;
664        painCave.isFatal = 0;
665        simError();        
666      }
667      
668 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
668 >    Etids[ atid ] = etid;
669 >    ElectrostaticMap.push_back(electrostaticAtomData);
670 >
671 >    if (electrostaticAtomData.is_Fluctuating) {
672 >      ret = FQtypes.insert( atid );
673 >      if (ret.second == false) {
674 >        sprintf( painCave.errMsg,
675 >                 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
676 >                 atid );
677 >        painCave.severity = OPENMD_INFO;
678 >        painCave.isFatal = 0;
679 >        simError();        
680 >      }
681 >      FQtids[atid] = fqtid;
682 >      Jij[fqtid].resize(nFlucq_);
683 >
684 >      // Now, iterate over all known fluctuating and add to the
685 >      // coulomb integral map:
686 >      
687 >      std::set<int>::iterator it;
688 >      for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {    
689 >        int etid2 = Etids[ (*it) ];
690 >        int fqtid2 = FQtids[ (*it) ];
691 >        ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
692 >        RealType a = electrostaticAtomData.slaterZeta;
693 >        RealType b = eaData2.slaterZeta;
694 >        int m = electrostaticAtomData.slaterN;
695 >        int n = eaData2.slaterN;
696 >        
697 >        // Create the spline of the coulombic integral for s-type
698 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
699 >        // with cutoffGroups that have charged atoms longer than the
700 >        // cutoffRadius away from each other.
701 >        
702 >        RealType rval;
703 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
704 >        vector<RealType> rvals;
705 >        vector<RealType> Jvals;
706 >        // don't start at i = 0, as rval = 0 is undefined for the
707 >        // slater overlap integrals.
708 >        for (int i = 1; i < np_+1; i++) {
709 >          rval = RealType(i) * dr;
710 >          rvals.push_back(rval);
711 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
712 >                                       PhysicalConstants::angstromToBohr ) *
713 >                          PhysicalConstants::hartreeToKcal );
714 >        }
715 >        
716 >        CubicSpline* J = new CubicSpline();
717 >        J->addPoints(rvals, Jvals);
718 >        Jij[fqtid][fqtid2] = J;
719 >        Jij[fqtid2].resize( nFlucq_ );
720 >        Jij[fqtid2][fqtid] = J;
721 >      }      
722 >    }      
723      return;
724    }
725    
726 <  void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
727 <                                                    RealType theRSW ) {
412 <    cutoffRadius_ = theECR;
413 <    rrf_ = cutoffRadius_;
414 <    rt_ = theRSW;
726 >  void Electrostatic::setCutoffRadius( RealType rCut ) {
727 >    cutoffRadius_ = rCut;
728      haveCutoffRadius_ = true;
729    }
730 +
731    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
732      summationMethod_ = esm;
733    }
# Line 431 | Line 745 | namespace OpenMD {
745  
746    void Electrostatic::calcForce(InteractionData &idat) {
747  
434    // utility variables.  Should clean these up and use the Vector3d and
435    // Mat3x3d to replace as many as we can in future versions:
436
437    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
438    RealType qxx_i, qyy_i, qzz_i;
439    RealType qxx_j, qyy_j, qzz_j;
440    RealType cx_i, cy_i, cz_i;
441    RealType cx_j, cy_j, cz_j;
442    RealType cx2, cy2, cz2;
443    RealType ct_i, ct_j, ct_ij, a1;
444    RealType riji, ri, ri2, ri3, ri4;
445    RealType pref, vterm, epot, dudr;
446    RealType scale, sc2;
447    RealType pot_term, preVal, rfVal;
448    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
449    RealType preSw, preSwSc;
450    RealType c1, c2, c3, c4;
451    RealType erfcVal, derfcVal;
452    RealType BigR;
453
454    Vector3d Q_i, Q_j;
455    Vector3d ux_i, uy_i, uz_i;
456    Vector3d ux_j, uy_j, uz_j;
457    Vector3d dudux_i, duduy_i, duduz_i;
458    Vector3d dudux_j, duduy_j, duduz_j;
459    Vector3d rhatdot2, rhatc4;
460    Vector3d dVdr;
461
462    pair<RealType, RealType> res;
463    
748      if (!initialized_) initialize();
749      
750 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
751 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
750 >    data1 = ElectrostaticMap[Etids[idat.atid1]];
751 >    data2 = ElectrostaticMap[Etids[idat.atid2]];
752 >
753 >    U = 0.0;  // Potential
754 >    F.zero();  // Force
755 >    Ta.zero(); // Torque on site a
756 >    Tb.zero(); // Torque on site b
757 >    Ea.zero(); // Electric field at site a
758 >    Eb.zero(); // Electric field at site b
759 >    dUdCa = 0.0; // fluctuating charge force at site a
760 >    dUdCb = 0.0; // fluctuating charge force at site a
761      
762 <    // some variables we'll need independent of electrostatic type:
762 >    // Indirect interactions mediated by the reaction field.
763 >    indirect_Pot = 0.0;   // Potential
764 >    indirect_F.zero();    // Force
765 >    indirect_Ta.zero();   // Torque on site a
766 >    indirect_Tb.zero();   // Torque on site b
767  
768 <    riji = 1.0 / idat.rij;
769 <    Vector3d rhat = idat.d  * riji;
768 >    // Excluded potential that is still computed for fluctuating charges
769 >    excluded_Pot= 0.0;
770  
474    // logicals
771  
772 <    bool i_is_Charge = data1.is_Charge;
477 <    bool i_is_Dipole = data1.is_Dipole;
478 <    bool i_is_SplitDipole = data1.is_SplitDipole;
479 <    bool i_is_Quadrupole = data1.is_Quadrupole;
772 >    // some variables we'll need independent of electrostatic type:
773  
774 <    bool j_is_Charge = data2.is_Charge;
775 <    bool j_is_Dipole = data2.is_Dipole;
483 <    bool j_is_SplitDipole = data2.is_SplitDipole;
484 <    bool j_is_Quadrupole = data2.is_Quadrupole;
485 <    
486 <    if (i_is_Charge)
487 <      q_i = data1.charge;
488 <
489 <    if (i_is_Dipole) {
490 <      mu_i = data1.dipole_moment;
491 <      uz_i = idat.eFrame1.getColumn(2);
774 >    ri = 1.0 /  *(idat.rij);
775 >    rhat =  *(idat.d)  * ri;
776        
777 <      ct_i = dot(uz_i, rhat);
494 <
495 <      if (i_is_SplitDipole)
496 <        d_i = data1.split_dipole_distance;
497 <      
498 <      duduz_i = V3Zero;
499 <    }
500 <    
501 <    if (i_is_Quadrupole) {
502 <      Q_i = data1.quadrupole_moments;
503 <      qxx_i = Q_i.x();
504 <      qyy_i = Q_i.y();
505 <      qzz_i = Q_i.z();
506 <      
507 <      ux_i = idat.eFrame1.getColumn(0);
508 <      uy_i = idat.eFrame1.getColumn(1);
509 <      uz_i = idat.eFrame1.getColumn(2);
777 >    // logicals
778  
779 <      cx_i = dot(ux_i, rhat);
780 <      cy_i = dot(uy_i, rhat);
781 <      cz_i = dot(uz_i, rhat);
779 >    a_is_Charge = data1.is_Charge;
780 >    a_is_Dipole = data1.is_Dipole;
781 >    a_is_Quadrupole = data1.is_Quadrupole;
782 >    a_is_Fluctuating = data1.is_Fluctuating;
783  
784 <      dudux_i = V3Zero;
785 <      duduy_i = V3Zero;
786 <      duduz_i = V3Zero;
784 >    b_is_Charge = data2.is_Charge;
785 >    b_is_Dipole = data2.is_Dipole;
786 >    b_is_Quadrupole = data2.is_Quadrupole;
787 >    b_is_Fluctuating = data2.is_Fluctuating;
788 >
789 >    // Obtain all of the required radial function values from the
790 >    // spline structures:
791 >    
792 >    // needed for fields (and forces):
793 >    if (a_is_Charge || b_is_Charge) {
794 >      v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
795      }
796 +    if (a_is_Dipole || b_is_Dipole) {
797 +      v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
798 +      v11or = ri * v11;
799 +    }
800 +    if (a_is_Quadrupole || b_is_Quadrupole ||  (a_is_Dipole && b_is_Dipole)) {
801 +      v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
802 +      v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
803 +      v22or = ri * v22;
804 +    }      
805  
806 <    if (j_is_Charge)
807 <      q_j = data2.charge;
806 >    // needed for potentials (and forces and torques):
807 >    if ((a_is_Dipole && b_is_Quadrupole) ||
808 >        (b_is_Dipole && a_is_Quadrupole)) {
809 >      v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
810 >      v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
811 >      v31or = v31 * ri;
812 >      v32or = v32 * ri;
813 >    }
814 >    if (a_is_Quadrupole && b_is_Quadrupole) {
815 >      v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
816 >      v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
817 >      v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
818 >      v42or = v42 * ri;
819 >      v43or = v43 * ri;
820 >    }
821  
822 <    if (j_is_Dipole) {
823 <      mu_j = data2.dipole_moment;
824 <      uz_j = idat.eFrame2.getColumn(2);
822 >    // calculate the single-site contributions (fields, etc).
823 >    
824 >    if (a_is_Charge) {
825 >      C_a = data1.fixedCharge;
826        
827 <      ct_j = dot(uz_j, rhat);
828 <
829 <      if (j_is_SplitDipole)
530 <        d_j = data2.split_dipole_distance;
827 >      if (a_is_Fluctuating) {
828 >        C_a += *(idat.flucQ1);
829 >      }
830        
831 <      duduz_j = V3Zero;
831 >      if (idat.excluded) {
832 >        *(idat.skippedCharge2) += C_a;
833 >      } else {
834 >        // only do the field if we're not excluded:
835 >        Eb -= C_a *  pre11_ * dv01 * rhat;
836 >      }
837      }
838      
839 <    if (j_is_Quadrupole) {
840 <      Q_j = data2.quadrupole_moments;
841 <      qxx_j = Q_j.x();
842 <      qyy_j = Q_j.y();
843 <      qzz_j = Q_j.z();
839 >    if (a_is_Dipole) {
840 >      D_a = *(idat.dipole1);
841 >      rdDa = dot(rhat, D_a);
842 >      rxDa = cross(rhat, D_a);
843 >      if (!idat.excluded)
844 >        Eb -=  pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
845 >    }
846 >    
847 >    if (a_is_Quadrupole) {
848 >      Q_a = *(idat.quadrupole1);
849 >      trQa =  Q_a.trace();
850 >      Qar =   Q_a * rhat;
851 >      rQa = rhat * Q_a;
852 >      rdQar = dot(rhat, Qar);
853 >      rxQar = cross(rhat, Qar);
854 >      if (!idat.excluded)
855 >        Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
856 >                        + rdQar * rhat * (dv22 - 2.0*v22or));
857 >    }
858 >    
859 >    if (b_is_Charge) {
860 >      C_b = data2.fixedCharge;
861        
862 <      ux_j = idat.eFrame2.getColumn(0);
863 <      uy_j = idat.eFrame2.getColumn(1);
864 <      uz_j = idat.eFrame2.getColumn(2);
865 <
866 <      cx_j = dot(ux_j, rhat);
867 <      cy_j = dot(uy_j, rhat);
868 <      cz_j = dot(uz_j, rhat);
869 <
870 <      dudux_j = V3Zero;
550 <      duduy_j = V3Zero;
551 <      duduz_j = V3Zero;
862 >      if (b_is_Fluctuating)
863 >        C_b += *(idat.flucQ2);
864 >      
865 >      if (idat.excluded) {
866 >        *(idat.skippedCharge1) += C_b;
867 >      } else {
868 >        // only do the field if we're not excluded:
869 >        Ea += C_b *  pre11_ * dv01 * rhat;
870 >      }
871      }
872      
873 <    epot = 0.0;
874 <    dVdr = V3Zero;
873 >    if (b_is_Dipole) {
874 >      D_b = *(idat.dipole2);
875 >      rdDb = dot(rhat, D_b);
876 >      rxDb = cross(rhat, D_b);
877 >      if (!idat.excluded)
878 >        Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
879 >    }
880      
881 <    if (i_is_Charge) {
881 >    if (b_is_Quadrupole) {
882 >      Q_b = *(idat.quadrupole2);
883 >      trQb =  Q_b.trace();
884 >      Qbr =   Q_b * rhat;
885 >      rQb = rhat * Q_b;
886 >      rdQbr = dot(rhat, Qbr);
887 >      rxQbr = cross(rhat, Qbr);
888 >      if (!idat.excluded)
889 >        Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
890 >                        + rdQbr * rhat * (dv22 - 2.0*v22or));
891 >    }
892 >    
893 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
894 >      J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
895 >    }    
896 >    
897 >    if (a_is_Charge) {    
898        
899 <      if (j_is_Charge) {
900 <        if (screeningMethod_ == DAMPED) {
901 <          // assemble the damping variables
902 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
903 <          erfcVal = res.first;
904 <          derfcVal = res.second;
905 <          c1 = erfcVal * riji;
566 <          c2 = (-derfcVal + c1) * riji;
567 <        } else {
568 <          c1 = riji;
569 <          c2 = c1 * riji;
570 <        }
899 >      if (b_is_Charge) {
900 >        pref =  pre11_ * *(idat.electroMult);      
901 >        U  += C_a * C_b * pref * v01;
902 >        F  += C_a * C_b * pref * dv01 * rhat;
903 >        
904 >        // If this is an excluded pair, there are still indirect
905 >        // interactions via the reaction field we must worry about:
906  
907 <        preVal = idat.electroMult * pre11_ * q_i * q_j;
907 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
908 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
909 >          indirect_Pot += rfContrib;
910 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
911 >        }
912          
913 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
914 <          vterm = preVal * (c1 - c1c_);
915 <          dudr  = -idat.sw * preVal * c2;
913 >        // Fluctuating charge forces are handled via Coulomb integrals
914 >        // for excluded pairs (i.e. those connected via bonds) and
915 >        // with the standard charge-charge interaction otherwise.
916  
917 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
918 <          vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - cutoffRadius_) );
919 <          dudr  = idat.sw * preVal * (c2c_ - c2);
920 <
921 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
922 <          rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
923 <          vterm = preVal * ( riji + rfVal );            
585 <          dudr  = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
586 <
917 >        if (idat.excluded) {          
918 >          if (a_is_Fluctuating || b_is_Fluctuating) {
919 >            coulInt = J->getValueAt( *(idat.rij) );
920 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
921 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
922 >            excluded_Pot += C_a * C_b * coulInt;
923 >          }          
924          } else {
925 <          vterm = preVal * riji * erfcVal;            
925 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
926 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
927 >        }
928 >      }
929  
930 <          dudr  = - idat.sw * preVal * c2;
930 >      if (b_is_Dipole) {
931 >        pref =  pre12_ * *(idat.electroMult);        
932 >        U  += C_a * pref * v11 * rdDb;
933 >        F  += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
934 >        Tb += C_a * pref * v11 * rxDb;
935  
936 <        }
593 <
594 <        idat.vpair[2] += vterm;
595 <        epot += idat.sw * vterm;
936 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
937  
938 <        dVdr += dudr * rhat;      
938 >        // Even if we excluded this pair from direct interactions, we
939 >        // still have the reaction-field-mediated charge-dipole
940 >        // interaction:
941 >
942 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
943 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
944 >          indirect_Pot += rfContrib * rdDb;
945 >          indirect_F   += rfContrib * D_b / (*idat.rij);
946 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
947 >        }
948        }
949  
950 <      if (j_is_Dipole) {
951 <        // pref is used by all the possible methods
952 <        pref = idat.electroMult * pre12_ * q_i * mu_j;
953 <        preSw = idat.sw * pref;
950 >      if (b_is_Quadrupole) {
951 >        pref = pre14_ * *(idat.electroMult);
952 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
953 >        F  +=  C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
954 >        F  +=  C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
955 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
956  
957 <        if (summationMethod_ == esm_REACTION_FIELD) {
958 <          ri2 = riji * riji;
959 <          ri3 = ri2 * riji;
608 <    
609 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
610 <          idat.vpair[2] += vterm;
611 <          epot += idat.sw * vterm;
957 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
958 >      }
959 >    }
960  
961 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
614 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);  
961 >    if (a_is_Dipole) {
962  
963 <        } else {
964 <          // determine the inverse r used if we have split dipoles
618 <          if (j_is_SplitDipole) {
619 <            BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
620 <            ri = 1.0 / BigR;
621 <            scale = idat.rij * ri;
622 <          } else {
623 <            ri = riji;
624 <            scale = 1.0;
625 <          }
626 <          
627 <          sc2 = scale * scale;
963 >      if (b_is_Charge) {
964 >        pref = pre12_ * *(idat.electroMult);
965  
966 <          if (screeningMethod_ == DAMPED) {
967 <            // assemble the damping variables
968 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
632 <            erfcVal = res.first;
633 <            derfcVal = res.second;
634 <            c1 = erfcVal * ri;
635 <            c2 = (-derfcVal + c1) * ri;
636 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
637 <          } else {
638 <            c1 = ri;
639 <            c2 = c1 * ri;
640 <            c3 = 3.0 * c2 * ri;
641 <          }
642 <            
643 <          c2ri = c2 * ri;
966 >        U  -= C_b * pref * v11 * rdDa;
967 >        F  -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
968 >        Ta -= C_b * pref * v11 * rxDa;
969  
970 <          // calculate the potential
646 <          pot_term =  scale * c2;
647 <          vterm = -pref * ct_j * pot_term;
648 <          idat.vpair[2] += vterm;
649 <          epot += idat.sw * vterm;
650 <            
651 <          // calculate derivatives for forces and torques
970 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
971  
972 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
973 <          duduz_j += -preSw * pot_term * rhat;
974 <
972 >        // Even if we excluded this pair from direct interactions,
973 >        // we still have the reaction-field-mediated charge-dipole
974 >        // interaction:
975 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
976 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
977 >          indirect_Pot -= rfContrib * rdDa;
978 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
979 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
980          }
981        }
982  
983 <      if (j_is_Quadrupole) {
984 <        // first precalculate some necessary variables
985 <        cx2 = cx_j * cx_j;
986 <        cy2 = cy_j * cy_j;
663 <        cz2 = cz_j * cz_j;
664 <        pref =  idat.electroMult * pre14_ * q_i * one_third_;
665 <          
666 <        if (screeningMethod_ == DAMPED) {
667 <          // assemble the damping variables
668 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
669 <          erfcVal = res.first;
670 <          derfcVal = res.second;
671 <          c1 = erfcVal * riji;
672 <          c2 = (-derfcVal + c1) * riji;
673 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
674 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
675 <        } else {
676 <          c1 = riji;
677 <          c2 = c1 * riji;
678 <          c3 = 3.0 * c2 * riji;
679 <          c4 = 5.0 * c3 * riji * riji;
680 <        }
983 >      if (b_is_Dipole) {
984 >        pref = pre22_ * *(idat.electroMult);
985 >        DadDb = dot(D_a, D_b);
986 >        DaxDb = cross(D_a, D_b);
987  
988 <        // precompute variables for convenience
989 <        preSw = idat.sw * pref;
990 <        c2ri = c2 * riji;
991 <        c3ri = c3 * riji;
992 <        c4rij = c4 * idat.rij;
687 <        rhatdot2 = 2.0 * rhat * c3;
688 <        rhatc4 = rhat * c4rij;
988 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
989 >        F  -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
990 >        F  -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
991 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
992 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
993  
994 <        // calculate the potential
995 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
996 <                     qyy_j * (cy2*c3 - c2ri) +
997 <                     qzz_j * (cz2*c3 - c2ri) );
998 <        vterm = pref * pot_term;
999 <        idat.vpair[2] += vterm;
1000 <        epot += idat.sw * vterm;
1001 <                
1002 <        // calculate derivatives for the forces and torques
994 >        // Even if we excluded this pair from direct interactions, we
995 >        // still have the reaction-field-mediated dipole-dipole
996 >        // interaction:
997 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
998 >          rfContrib = -pref * preRF_ * 2.0;
999 >          indirect_Pot += rfContrib * DadDb;
1000 >          indirect_Ta  += rfContrib * DaxDb;
1001 >          indirect_Tb  -= rfContrib * DaxDb;
1002 >        }
1003 >      }
1004  
1005 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
1006 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
1007 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
1008 <                          
1009 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
1010 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
1011 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
1005 >      if (b_is_Quadrupole) {
1006 >        pref = pre24_ * *(idat.electroMult);
1007 >        DadQb = D_a * Q_b;
1008 >        DadQbr = dot(D_a, Qbr);
1009 >        DaxQbr = cross(D_a, Qbr);
1010 >
1011 >        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1012 >        F  -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1013 >        F  -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1014 >        F  -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1015 >        F  -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1016 >        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1017 >        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1018 >                      - 2.0*rdDa*rxQbr*v32);
1019        }
1020      }
709    
710    if (i_is_Dipole) {
1021  
1022 <      if (j_is_Charge) {
1023 <        // variables used by all the methods
1024 <        pref = idat.electroMult * pre12_ * q_j * mu_i;
1025 <        preSw = idat.sw * pref;
1022 >    if (a_is_Quadrupole) {
1023 >      if (b_is_Charge) {
1024 >        pref = pre14_ * *(idat.electroMult);
1025 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
1026 >        F  += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1027 >        F  += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1028 >        Ta += C_b * pref * 2.0 * rxQar * v22;
1029  
1030 <        if (summationMethod_ == esm_REACTION_FIELD) {
1030 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1031 >      }
1032 >      if (b_is_Dipole) {
1033 >        pref = pre24_ * *(idat.electroMult);
1034 >        DbdQa = D_b * Q_a;
1035 >        DbdQar = dot(D_b, Qar);
1036 >        DbxQar = cross(D_b, Qar);
1037  
1038 <          ri2 = riji * riji;
1039 <          ri3 = ri2 * riji;
1038 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1039 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1040 >        F  += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1041 >        F  += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1042 >        F  += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1043 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1044 >                      + 2.0*rdDb*rxQar*v32);
1045 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1046 >      }
1047 >      if (b_is_Quadrupole) {
1048 >        pref = pre44_ * *(idat.electroMult);  // yes
1049 >        QaQb = Q_a * Q_b;
1050 >        trQaQb = QaQb.trace();
1051 >        rQaQb = rhat * QaQb;
1052 >        QaQbr = QaQb * rhat;
1053 >        QaxQb = cross(Q_a, Q_b);
1054 >        rQaQbr = dot(rQa, Qbr);
1055 >        rQaxQbr = cross(rQa, Qbr);
1056 >        
1057 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1058 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1059 >        U  += pref * (rdQar * rdQbr) * v43;
1060  
1061 <          vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
1062 <          idat.vpair[2] += vterm;
1063 <          epot += idat.sw * vterm;
725 <          
726 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
727 <          
728 <          duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
729 <            
730 <        } else {
731 <          
732 <          // determine inverse r if we are using split dipoles
733 <          if (i_is_SplitDipole) {
734 <            BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
735 <            ri = 1.0 / BigR;
736 <            scale = idat.rij * ri;
737 <          } else {
738 <            ri = riji;
739 <            scale = 1.0;
740 <          }
741 <          
742 <          sc2 = scale * scale;
743 <            
744 <          if (screeningMethod_ == DAMPED) {
745 <            // assemble the damping variables
746 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
747 <            erfcVal = res.first;
748 <            derfcVal = res.second;
749 <            c1 = erfcVal * ri;
750 <            c2 = (-derfcVal + c1) * ri;
751 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
752 <          } else {
753 <            c1 = ri;
754 <            c2 = c1 * ri;
755 <            c3 = 3.0 * c2 * ri;
756 <          }
757 <          
758 <          c2ri = c2 * ri;
759 <              
760 <          // calculate the potential
761 <          pot_term = c2 * scale;
762 <          vterm = pref * ct_i * pot_term;
763 <          idat.vpair[2] += vterm;
764 <          epot += idat.sw * vterm;
1061 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1062 >        F  += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1063 >        F  += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1064  
1065 <          // calculate derivatives for the forces and torques
1066 <          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
1067 <          duduz_i += preSw * pot_term * rhat;
769 <        }
770 <      }
1065 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1066 >        F  += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1067 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1068  
1069 <      if (j_is_Dipole) {
1070 <        // variables used by all methods
1071 <        ct_ij = dot(uz_i, uz_j);
1069 >        Ta += pref * (- 4.0 * QaxQb * v41);
1070 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1071 >                      + 4.0 * cross(rhat, QaQbr)
1072 >                      - 4.0 * rQaxQbr) * v42;
1073 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1074  
776        pref = idat.electroMult * pre22_ * mu_i * mu_j;
777        preSw = idat.sw * pref;
1075  
1076 <        if (summationMethod_ == esm_REACTION_FIELD) {
1077 <          ri2 = riji * riji;
1078 <          ri3 = ri2 * riji;
1079 <          ri4 = ri2 * ri2;
1076 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1077 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1078 >                      - 4.0 * cross(rQaQb, rhat)
1079 >                      + 4.0 * rQaxQbr) * v42;
1080 >        // Possible replacement for line 2 above:
1081 >        //             + 4.0 * cross(rhat, QbQar)
1082  
1083 <          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
785 <                           preRF2_ * ct_ij );
786 <          idat.vpair[2] += vterm;
787 <          epot += idat.sw * vterm;
788 <            
789 <          a1 = 5.0 * ct_i * ct_j - ct_ij;
790 <            
791 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
1083 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1084  
793          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
794          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
795
796        } else {
797          
798          if (i_is_SplitDipole) {
799            if (j_is_SplitDipole) {
800              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
801            } else {
802              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
803            }
804            ri = 1.0 / BigR;
805            scale = idat.rij * ri;
806          } else {
807            if (j_is_SplitDipole) {
808              BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
809              ri = 1.0 / BigR;
810              scale = idat.rij * ri;
811            } else {
812              ri = riji;
813              scale = 1.0;
814            }
815          }
816          if (screeningMethod_ == DAMPED) {
817            // assemble damping variables
818            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
819            erfcVal = res.first;
820            derfcVal = res.second;
821            c1 = erfcVal * ri;
822            c2 = (-derfcVal + c1) * ri;
823            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
824            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
825          } else {
826            c1 = ri;
827            c2 = c1 * ri;
828            c3 = 3.0 * c2 * ri;
829            c4 = 5.0 * c3 * ri * ri;
830          }
831
832          // precompute variables for convenience
833          sc2 = scale * scale;
834          cti3 = ct_i * sc2 * c3;
835          ctj3 = ct_j * sc2 * c3;
836          ctidotj = ct_i * ct_j * sc2;
837          preSwSc = preSw * scale;
838          c2ri = c2 * ri;
839          c3ri = c3 * ri;
840          c4rij = c4 * idat.rij;
841
842          // calculate the potential
843          pot_term = (ct_ij * c2ri - ctidotj * c3);
844          vterm = pref * pot_term;
845          idat.vpair[2] += vterm;
846          epot += idat.sw * vterm;
847
848          // calculate derivatives for the forces and torques
849          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
850                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
851          
852          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
853          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
854        }
1085        }
1086      }
1087  
1088 <    if (i_is_Quadrupole) {
1089 <      if (j_is_Charge) {
1090 <        // precompute some necessary variables
1091 <        cx2 = cx_i * cx_i;
862 <        cy2 = cy_i * cy_i;
863 <        cz2 = cz_i * cz_i;
1088 >    if (idat.doElectricField) {
1089 >      *(idat.eField1) += Ea * *(idat.electroMult);
1090 >      *(idat.eField2) += Eb * *(idat.electroMult);
1091 >    }
1092  
1093 <        pref = idat.electroMult * pre14_ * q_j * one_third_;
1093 >    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1094 >    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1095  
1096 <        if (screeningMethod_ == DAMPED) {
1097 <          // assemble the damping variables
1098 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
1099 <          erfcVal = res.first;
1100 <          derfcVal = res.second;
1101 <          c1 = erfcVal * riji;
1102 <          c2 = (-derfcVal + c1) * riji;
1103 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
875 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
876 <        } else {
877 <          c1 = riji;
878 <          c2 = c1 * riji;
879 <          c3 = 3.0 * c2 * riji;
880 <          c4 = 5.0 * c3 * riji * riji;
881 <        }
882 <          
883 <        // precompute some variables for convenience
884 <        preSw = idat.sw * pref;
885 <        c2ri = c2 * riji;
886 <        c3ri = c3 * riji;
887 <        c4rij = c4 * idat.rij;
888 <        rhatdot2 = 2.0 * rhat * c3;
889 <        rhatc4 = rhat * c4rij;
1096 >    if (!idat.excluded) {
1097 >      
1098 >      *(idat.vpair) += U;
1099 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1100 >      *(idat.f1) += F * *(idat.sw);
1101 >      
1102 >      if (a_is_Dipole || a_is_Quadrupole)
1103 >        *(idat.t1) += Ta * *(idat.sw);
1104  
1105 <        // calculate the potential
1106 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1107 <                     qyy_i * (cy2 * c3 - c2ri) +
1108 <                     qzz_i * (cz2 * c3 - c2ri) );
895 <        
896 <        vterm = pref * pot_term;
897 <        idat.vpair[2] += vterm;
898 <        epot += idat.sw * vterm;
1105 >      if (b_is_Dipole || b_is_Quadrupole)
1106 >        *(idat.t2) += Tb * *(idat.sw);
1107 >      
1108 >    } else {
1109  
1110 <        // calculate the derivatives for the forces and torques
1110 >      // only accumulate the forces and torques resulting from the
1111 >      // indirect reaction field terms.
1112  
1113 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
1114 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
1115 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
1116 <
1117 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1118 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1119 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1120 <      }
1113 >      *(idat.vpair) += indirect_Pot;      
1114 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1115 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1116 >      *(idat.f1) += *(idat.sw) * indirect_F;
1117 >      
1118 >      if (a_is_Dipole || a_is_Quadrupole)
1119 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1120 >            
1121 >      if (b_is_Dipole || b_is_Quadrupole)
1122 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1123      }
911
912    idat.pot[2] += epot;
913    idat.f1 += dVdr;
914
915    if (i_is_Dipole || i_is_Quadrupole)
916      idat.t1 -= cross(uz_i, duduz_i);
917    if (i_is_Quadrupole) {
918      idat.t1 -= cross(ux_i, dudux_i);
919      idat.t1 -= cross(uy_i, duduy_i);
920    }
921
922    if (j_is_Dipole || j_is_Quadrupole)
923      idat.t2 -= cross(uz_j, duduz_j);
924    if (j_is_Quadrupole) {
925      idat.t2 -= cross(uz_j, dudux_j);
926      idat.t2 -= cross(uz_j, duduy_j);
927    }
928
1124      return;
1125 <  }  
1125 >  }
1126 >    
1127 >  void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1128  
932  void Electrostatic::calcSkipCorrection(InteractionData &idat) {
933
1129      if (!initialized_) initialize();
935    
936    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
937    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
938    
939    // logicals
1130  
1131 <    bool i_is_Charge = data1.is_Charge;
942 <    bool i_is_Dipole = data1.is_Dipole;
943 <
944 <    bool j_is_Charge = data2.is_Charge;
945 <    bool j_is_Dipole = data2.is_Dipole;
946 <
947 <    RealType q_i, q_j;
1131 >    ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1132      
1133 <    // The skippedCharge computation is needed by the real-space cutoff methods
1134 <    // (i.e. shifted force and shifted potential)
1135 <
1136 <    if (i_is_Charge) {
1137 <      q_i = data1.charge;
1138 <      idat.skippedCharge2 += q_i;
1139 <    }
1133 >    // logicals
1134 >    bool i_is_Charge = data.is_Charge;
1135 >    bool i_is_Dipole = data.is_Dipole;
1136 >    bool i_is_Quadrupole = data.is_Quadrupole;
1137 >    bool i_is_Fluctuating = data.is_Fluctuating;
1138 >    RealType C_a = data.fixedCharge;  
1139 >    RealType self(0.0), preVal, DdD, trQ, trQQ;
1140  
1141 <    if (j_is_Charge) {
1142 <      q_j = data2.charge;
959 <      idat.skippedCharge1 += q_j;
1141 >    if (i_is_Dipole) {
1142 >      DdD = data.dipole.lengthSquare();
1143      }
1144 +        
1145 +    if (i_is_Fluctuating) {
1146 +      C_a += *(sdat.flucQ);
1147 +      // dVdFQ is really a force, so this is negative the derivative
1148 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1149 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1150 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1151 +    }
1152  
1153 <    // the rest of this function should only be necessary for reaction field.
1154 <
964 <    if (summationMethod_ == esm_REACTION_FIELD) {
965 <      RealType riji, ri2, ri3;
966 <      RealType mu_i, ct_i;
967 <      RealType mu_j, ct_j;
968 <      RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0);
969 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
970 <
971 <      // some variables we'll need independent of electrostatic type:
1153 >    switch (summationMethod_) {
1154 >    case esm_REACTION_FIELD:
1155        
973      riji = 1.0 / idat.rij;
974      rhat = idat.d  * riji;
975
976      if (i_is_Dipole) {
977        mu_i = data1.dipole_moment;
978        uz_i = idat.eFrame1.getColumn(2);      
979        ct_i = dot(uz_i, rhat);
980        duduz_i = V3Zero;
981      }
982            
983      if (j_is_Dipole) {
984        mu_j = data2.dipole_moment;
985        uz_j = idat.eFrame2.getColumn(2);      
986        ct_j = dot(uz_j, rhat);
987        duduz_j = V3Zero;
988      }
989    
1156        if (i_is_Charge) {
1157 <        if (j_is_Charge) {
1158 <          preVal = idat.electroMult * pre11_ * q_i * q_j;
1159 <          rfVal = preRF_ * idat.rij * idat.rij;
1160 <          vterm = preVal * rfVal;
1161 <          myPot += idat.sw * vterm;        
996 <          dudr  = idat.sw * preVal * 2.0 * rfVal * riji;        
997 <          dVdr += dudr * rhat;
998 <        }
999 <        
1000 <        if (j_is_Dipole) {
1001 <          ri2 = riji * riji;
1002 <          ri3 = ri2 * riji;        
1003 <          pref = idat.electroMult * pre12_ * q_i * mu_j;
1004 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
1005 <          myPot += idat.sw * vterm;        
1006 <          dVdr += -idat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1007 <          duduz_j += -idat.sw * pref * rhat * (ri2 - preRF2_ * idat.rij);
1008 <        }
1157 >        // Self potential [see Wang and Hermans, "Reaction Field
1158 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1159 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1160 >        preVal = pre11_ * preRF_ * C_a * C_a;
1161 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1162        }
1163 +
1164        if (i_is_Dipole) {
1165 <        if (j_is_Charge) {
1012 <          ri2 = riji * riji;
1013 <          ri3 = ri2 * riji;        
1014 <          pref = idat.electroMult * pre12_ * q_j * mu_i;
1015 <          vterm = - pref * ct_i * ( ri2 - preRF2_ * idat.rij );
1016 <          myPot += idat.sw * vterm;        
1017 <          dVdr += idat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
1018 <          duduz_i += idat.sw * pref * rhat * (ri2 - preRF2_ * idat.rij);
1019 <        }
1165 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1166        }
1167        
1168 <      // accumulate the forces and torques resulting from the self term
1023 <      idat.pot[2] += myPot;
1024 <      idat.f1 += dVdr;
1168 >      break;
1169        
1170 +    case esm_SHIFTED_FORCE:
1171 +    case esm_SHIFTED_POTENTIAL:
1172 +    case esm_TAYLOR_SHIFTED:
1173 +    case esm_EWALD_FULL:
1174 +      if (i_is_Charge)
1175 +        self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));      
1176        if (i_is_Dipole)
1177 <        idat.t1 -= cross(uz_i, duduz_i);
1178 <      if (j_is_Dipole)
1179 <        idat.t2 -= cross(uz_j, duduz_j);
1177 >        self += selfMult2_ * pre22_ * DdD;      
1178 >      if (i_is_Quadrupole) {
1179 >        trQ = data.quadrupole.trace();
1180 >        trQQ = (data.quadrupole * data.quadrupole).trace();
1181 >        self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1182 >        if (i_is_Charge)
1183 >          self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1184 >      }
1185 >      (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;      
1186 >      break;
1187 >    default:
1188 >      break;
1189      }
1190    }
1191 +  
1192 +  RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1193 +    // This seems to work moderately well as a default.  There's no
1194 +    // inherent scale for 1/r interactions that we can standardize.
1195 +    // 12 angstroms seems to be a reasonably good guess for most
1196 +    // cases.
1197 +    return 12.0;
1198 +  }
1199 +
1200 +
1201 +  void Electrostatic::ReciprocalSpaceSum(potVec& pot) {
1202      
1203 <  void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1204 <    RealType mu1, preVal, chg1, self;
1203 >    RealType kPot = 0.0;
1204 >    RealType kVir = 0.0;
1205      
1206 <    if (!initialized_) initialize();
1206 >    const RealType mPoleConverter = 0.20819434; // converts from the
1207 >                                                // internal units of
1208 >                                                // Debye (for dipoles)
1209 >                                                // or Debye-angstroms
1210 >                                                // (for quadrupoles) to
1211 >                                                // electron angstroms or
1212 >                                                // electron-angstroms^2
1213      
1214 <    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1215 <  
1216 <    // logicals
1214 >    const RealType eConverter = 332.0637778; // convert the
1215 >                                             // Charge-Charge
1216 >                                             // electrostatic
1217 >                                             // interactions into kcal /
1218 >                                             // mol assuming distances
1219 >                                             // are measured in
1220 >                                             // angstroms.
1221  
1222 <    bool i_is_Charge = data.is_Charge;
1223 <    bool i_is_Dipole = data.is_Dipole;
1224 <
1225 <    if (summationMethod_ == esm_REACTION_FIELD) {
1226 <      if (i_is_Dipole) {
1227 <        mu1 = data.dipole_moment;          
1228 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1229 <        sdat.pot[2] -= 0.5 * preVal;
1222 >    Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1223 >    Vector3d box = hmat.diagonals();
1224 >    RealType boxMax = box.max();
1225 >    
1226 >    cerr << "da = " << dampingAlpha_ << " rc = " << cutoffRadius_ << "\n";
1227 >    cerr << "boxMax = " << boxMax << "\n";
1228 >    //int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) );
1229 >    int kMax = 5;
1230 >    cerr << "kMax = " << kMax << "\n";
1231 >    int kSqMax = kMax*kMax + 2;
1232 >    
1233 >    int kLimit = kMax+1;
1234 >    int kLim2 = 2*kMax+1;
1235 >    int kSqLim = kSqMax;
1236 >    
1237 >    vector<RealType> AK(kSqLim+1, 0.0);
1238 >    RealType xcl = 2.0 * M_PI / box.x();
1239 >    RealType ycl = 2.0 * M_PI / box.y();
1240 >    RealType zcl = 2.0 * M_PI / box.z();
1241 >    RealType rcl = 2.0 * M_PI / boxMax;
1242 >    RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1243 >    
1244 >    if(dampingAlpha_ < 1.0e-12) return;
1245 >    
1246 >    RealType ralph = -0.25/pow(dampingAlpha_,2);
1247 >    
1248 >    // Calculate and store exponential factors  
1249 >    
1250 >    vector<vector<Vector3d> > eCos;
1251 >    vector<vector<Vector3d> > eSin;
1252 >    
1253 >    int nMax = info_->getNAtoms();
1254 >    
1255 >    eCos.resize(kLimit+1);
1256 >    eSin.resize(kLimit+1);
1257 >    for (int j = 0; j < kLimit+1; j++) {
1258 >      eCos[j].resize(nMax);
1259 >      eSin[j].resize(nMax);
1260 >    }
1261 >    
1262 >    Vector3d t( 2.0 * M_PI );
1263 >    t.Vdiv(t, box);
1264 >    
1265 >    SimInfo::MoleculeIterator mi;
1266 >    Molecule::AtomIterator ai;
1267 >    int i;
1268 >    Vector3d r;
1269 >    Vector3d tt;
1270 >    Vector3d w;
1271 >    Vector3d u;
1272 >    Vector3d a;
1273 >    Vector3d b;
1274 >    
1275 >    for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1276 >         mol = info_->nextMolecule(mi)) {
1277 >      for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1278 >          atom = mol->nextAtom(ai)) {  
1279          
1280 <        // The self-correction term adds into the reaction field vector
1281 <        Vector3d uz_i = sdat.eFrame.getColumn(2);
1282 <        Vector3d ei = preVal * uz_i;
1280 >        i = atom->getLocalIndex();
1281 >        r = atom->getPos();
1282 >        info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1283 >        
1284 >        // Shift so that all coordinates are in the range [0,L]:
1285  
1286 <        // This looks very wrong.  A vector crossed with itself is zero.
1287 <        sdat.t -= cross(uz_i, ei);
1286 >        r += box/2.0;
1287 >
1288 >        tt.Vmul(t, r);
1289 >
1290 >        //cerr << "tt = " << tt << "\n";
1291 >        
1292 >        eCos[1][i] = Vector3d(1.0, 1.0, 1.0);
1293 >        eSin[1][i] = Vector3d(0.0, 0.0, 0.0);
1294 >        eCos[2][i] = Vector3d(cos(tt.x()), cos(tt.y()), cos(tt.z()));
1295 >        eSin[2][i] = Vector3d(sin(tt.x()), sin(tt.y()), sin(tt.z()));
1296 >        u = eCos[2][i];
1297 >        w = eSin[2][i];
1298 >        
1299 >        for(int l = 3; l <= kLimit; l++) {
1300 >          a.Vmul(eCos[l-1][i], u);
1301 >          b.Vmul(eSin[l-1][i], w);
1302 >          eCos[l][i] = a - b;
1303 >          a.Vmul(eSin[l-1][i], u);
1304 >          b.Vmul(eCos[l-1][i], w);
1305 >          eSin[l][i] = a + b;
1306 >        }
1307        }
1308 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1309 <      if (i_is_Charge) {        
1310 <        chg1 = data.charge;
1311 <        if (screeningMethod_ == DAMPED) {
1312 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + sdat.skippedCharge) * pre11_;
1313 <        } else {        
1314 <          self = - 0.5 * rcuti_ * chg1 * (chg1 + sdat.skippedCharge) * pre11_;
1308 >    }
1309 >    
1310 >    // Calculate and store AK coefficients:
1311 >    
1312 >    RealType eksq = 1.0;
1313 >    RealType expf = 0.0;
1314 >    if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1315 >    for (i = 1; i <= kSqLim; i++) {
1316 >      RealType rksq = float(i)*rcl*rcl;
1317 >      eksq = expf*eksq;
1318 >      AK[i] = eConverter * eksq/rksq;
1319 >    }
1320 >    
1321 >    /*
1322 >     * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1323 >     * the values of ll, mm and nn are selected so that the symmetry of
1324 >     * reciprocal lattice is taken into account i.e. the following
1325 >     * rules apply.
1326 >     *
1327 >     * ll ranges over the values 0 to kMax only.
1328 >     *
1329 >     * mm ranges over 0 to kMax when ll=0 and over
1330 >     *            -kMax to kMax otherwise.
1331 >     * nn ranges over 1 to kMax when ll=mm=0 and over
1332 >     *            -kMax to kMax otherwise.
1333 >     *
1334 >     * Hence the result of the summation must be doubled at the end.    
1335 >     */
1336 >    
1337 >    std::vector<RealType> clm(nMax, 0.0);
1338 >    std::vector<RealType> slm(nMax, 0.0);
1339 >    std::vector<RealType> ckr(nMax, 0.0);
1340 >    std::vector<RealType> skr(nMax, 0.0);
1341 >    std::vector<RealType> ckc(nMax, 0.0);
1342 >    std::vector<RealType> cks(nMax, 0.0);
1343 >    std::vector<RealType> dkc(nMax, 0.0);
1344 >    std::vector<RealType> dks(nMax, 0.0);
1345 >    std::vector<RealType> qkc(nMax, 0.0);
1346 >    std::vector<RealType> qks(nMax, 0.0);
1347 >    std::vector<Vector3d> dxk(nMax, V3Zero);
1348 >    std::vector<Vector3d> qxk(nMax, V3Zero);
1349 >    
1350 >    int mMin = kLimit;
1351 >    int nMin = kLimit + 1;
1352 >    for (int l = 1; l <= kLimit; l++) {
1353 >      int ll =l - 1;
1354 >      RealType rl = xcl * float(ll);
1355 >      for (int mmm = mMin; mmm <= kLim2; mmm++) {
1356 >        int mm = mmm - kLimit;
1357 >        int m = abs(mm) + 1;
1358 >        RealType rm = ycl * float(mm);
1359 >        // Set temporary products of exponential terms
1360 >        for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1361 >             mol = info_->nextMolecule(mi)) {
1362 >          for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1363 >              atom = mol->nextAtom(ai)) {
1364 >            
1365 >            i = atom->getLocalIndex();
1366 >            if(mm < 0) {
1367 >              clm[i] = eCos[l][i].x()*eCos[m][i].y()
1368 >                     + eSin[l][i].x()*eSin[m][i].y();
1369 >              slm[i] = eSin[l][i].x()*eCos[m][i].y()
1370 >                     - eSin[m][i].y()*eCos[l][i].x();
1371 >            } else {
1372 >              clm[i] = eCos[l][i].x()*eCos[m][i].y()
1373 >                     - eSin[l][i].x()*eSin[m][i].y();
1374 >              slm[i] = eSin[l][i].x()*eCos[m][i].y()
1375 >                     + eSin[m][i].y()*eCos[l][i].x();
1376 >            }
1377 >          }
1378          }
1379 <        sdat.pot[2] += self;
1379 >        for (int nnn = nMin; nnn <= kLim2; nnn++) {
1380 >          int nn = nnn - kLimit;          
1381 >          int n = abs(nn) + 1;
1382 >          RealType rn = zcl * float(nn);
1383 >          // Test on magnitude of k vector:
1384 >          int kk=ll*ll + mm*mm + nn*nn;
1385 >          if(kk <= kSqLim) {
1386 >            Vector3d kVec = Vector3d(rl, rm, rn);
1387 >            Mat3x3d  k2 = outProduct(kVec, kVec);
1388 >            // Calculate exp(ikr) terms
1389 >            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1390 >                 mol = info_->nextMolecule(mi)) {
1391 >              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1392 >                  atom = mol->nextAtom(ai)) {
1393 >                i = atom->getLocalIndex();
1394 >                
1395 >                if (nn < 0) {
1396 >                  ckr[i]=clm[i]*eCos[n][i].z()+slm[i]*eSin[n][i].z();
1397 >                  skr[i]=slm[i]*eCos[n][i].z()-clm[i]*eSin[n][i].z();
1398 >                } else {
1399 >                  ckr[i]=clm[i]*eCos[n][i].z()-slm[i]*eSin[n][i].z();
1400 >                  skr[i]=slm[i]*eCos[n][i].z()+clm[i]*eSin[n][i].z();
1401 >                }
1402 >              }
1403 >            }
1404 >            
1405 >            // Calculate scalar and vector products for each site:
1406 >            
1407 >            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1408 >                 mol = info_->nextMolecule(mi)) {
1409 >              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1410 >                  atom = mol->nextAtom(ai)) {
1411 >                i = atom->getLocalIndex();
1412 >                int atid = atom->getAtomType()->getIdent();
1413 >                ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]];
1414 >                              
1415 >                if (data.is_Charge) {
1416 >                  RealType C = data.fixedCharge;
1417 >                  if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1418 >                  ckc[i] = C * ckr[i];
1419 >                  cks[i] = C * skr[i];
1420 >                }
1421 >                
1422 >                if (data.is_Dipole) {
1423 >                  Vector3d D = atom->getDipole() * mPoleConverter;
1424 >                  RealType dk = dot(kVec, D);
1425 >                  dxk[i] = cross(kVec, D);
1426 >                  dkc[i] = dk * ckr[i];
1427 >                  dks[i] = dk * skr[i];
1428 >                }
1429 >                if (data.is_Quadrupole) {
1430 >                  Mat3x3d Q = atom->getQuadrupole();
1431 >                  Q *= mPoleConverter;
1432 >                  RealType qk = -( Q * k2 ).trace();
1433 >                  qxk[i] = -2.0 * cross(k2, Q);
1434 >                  qkc[i] = qk * ckr[i];
1435 >                  qks[i] = qk * skr[i];
1436 >                }              
1437 >              }
1438 >            }
1439 >
1440 >            // calculate vector sums
1441 >            
1442 >            RealType ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1443 >            RealType ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1444 >            RealType dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1445 >            RealType dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1446 >            RealType qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1447 >            RealType qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1448 >
1449 >            
1450 > #ifdef IS_MPI
1451 >            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE,
1452 >                                      MPI::SUM);
1453 >            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE,
1454 >                                      MPI::SUM);
1455 >            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE,
1456 >                                      MPI::SUM);
1457 >            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE,
1458 >                                      MPI::SUM);
1459 >            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE,
1460 >                                      MPI::SUM);
1461 >            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE,
1462 >                                      MPI::SUM);
1463 > #endif        
1464 >            
1465 >            // Accumulate potential energy and virial contribution:          
1466 >
1467 >            kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1468 >                                         + (ckcs-dkss-qkcs)*(ckcs-dkss-qkss));
1469 >
1470 >            kVir -= 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss
1471 >                                         +4.0*(ckss*dkcs-ckcs*dkss)
1472 >                                         +3.0*(dkcs*dkcs+dkss*dkss)
1473 >                                         -6.0*(ckss*qkss+ckcs*qkcs)
1474 >                                         +8.0*(dkss*qkcs-dkcs*qkss)
1475 >                                         +5.0*(qkss*qkss+qkcs*qkcs));
1476 >            
1477 >            // Calculate force and torque for each site:
1478 >            
1479 >            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1480 >                 mol = info_->nextMolecule(mi)) {
1481 >              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1482 >                  atom = mol->nextAtom(ai)) {
1483 >                
1484 >                i = atom->getLocalIndex();
1485 >                int atid = atom->getAtomType()->getIdent();
1486 >                ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]];
1487 >                
1488 >                RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1489 >                                        - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1490 >                RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1491 >                                         -ckr[i]*(ckss+dkcs-qkss));
1492 >                RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)+
1493 >                                             skr[i]*(ckss+dkcs-qkss));
1494 >                
1495 >                
1496 >                atom->addFrc( 4.0 * rvol * qfrc * kVec );
1497 >                
1498 >                if (data.is_Dipole) {
1499 >                  atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1500 >                }
1501 >                if (data.is_Quadrupole) {
1502 >                  atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1503 >                }
1504 >              }
1505 >            }
1506 >          }
1507 >        }
1508        }
1509      }
1510 +    cerr << "kPot = " << kPot << "\n";
1511 +    pot[ELECTROSTATIC_FAMILY] += kPot;  
1512    }
1070
1071  RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1072    // This seems to work moderately well as a default.  There's no
1073    // inherent scale for 1/r interactions that we can standardize.
1074    // 12 angstroms seems to be a reasonably good guess for most
1075    // cases.
1076    return 12.0;
1077  }
1513   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines