40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
+ |
#ifdef IS_MPI |
44 |
+ |
#include <mpi.h> |
45 |
+ |
#endif |
46 |
+ |
|
47 |
|
#include <stdio.h> |
48 |
|
#include <string.h> |
49 |
|
|
61 |
|
#include "math/erfc.hpp" |
62 |
|
#include "math/SquareMatrix.hpp" |
63 |
|
#include "primitives/Molecule.hpp" |
64 |
< |
#ifdef IS_MPI |
61 |
< |
#include <mpi.h> |
62 |
< |
#endif |
64 |
> |
#include "flucq/FluctuatingChargeForces.hpp" |
65 |
|
|
66 |
|
namespace OpenMD { |
67 |
|
|
71 |
|
haveDampingAlpha_(false), |
72 |
|
haveDielectric_(false), |
73 |
|
haveElectroSplines_(false) |
74 |
< |
{} |
74 |
> |
{ |
75 |
> |
flucQ_ = new FluctuatingChargeForces(info_); |
76 |
> |
} |
77 |
|
|
78 |
+ |
void Electrostatic::setForceField(ForceField *ff) { |
79 |
+ |
forceField_ = ff; |
80 |
+ |
flucQ_->setForceField(forceField_); |
81 |
+ |
} |
82 |
+ |
|
83 |
+ |
void Electrostatic::setSimulatedAtomTypes(set<AtomType*> &simtypes) { |
84 |
+ |
simTypes_ = simtypes; |
85 |
+ |
flucQ_->setSimulatedAtomTypes(simTypes_); |
86 |
+ |
} |
87 |
+ |
|
88 |
|
void Electrostatic::initialize() { |
89 |
|
|
90 |
|
Globals* simParams_ = info_->getSimParams(); |
768 |
|
Tb.zero(); // Torque on site b |
769 |
|
Ea.zero(); // Electric field at site a |
770 |
|
Eb.zero(); // Electric field at site b |
771 |
+ |
Pa = 0.0; // Site potential at site a |
772 |
+ |
Pb = 0.0; // Site potential at site b |
773 |
|
dUdCa = 0.0; // fluctuating charge force at site a |
774 |
|
dUdCb = 0.0; // fluctuating charge force at site a |
775 |
|
|
782 |
|
// Excluded potential that is still computed for fluctuating charges |
783 |
|
excluded_Pot= 0.0; |
784 |
|
|
769 |
– |
|
785 |
|
// some variables we'll need independent of electrostatic type: |
786 |
|
|
787 |
|
ri = 1.0 / *(idat.rij); |
844 |
|
if (idat.excluded) { |
845 |
|
*(idat.skippedCharge2) += C_a; |
846 |
|
} else { |
847 |
< |
// only do the field if we're not excluded: |
847 |
> |
// only do the field and site potentials if we're not excluded: |
848 |
|
Eb -= C_a * pre11_ * dv01 * rhat; |
849 |
+ |
Pb += C_a * pre11_ * v01; |
850 |
|
} |
851 |
|
} |
852 |
|
|
854 |
|
D_a = *(idat.dipole1); |
855 |
|
rdDa = dot(rhat, D_a); |
856 |
|
rxDa = cross(rhat, D_a); |
857 |
< |
if (!idat.excluded) |
857 |
> |
if (!idat.excluded) { |
858 |
|
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
859 |
+ |
Pb += pre12_ * v11 * rdDa; |
860 |
+ |
} |
861 |
+ |
|
862 |
|
} |
863 |
|
|
864 |
|
if (a_is_Quadrupole) { |
868 |
|
rQa = rhat * Q_a; |
869 |
|
rdQar = dot(rhat, Qar); |
870 |
|
rxQar = cross(rhat, Qar); |
871 |
< |
if (!idat.excluded) |
871 |
> |
if (!idat.excluded) { |
872 |
|
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
873 |
|
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
874 |
+ |
Pb += pre14_ * (v21 * trQa + v22 * rdQar); |
875 |
+ |
} |
876 |
|
} |
877 |
|
|
878 |
|
if (b_is_Charge) { |
886 |
|
} else { |
887 |
|
// only do the field if we're not excluded: |
888 |
|
Ea += C_b * pre11_ * dv01 * rhat; |
889 |
+ |
Pa += C_b * pre11_ * v01; |
890 |
+ |
|
891 |
|
} |
892 |
|
} |
893 |
|
|
895 |
|
D_b = *(idat.dipole2); |
896 |
|
rdDb = dot(rhat, D_b); |
897 |
|
rxDb = cross(rhat, D_b); |
898 |
< |
if (!idat.excluded) |
898 |
> |
if (!idat.excluded) { |
899 |
|
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
900 |
+ |
Pa += pre12_ * v11 * rdDb; |
901 |
+ |
} |
902 |
|
} |
903 |
|
|
904 |
|
if (b_is_Quadrupole) { |
908 |
|
rQb = rhat * Q_b; |
909 |
|
rdQbr = dot(rhat, Qbr); |
910 |
|
rxQbr = cross(rhat, Qbr); |
911 |
< |
if (!idat.excluded) |
911 |
> |
if (!idat.excluded) { |
912 |
|
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
913 |
|
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
914 |
+ |
Pa += pre14_ * (v21 * trQb + v22 * rdQbr); |
915 |
+ |
} |
916 |
|
} |
917 |
< |
|
917 |
> |
|
918 |
> |
|
919 |
|
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
920 |
|
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
921 |
|
} |
922 |
< |
|
922 |
> |
|
923 |
|
if (a_is_Charge) { |
924 |
|
|
925 |
|
if (b_is_Charge) { |
926 |
|
pref = pre11_ * *(idat.electroMult); |
927 |
|
U += C_a * C_b * pref * v01; |
928 |
|
F += C_a * C_b * pref * dv01 * rhat; |
929 |
< |
|
929 |
> |
|
930 |
|
// If this is an excluded pair, there are still indirect |
931 |
|
// interactions via the reaction field we must worry about: |
932 |
|
|
935 |
|
indirect_Pot += rfContrib; |
936 |
|
indirect_F += rfContrib * 2.0 * ri * rhat; |
937 |
|
} |
938 |
< |
|
938 |
> |
|
939 |
|
// Fluctuating charge forces are handled via Coulomb integrals |
940 |
|
// for excluded pairs (i.e. those connected via bonds) and |
941 |
|
// with the standard charge-charge interaction otherwise. |
942 |
|
|
943 |
< |
if (idat.excluded) { |
943 |
> |
if (idat.excluded) { |
944 |
|
if (a_is_Fluctuating || b_is_Fluctuating) { |
945 |
|
coulInt = J->getValueAt( *(idat.rij) ); |
946 |
< |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
947 |
< |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
948 |
< |
excluded_Pot += C_a * C_b * coulInt; |
921 |
< |
} |
946 |
> |
if (a_is_Fluctuating) dUdCa += C_b * coulInt; |
947 |
> |
if (b_is_Fluctuating) dUdCb += C_a * coulInt; |
948 |
> |
} |
949 |
|
} else { |
950 |
|
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
951 |
< |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
952 |
< |
} |
951 |
> |
if (b_is_Fluctuating) dUdCb += C_a * pref * v01; |
952 |
> |
} |
953 |
|
} |
954 |
|
|
955 |
|
if (b_is_Dipole) { |
1015 |
|
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
1016 |
|
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
1017 |
|
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
991 |
– |
|
1018 |
|
// Even if we excluded this pair from direct interactions, we |
1019 |
|
// still have the reaction-field-mediated dipole-dipole |
1020 |
|
// interaction: |
1074 |
|
trQaQb = QaQb.trace(); |
1075 |
|
rQaQb = rhat * QaQb; |
1076 |
|
QaQbr = QaQb * rhat; |
1077 |
< |
QaxQb = cross(Q_a, Q_b); |
1077 |
> |
QaxQb = mCross(Q_a, Q_b); |
1078 |
|
rQaQbr = dot(rQa, Qbr); |
1079 |
|
rQaxQbr = cross(rQa, Qbr); |
1080 |
|
|
1105 |
|
// + 4.0 * cross(rhat, QbQar) |
1106 |
|
|
1107 |
|
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1082 |
– |
|
1108 |
|
} |
1109 |
|
} |
1110 |
|
|
1113 |
|
*(idat.eField2) += Eb * *(idat.electroMult); |
1114 |
|
} |
1115 |
|
|
1116 |
+ |
if (idat.doSitePotential) { |
1117 |
+ |
*(idat.sPot1) += Pa * *(idat.electroMult); |
1118 |
+ |
*(idat.sPot2) += Pb * *(idat.electroMult); |
1119 |
+ |
} |
1120 |
+ |
|
1121 |
|
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1122 |
|
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1123 |
|
|
1172 |
|
|
1173 |
|
if (i_is_Fluctuating) { |
1174 |
|
C_a += *(sdat.flucQ); |
1175 |
< |
// dVdFQ is really a force, so this is negative the derivative |
1176 |
< |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1177 |
< |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1178 |
< |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1175 |
> |
|
1176 |
> |
flucQ_->getSelfInteraction(sdat.atid, *(sdat.flucQ), |
1177 |
> |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY], |
1178 |
> |
*(sdat.flucQfrc) ); |
1179 |
> |
|
1180 |
|
} |
1181 |
|
|
1182 |
|
switch (summationMethod_) { |
1279 |
|
vector<vector<RealType> > els; |
1280 |
|
vector<vector<RealType> > ems; |
1281 |
|
vector<vector<RealType> > ens; |
1251 |
– |
|
1282 |
|
|
1283 |
|
int nMax = info_->getNAtoms(); |
1284 |
|
|
1301 |
|
Vector3d t( 2.0 * M_PI ); |
1302 |
|
t.Vdiv(t, box); |
1303 |
|
|
1274 |
– |
|
1304 |
|
SimInfo::MoleculeIterator mi; |
1305 |
|
Molecule::AtomIterator ai; |
1306 |
|
int i; |
1470 |
|
dks[i] = dk * skr[i]; |
1471 |
|
} |
1472 |
|
if (data.is_Quadrupole) { |
1473 |
< |
Q = atom->getQuadrupole(); |
1474 |
< |
Q *= mPoleConverter; |
1446 |
< |
Qk = Q * kVec; |
1473 |
> |
Q = atom->getQuadrupole() * mPoleConverter; |
1474 |
> |
Qk = Q * kVec; |
1475 |
|
qk = dot(kVec, Qk); |
1476 |
< |
qxk[i] = cross(kVec, Qk); |
1476 |
> |
qxk[i] = -cross(kVec, Qk); |
1477 |
|
qkc[i] = qk * ckr[i]; |
1478 |
|
qks[i] = qk * skr[i]; |
1479 |
|
} |
1490 |
|
qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
1491 |
|
|
1492 |
|
#ifdef IS_MPI |
1493 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE, |
1494 |
< |
MPI::SUM); |
1495 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE, |
1496 |
< |
MPI::SUM); |
1497 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE, |
1498 |
< |
MPI::SUM); |
1499 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE, |
1500 |
< |
MPI::SUM); |
1501 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE, |
1502 |
< |
MPI::SUM); |
1503 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE, |
1504 |
< |
MPI::SUM); |
1493 |
> |
MPI_Allreduce(MPI_IN_PLACE, &ckcs, 1, MPI_REALTYPE, |
1494 |
> |
MPI_SUM, MPI_COMM_WORLD); |
1495 |
> |
MPI_Allreduce(MPI_IN_PLACE, &ckss, 1, MPI_REALTYPE, |
1496 |
> |
MPI_SUM, MPI_COMM_WORLD); |
1497 |
> |
MPI_Allreduce(MPI_IN_PLACE, &dkcs, 1, MPI_REALTYPE, |
1498 |
> |
MPI_SUM, MPI_COMM_WORLD); |
1499 |
> |
MPI_Allreduce(MPI_IN_PLACE, &dkss, 1, MPI_REALTYPE, |
1500 |
> |
MPI_SUM, MPI_COMM_WORLD); |
1501 |
> |
MPI_Allreduce(MPI_IN_PLACE, &qkcs, 1, MPI_REALTYPE, |
1502 |
> |
MPI_SUM, MPI_COMM_WORLD); |
1503 |
> |
MPI_Allreduce(MPI_IN_PLACE, &qkss, 1, MPI_REALTYPE, |
1504 |
> |
MPI_SUM, MPI_COMM_WORLD); |
1505 |
|
#endif |
1506 |
|
|
1507 |
|
// Accumulate potential energy and virial contribution: |
1532 |
|
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
1533 |
|
-ckr[i]*(ckss+dkcs-qkss)); |
1534 |
|
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs) |
1535 |
< |
+skr[i]*(ckss+dkcs-qkss)); |
1535 |
> |
+skr[i]*(ckss+dkcs-qkss)); |
1536 |
|
|
1537 |
|
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
1538 |
< |
|
1538 |
> |
|
1539 |
> |
if (atom->isFluctuatingCharge()) { |
1540 |
> |
atom->addFlucQFrc( - 2.0 * rvol * qtrq2 ); |
1541 |
> |
} |
1542 |
> |
|
1543 |
|
if (data.is_Dipole) { |
1544 |
|
atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] ); |
1545 |
|
} |