40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
+ |
#ifdef IS_MPI |
44 |
+ |
#include <mpi.h> |
45 |
+ |
#endif |
46 |
+ |
|
47 |
|
#include <stdio.h> |
48 |
|
#include <string.h> |
49 |
|
|
50 |
|
#include <cmath> |
51 |
+ |
#include <numeric> |
52 |
|
#include "nonbonded/Electrostatic.hpp" |
53 |
|
#include "utils/simError.h" |
54 |
|
#include "types/NonBondedInteractionType.hpp" |
60 |
|
#include "utils/PhysicalConstants.hpp" |
61 |
|
#include "math/erfc.hpp" |
62 |
|
#include "math/SquareMatrix.hpp" |
63 |
+ |
#include "primitives/Molecule.hpp" |
64 |
+ |
#include "flucq/FluctuatingChargeForces.hpp" |
65 |
|
|
66 |
|
namespace OpenMD { |
67 |
|
|
71 |
|
haveDampingAlpha_(false), |
72 |
|
haveDielectric_(false), |
73 |
|
haveElectroSplines_(false) |
74 |
< |
{} |
74 |
> |
{ |
75 |
> |
flucQ_ = new FluctuatingChargeForces(info_); |
76 |
> |
} |
77 |
|
|
78 |
+ |
void Electrostatic::setForceField(ForceField *ff) { |
79 |
+ |
forceField_ = ff; |
80 |
+ |
flucQ_->setForceField(forceField_); |
81 |
+ |
} |
82 |
+ |
|
83 |
+ |
void Electrostatic::setSimulatedAtomTypes(set<AtomType*> &simtypes) { |
84 |
+ |
simTypes_ = simtypes; |
85 |
+ |
flucQ_->setSimulatedAtomTypes(simTypes_); |
86 |
+ |
} |
87 |
+ |
|
88 |
|
void Electrostatic::initialize() { |
89 |
|
|
90 |
|
Globals* simParams_ = info_->getSimParams(); |
210 |
|
simError(); |
211 |
|
} |
212 |
|
|
213 |
< |
if (screeningMethod_ == DAMPED) { |
213 |
> |
if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) { |
214 |
|
if (!simParams_->haveDampingAlpha()) { |
215 |
|
// first set a cutoff dependent alpha value |
216 |
|
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
217 |
|
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
218 |
< |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
200 |
< |
|
218 |
> |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
219 |
|
// throw warning |
220 |
|
sprintf( painCave.errMsg, |
221 |
|
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
231 |
|
haveDampingAlpha_ = true; |
232 |
|
} |
233 |
|
|
234 |
+ |
|
235 |
|
Etypes.clear(); |
236 |
|
Etids.clear(); |
237 |
|
FQtypes.clear(); |
281 |
|
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
282 |
|
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
283 |
|
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
265 |
– |
//selfMult1_ = - 2.0 * a2 * invArootPi; |
266 |
– |
//selfMult2_ = - 4.0 * a2 * a2 * invArootPi / 3.0; |
267 |
– |
//selfMult4_ = - 8.0 * a2 * a2 * a2 * invArootPi / 5.0; |
284 |
|
// Half the Smith self piece: |
285 |
|
selfMult1_ = - a2 * invArootPi; |
286 |
|
selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0; |
304 |
|
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
305 |
|
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
306 |
|
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
291 |
– |
|
292 |
– |
selfMult1_ -= b0c; |
293 |
– |
selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0; |
294 |
– |
selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0; |
307 |
|
|
308 |
+ |
if (summationMethod_ != esm_EWALD_FULL) { |
309 |
+ |
selfMult1_ -= b0c; |
310 |
+ |
selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0; |
311 |
+ |
selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0; |
312 |
+ |
} |
313 |
+ |
|
314 |
|
// working variables for the splines: |
315 |
|
RealType ri, ri2; |
316 |
|
RealType b0, b1, b2, b3, b4, b5; |
346 |
|
vector<RealType> v31v, v32v; |
347 |
|
vector<RealType> v41v, v42v, v43v; |
348 |
|
|
331 |
– |
/* |
332 |
– |
vector<RealType> dv01v; |
333 |
– |
vector<RealType> dv11v; |
334 |
– |
vector<RealType> dv21v, dv22v; |
335 |
– |
vector<RealType> dv31v, dv32v; |
336 |
– |
vector<RealType> dv41v, dv42v, dv43v; |
337 |
– |
*/ |
338 |
– |
|
349 |
|
for (int i = 1; i < np_ + 1; i++) { |
350 |
|
r = RealType(i) * dx; |
351 |
|
rv.push_back(r); |
509 |
|
|
510 |
|
case esm_SWITCHING_FUNCTION: |
511 |
|
case esm_HARD: |
512 |
+ |
case esm_EWALD_FULL: |
513 |
|
|
514 |
|
v01 = f; |
515 |
|
v11 = g; |
568 |
|
|
569 |
|
break; |
570 |
|
|
560 |
– |
case esm_EWALD_FULL: |
571 |
|
case esm_EWALD_PME: |
572 |
|
case esm_EWALD_SPME: |
573 |
|
default : |
596 |
|
v41v.push_back(v41); |
597 |
|
v42v.push_back(v42); |
598 |
|
v43v.push_back(v43); |
589 |
– |
/* |
590 |
– |
dv01v.push_back(dv01); |
591 |
– |
dv11v.push_back(dv11); |
592 |
– |
dv21v.push_back(dv21); |
593 |
– |
dv22v.push_back(dv22); |
594 |
– |
dv31v.push_back(dv31); |
595 |
– |
dv32v.push_back(dv32); |
596 |
– |
dv41v.push_back(dv41); |
597 |
– |
dv42v.push_back(dv42); |
598 |
– |
dv43v.push_back(dv43); |
599 |
– |
*/ |
599 |
|
} |
600 |
|
|
601 |
|
// construct the spline structures and fill them with the values we've |
620 |
|
v43s = new CubicSpline(); |
621 |
|
v43s->addPoints(rv, v43v); |
622 |
|
|
624 |
– |
/* |
625 |
– |
dv01s = new CubicSpline(); |
626 |
– |
dv01s->addPoints(rv, dv01v); |
627 |
– |
dv11s = new CubicSpline(); |
628 |
– |
dv11s->addPoints(rv, dv11v); |
629 |
– |
dv21s = new CubicSpline(); |
630 |
– |
dv21s->addPoints(rv, dv21v); |
631 |
– |
dv22s = new CubicSpline(); |
632 |
– |
dv22s->addPoints(rv, dv22v); |
633 |
– |
dv31s = new CubicSpline(); |
634 |
– |
dv31s->addPoints(rv, dv31v); |
635 |
– |
dv32s = new CubicSpline(); |
636 |
– |
dv32s->addPoints(rv, dv32v); |
637 |
– |
dv41s = new CubicSpline(); |
638 |
– |
dv41s->addPoints(rv, dv41v); |
639 |
– |
dv42s = new CubicSpline(); |
640 |
– |
dv42s->addPoints(rv, dv42v); |
641 |
– |
dv43s = new CubicSpline(); |
642 |
– |
dv43s->addPoints(rv, dv43v); |
643 |
– |
*/ |
644 |
– |
|
623 |
|
haveElectroSplines_ = true; |
624 |
|
|
625 |
|
initialized_ = true; |
693 |
|
FQtids[atid] = fqtid; |
694 |
|
Jij[fqtid].resize(nFlucq_); |
695 |
|
|
696 |
< |
// Now, iterate over all known fluctuating and add to the coulomb integral map: |
696 |
> |
// Now, iterate over all known fluctuating and add to the |
697 |
> |
// coulomb integral map: |
698 |
|
|
699 |
|
std::set<int>::iterator it; |
700 |
|
for( it = FQtypes.begin(); it != FQtypes.end(); ++it) { |
768 |
|
Tb.zero(); // Torque on site b |
769 |
|
Ea.zero(); // Electric field at site a |
770 |
|
Eb.zero(); // Electric field at site b |
771 |
+ |
Pa = 0.0; // Site potential at site a |
772 |
+ |
Pb = 0.0; // Site potential at site b |
773 |
|
dUdCa = 0.0; // fluctuating charge force at site a |
774 |
|
dUdCb = 0.0; // fluctuating charge force at site a |
775 |
|
|
782 |
|
// Excluded potential that is still computed for fluctuating charges |
783 |
|
excluded_Pot= 0.0; |
784 |
|
|
804 |
– |
|
785 |
|
// some variables we'll need independent of electrostatic type: |
786 |
|
|
787 |
|
ri = 1.0 / *(idat.rij); |
844 |
|
if (idat.excluded) { |
845 |
|
*(idat.skippedCharge2) += C_a; |
846 |
|
} else { |
847 |
< |
// only do the field if we're not excluded: |
847 |
> |
// only do the field and site potentials if we're not excluded: |
848 |
|
Eb -= C_a * pre11_ * dv01 * rhat; |
849 |
+ |
Pb += C_a * pre11_ * v01; |
850 |
|
} |
851 |
|
} |
852 |
|
|
854 |
|
D_a = *(idat.dipole1); |
855 |
|
rdDa = dot(rhat, D_a); |
856 |
|
rxDa = cross(rhat, D_a); |
857 |
< |
if (!idat.excluded) |
857 |
> |
if (!idat.excluded) { |
858 |
|
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
859 |
+ |
Pb += pre12_ * v11 * rdDa; |
860 |
+ |
} |
861 |
+ |
|
862 |
|
} |
863 |
|
|
864 |
|
if (a_is_Quadrupole) { |
868 |
|
rQa = rhat * Q_a; |
869 |
|
rdQar = dot(rhat, Qar); |
870 |
|
rxQar = cross(rhat, Qar); |
871 |
< |
if (!idat.excluded) |
871 |
> |
if (!idat.excluded) { |
872 |
|
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
873 |
|
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
874 |
+ |
Pb += pre14_ * (v21 * trQa + v22 * rdQar); |
875 |
+ |
} |
876 |
|
} |
877 |
|
|
878 |
|
if (b_is_Charge) { |
886 |
|
} else { |
887 |
|
// only do the field if we're not excluded: |
888 |
|
Ea += C_b * pre11_ * dv01 * rhat; |
889 |
+ |
Pa += C_b * pre11_ * v01; |
890 |
+ |
|
891 |
|
} |
892 |
|
} |
893 |
|
|
895 |
|
D_b = *(idat.dipole2); |
896 |
|
rdDb = dot(rhat, D_b); |
897 |
|
rxDb = cross(rhat, D_b); |
898 |
< |
if (!idat.excluded) |
898 |
> |
if (!idat.excluded) { |
899 |
|
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
900 |
+ |
Pa += pre12_ * v11 * rdDb; |
901 |
+ |
} |
902 |
|
} |
903 |
|
|
904 |
|
if (b_is_Quadrupole) { |
908 |
|
rQb = rhat * Q_b; |
909 |
|
rdQbr = dot(rhat, Qbr); |
910 |
|
rxQbr = cross(rhat, Qbr); |
911 |
< |
if (!idat.excluded) |
911 |
> |
if (!idat.excluded) { |
912 |
|
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
913 |
|
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
914 |
+ |
Pa += pre14_ * (v21 * trQb + v22 * rdQbr); |
915 |
+ |
} |
916 |
|
} |
917 |
< |
|
917 |
> |
|
918 |
> |
|
919 |
|
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
920 |
|
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
921 |
|
} |
922 |
< |
|
922 |
> |
|
923 |
|
if (a_is_Charge) { |
924 |
|
|
925 |
|
if (b_is_Charge) { |
926 |
|
pref = pre11_ * *(idat.electroMult); |
927 |
|
U += C_a * C_b * pref * v01; |
928 |
|
F += C_a * C_b * pref * dv01 * rhat; |
929 |
< |
|
929 |
> |
|
930 |
|
// If this is an excluded pair, there are still indirect |
931 |
|
// interactions via the reaction field we must worry about: |
932 |
|
|
935 |
|
indirect_Pot += rfContrib; |
936 |
|
indirect_F += rfContrib * 2.0 * ri * rhat; |
937 |
|
} |
938 |
< |
|
938 |
> |
|
939 |
|
// Fluctuating charge forces are handled via Coulomb integrals |
940 |
|
// for excluded pairs (i.e. those connected via bonds) and |
941 |
|
// with the standard charge-charge interaction otherwise. |
942 |
|
|
943 |
< |
if (idat.excluded) { |
943 |
> |
if (idat.excluded) { |
944 |
|
if (a_is_Fluctuating || b_is_Fluctuating) { |
945 |
|
coulInt = J->getValueAt( *(idat.rij) ); |
946 |
< |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
947 |
< |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
948 |
< |
excluded_Pot += C_a * C_b * coulInt; |
956 |
< |
} |
946 |
> |
if (a_is_Fluctuating) dUdCa += C_b * coulInt; |
947 |
> |
if (b_is_Fluctuating) dUdCb += C_a * coulInt; |
948 |
> |
} |
949 |
|
} else { |
950 |
|
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
951 |
< |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
952 |
< |
} |
951 |
> |
if (b_is_Fluctuating) dUdCb += C_a * pref * v01; |
952 |
> |
} |
953 |
|
} |
954 |
|
|
955 |
|
if (b_is_Dipole) { |
1015 |
|
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
1016 |
|
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
1017 |
|
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
1026 |
– |
|
1018 |
|
// Even if we excluded this pair from direct interactions, we |
1019 |
|
// still have the reaction-field-mediated dipole-dipole |
1020 |
|
// interaction: |
1074 |
|
trQaQb = QaQb.trace(); |
1075 |
|
rQaQb = rhat * QaQb; |
1076 |
|
QaQbr = QaQb * rhat; |
1077 |
< |
QaxQb = cross(Q_a, Q_b); |
1077 |
> |
QaxQb = mCross(Q_a, Q_b); |
1078 |
|
rQaQbr = dot(rQa, Qbr); |
1079 |
|
rQaxQbr = cross(rQa, Qbr); |
1080 |
|
|
1105 |
|
// + 4.0 * cross(rhat, QbQar) |
1106 |
|
|
1107 |
|
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1117 |
– |
|
1108 |
|
} |
1109 |
|
} |
1110 |
|
|
1113 |
|
*(idat.eField2) += Eb * *(idat.electroMult); |
1114 |
|
} |
1115 |
|
|
1116 |
+ |
if (idat.doSitePotential) { |
1117 |
+ |
*(idat.sPot1) += Pa * *(idat.electroMult); |
1118 |
+ |
*(idat.sPot2) += Pb * *(idat.electroMult); |
1119 |
+ |
} |
1120 |
+ |
|
1121 |
|
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1122 |
|
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1123 |
|
|
1172 |
|
|
1173 |
|
if (i_is_Fluctuating) { |
1174 |
|
C_a += *(sdat.flucQ); |
1175 |
< |
// dVdFQ is really a force, so this is negative the derivative |
1176 |
< |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1177 |
< |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1178 |
< |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1175 |
> |
|
1176 |
> |
flucQ_->getSelfInteraction(sdat.atid, *(sdat.flucQ), |
1177 |
> |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY], |
1178 |
> |
*(sdat.flucQfrc) ); |
1179 |
> |
|
1180 |
|
} |
1181 |
|
|
1182 |
|
switch (summationMethod_) { |
1199 |
|
case esm_SHIFTED_FORCE: |
1200 |
|
case esm_SHIFTED_POTENTIAL: |
1201 |
|
case esm_TAYLOR_SHIFTED: |
1202 |
+ |
case esm_EWALD_FULL: |
1203 |
|
if (i_is_Charge) |
1204 |
|
self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge)); |
1205 |
|
if (i_is_Dipole) |
1224 |
|
// 12 angstroms seems to be a reasonably good guess for most |
1225 |
|
// cases. |
1226 |
|
return 12.0; |
1227 |
+ |
} |
1228 |
+ |
|
1229 |
+ |
|
1230 |
+ |
void Electrostatic::ReciprocalSpaceSum(RealType& pot) { |
1231 |
+ |
|
1232 |
+ |
RealType kPot = 0.0; |
1233 |
+ |
RealType kVir = 0.0; |
1234 |
+ |
|
1235 |
+ |
const RealType mPoleConverter = 0.20819434; // converts from the |
1236 |
+ |
// internal units of |
1237 |
+ |
// Debye (for dipoles) |
1238 |
+ |
// or Debye-angstroms |
1239 |
+ |
// (for quadrupoles) to |
1240 |
+ |
// electron angstroms or |
1241 |
+ |
// electron-angstroms^2 |
1242 |
+ |
|
1243 |
+ |
const RealType eConverter = 332.0637778; // convert the |
1244 |
+ |
// Charge-Charge |
1245 |
+ |
// electrostatic |
1246 |
+ |
// interactions into kcal / |
1247 |
+ |
// mol assuming distances |
1248 |
+ |
// are measured in |
1249 |
+ |
// angstroms. |
1250 |
+ |
|
1251 |
+ |
Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
1252 |
+ |
Vector3d box = hmat.diagonals(); |
1253 |
+ |
RealType boxMax = box.max(); |
1254 |
+ |
|
1255 |
+ |
//int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) ); |
1256 |
+ |
int kMax = 7; |
1257 |
+ |
int kSqMax = kMax*kMax + 2; |
1258 |
+ |
|
1259 |
+ |
int kLimit = kMax+1; |
1260 |
+ |
int kLim2 = 2*kMax+1; |
1261 |
+ |
int kSqLim = kSqMax; |
1262 |
+ |
|
1263 |
+ |
vector<RealType> AK(kSqLim+1, 0.0); |
1264 |
+ |
RealType xcl = 2.0 * M_PI / box.x(); |
1265 |
+ |
RealType ycl = 2.0 * M_PI / box.y(); |
1266 |
+ |
RealType zcl = 2.0 * M_PI / box.z(); |
1267 |
+ |
RealType rcl = 2.0 * M_PI / boxMax; |
1268 |
+ |
RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z()); |
1269 |
+ |
|
1270 |
+ |
if(dampingAlpha_ < 1.0e-12) return; |
1271 |
+ |
|
1272 |
+ |
RealType ralph = -0.25/pow(dampingAlpha_,2); |
1273 |
+ |
|
1274 |
+ |
// Calculate and store exponential factors |
1275 |
+ |
|
1276 |
+ |
vector<vector<RealType> > elc; |
1277 |
+ |
vector<vector<RealType> > emc; |
1278 |
+ |
vector<vector<RealType> > enc; |
1279 |
+ |
vector<vector<RealType> > els; |
1280 |
+ |
vector<vector<RealType> > ems; |
1281 |
+ |
vector<vector<RealType> > ens; |
1282 |
+ |
|
1283 |
+ |
int nMax = info_->getNAtoms(); |
1284 |
+ |
|
1285 |
+ |
elc.resize(kLimit+1); |
1286 |
+ |
emc.resize(kLimit+1); |
1287 |
+ |
enc.resize(kLimit+1); |
1288 |
+ |
els.resize(kLimit+1); |
1289 |
+ |
ems.resize(kLimit+1); |
1290 |
+ |
ens.resize(kLimit+1); |
1291 |
+ |
|
1292 |
+ |
for (int j = 0; j < kLimit+1; j++) { |
1293 |
+ |
elc[j].resize(nMax); |
1294 |
+ |
emc[j].resize(nMax); |
1295 |
+ |
enc[j].resize(nMax); |
1296 |
+ |
els[j].resize(nMax); |
1297 |
+ |
ems[j].resize(nMax); |
1298 |
+ |
ens[j].resize(nMax); |
1299 |
+ |
} |
1300 |
+ |
|
1301 |
+ |
Vector3d t( 2.0 * M_PI ); |
1302 |
+ |
t.Vdiv(t, box); |
1303 |
+ |
|
1304 |
+ |
SimInfo::MoleculeIterator mi; |
1305 |
+ |
Molecule::AtomIterator ai; |
1306 |
+ |
int i; |
1307 |
+ |
Vector3d r; |
1308 |
+ |
Vector3d tt; |
1309 |
+ |
|
1310 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1311 |
+ |
mol = info_->nextMolecule(mi)) { |
1312 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1313 |
+ |
atom = mol->nextAtom(ai)) { |
1314 |
+ |
|
1315 |
+ |
i = atom->getLocalIndex(); |
1316 |
+ |
r = atom->getPos(); |
1317 |
+ |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r); |
1318 |
+ |
|
1319 |
+ |
tt.Vmul(t, r); |
1320 |
+ |
|
1321 |
+ |
elc[1][i] = 1.0; |
1322 |
+ |
emc[1][i] = 1.0; |
1323 |
+ |
enc[1][i] = 1.0; |
1324 |
+ |
els[1][i] = 0.0; |
1325 |
+ |
ems[1][i] = 0.0; |
1326 |
+ |
ens[1][i] = 0.0; |
1327 |
+ |
|
1328 |
+ |
elc[2][i] = cos(tt.x()); |
1329 |
+ |
emc[2][i] = cos(tt.y()); |
1330 |
+ |
enc[2][i] = cos(tt.z()); |
1331 |
+ |
els[2][i] = sin(tt.x()); |
1332 |
+ |
ems[2][i] = sin(tt.y()); |
1333 |
+ |
ens[2][i] = sin(tt.z()); |
1334 |
+ |
|
1335 |
+ |
for(int l = 3; l <= kLimit; l++) { |
1336 |
+ |
elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i]; |
1337 |
+ |
emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i]; |
1338 |
+ |
enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i]; |
1339 |
+ |
els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i]; |
1340 |
+ |
ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i]; |
1341 |
+ |
ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i]; |
1342 |
+ |
} |
1343 |
+ |
} |
1344 |
+ |
} |
1345 |
+ |
|
1346 |
+ |
// Calculate and store AK coefficients: |
1347 |
+ |
|
1348 |
+ |
RealType eksq = 1.0; |
1349 |
+ |
RealType expf = 0.0; |
1350 |
+ |
if (ralph < 0.0) expf = exp(ralph*rcl*rcl); |
1351 |
+ |
for (i = 1; i <= kSqLim; i++) { |
1352 |
+ |
RealType rksq = float(i)*rcl*rcl; |
1353 |
+ |
eksq = expf*eksq; |
1354 |
+ |
AK[i] = eConverter * eksq/rksq; |
1355 |
+ |
} |
1356 |
+ |
|
1357 |
+ |
/* |
1358 |
+ |
* Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz) |
1359 |
+ |
* the values of ll, mm and nn are selected so that the symmetry of |
1360 |
+ |
* reciprocal lattice is taken into account i.e. the following |
1361 |
+ |
* rules apply. |
1362 |
+ |
* |
1363 |
+ |
* ll ranges over the values 0 to kMax only. |
1364 |
+ |
* |
1365 |
+ |
* mm ranges over 0 to kMax when ll=0 and over |
1366 |
+ |
* -kMax to kMax otherwise. |
1367 |
+ |
* nn ranges over 1 to kMax when ll=mm=0 and over |
1368 |
+ |
* -kMax to kMax otherwise. |
1369 |
+ |
* |
1370 |
+ |
* Hence the result of the summation must be doubled at the end. |
1371 |
+ |
*/ |
1372 |
+ |
|
1373 |
+ |
std::vector<RealType> clm(nMax, 0.0); |
1374 |
+ |
std::vector<RealType> slm(nMax, 0.0); |
1375 |
+ |
std::vector<RealType> ckr(nMax, 0.0); |
1376 |
+ |
std::vector<RealType> skr(nMax, 0.0); |
1377 |
+ |
std::vector<RealType> ckc(nMax, 0.0); |
1378 |
+ |
std::vector<RealType> cks(nMax, 0.0); |
1379 |
+ |
std::vector<RealType> dkc(nMax, 0.0); |
1380 |
+ |
std::vector<RealType> dks(nMax, 0.0); |
1381 |
+ |
std::vector<RealType> qkc(nMax, 0.0); |
1382 |
+ |
std::vector<RealType> qks(nMax, 0.0); |
1383 |
+ |
std::vector<Vector3d> dxk(nMax, V3Zero); |
1384 |
+ |
std::vector<Vector3d> qxk(nMax, V3Zero); |
1385 |
+ |
RealType rl, rm, rn; |
1386 |
+ |
Vector3d kVec; |
1387 |
+ |
Vector3d Qk; |
1388 |
+ |
Mat3x3d k2; |
1389 |
+ |
RealType ckcs, ckss, dkcs, dkss, qkcs, qkss; |
1390 |
+ |
int atid; |
1391 |
+ |
ElectrostaticAtomData data; |
1392 |
+ |
RealType C, dk, qk; |
1393 |
+ |
Vector3d D; |
1394 |
+ |
Mat3x3d Q; |
1395 |
+ |
|
1396 |
+ |
int mMin = kLimit; |
1397 |
+ |
int nMin = kLimit + 1; |
1398 |
+ |
for (int l = 1; l <= kLimit; l++) { |
1399 |
+ |
int ll = l - 1; |
1400 |
+ |
rl = xcl * float(ll); |
1401 |
+ |
for (int mmm = mMin; mmm <= kLim2; mmm++) { |
1402 |
+ |
int mm = mmm - kLimit; |
1403 |
+ |
int m = abs(mm) + 1; |
1404 |
+ |
rm = ycl * float(mm); |
1405 |
+ |
// Set temporary products of exponential terms |
1406 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1407 |
+ |
mol = info_->nextMolecule(mi)) { |
1408 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1409 |
+ |
atom = mol->nextAtom(ai)) { |
1410 |
+ |
|
1411 |
+ |
i = atom->getLocalIndex(); |
1412 |
+ |
if(mm < 0) { |
1413 |
+ |
clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i]; |
1414 |
+ |
slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i]; |
1415 |
+ |
} else { |
1416 |
+ |
clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i]; |
1417 |
+ |
slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i]; |
1418 |
+ |
} |
1419 |
+ |
} |
1420 |
+ |
} |
1421 |
+ |
for (int nnn = nMin; nnn <= kLim2; nnn++) { |
1422 |
+ |
int nn = nnn - kLimit; |
1423 |
+ |
int n = abs(nn) + 1; |
1424 |
+ |
rn = zcl * float(nn); |
1425 |
+ |
// Test on magnitude of k vector: |
1426 |
+ |
int kk=ll*ll + mm*mm + nn*nn; |
1427 |
+ |
if(kk <= kSqLim) { |
1428 |
+ |
kVec = Vector3d(rl, rm, rn); |
1429 |
+ |
k2 = outProduct(kVec, kVec); |
1430 |
+ |
// Calculate exp(ikr) terms |
1431 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1432 |
+ |
mol = info_->nextMolecule(mi)) { |
1433 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1434 |
+ |
atom = mol->nextAtom(ai)) { |
1435 |
+ |
i = atom->getLocalIndex(); |
1436 |
+ |
|
1437 |
+ |
if (nn < 0) { |
1438 |
+ |
ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i]; |
1439 |
+ |
skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i]; |
1440 |
+ |
|
1441 |
+ |
} else { |
1442 |
+ |
ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i]; |
1443 |
+ |
skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i]; |
1444 |
+ |
} |
1445 |
+ |
} |
1446 |
+ |
} |
1447 |
+ |
|
1448 |
+ |
// Calculate scalar and vector products for each site: |
1449 |
+ |
|
1450 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1451 |
+ |
mol = info_->nextMolecule(mi)) { |
1452 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1453 |
+ |
atom = mol->nextAtom(ai)) { |
1454 |
+ |
i = atom->getLocalIndex(); |
1455 |
+ |
int atid = atom->getAtomType()->getIdent(); |
1456 |
+ |
data = ElectrostaticMap[Etids[atid]]; |
1457 |
+ |
|
1458 |
+ |
if (data.is_Charge) { |
1459 |
+ |
C = data.fixedCharge; |
1460 |
+ |
if (atom->isFluctuatingCharge()) C += atom->getFlucQPos(); |
1461 |
+ |
ckc[i] = C * ckr[i]; |
1462 |
+ |
cks[i] = C * skr[i]; |
1463 |
+ |
} |
1464 |
+ |
|
1465 |
+ |
if (data.is_Dipole) { |
1466 |
+ |
D = atom->getDipole() * mPoleConverter; |
1467 |
+ |
dk = dot(D, kVec); |
1468 |
+ |
dxk[i] = cross(D, kVec); |
1469 |
+ |
dkc[i] = dk * ckr[i]; |
1470 |
+ |
dks[i] = dk * skr[i]; |
1471 |
+ |
} |
1472 |
+ |
if (data.is_Quadrupole) { |
1473 |
+ |
Q = atom->getQuadrupole() * mPoleConverter; |
1474 |
+ |
Qk = Q * kVec; |
1475 |
+ |
qk = dot(kVec, Qk); |
1476 |
+ |
qxk[i] = -cross(kVec, Qk); |
1477 |
+ |
qkc[i] = qk * ckr[i]; |
1478 |
+ |
qks[i] = qk * skr[i]; |
1479 |
+ |
} |
1480 |
+ |
} |
1481 |
+ |
} |
1482 |
+ |
|
1483 |
+ |
// calculate vector sums |
1484 |
+ |
|
1485 |
+ |
ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0); |
1486 |
+ |
ckss = std::accumulate(cks.begin(),cks.end(),0.0); |
1487 |
+ |
dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0); |
1488 |
+ |
dkss = std::accumulate(dks.begin(),dks.end(),0.0); |
1489 |
+ |
qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0); |
1490 |
+ |
qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
1491 |
+ |
|
1492 |
+ |
#ifdef IS_MPI |
1493 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &ckcs, 1, MPI_REALTYPE, |
1494 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1495 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &ckss, 1, MPI_REALTYPE, |
1496 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1497 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &dkcs, 1, MPI_REALTYPE, |
1498 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1499 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &dkss, 1, MPI_REALTYPE, |
1500 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1501 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &qkcs, 1, MPI_REALTYPE, |
1502 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1503 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &qkss, 1, MPI_REALTYPE, |
1504 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1505 |
+ |
#endif |
1506 |
+ |
|
1507 |
+ |
// Accumulate potential energy and virial contribution: |
1508 |
+ |
|
1509 |
+ |
kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss) |
1510 |
+ |
+ (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs)); |
1511 |
+ |
|
1512 |
+ |
kVir += 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss |
1513 |
+ |
+4.0*(ckss*dkcs-ckcs*dkss) |
1514 |
+ |
+3.0*(dkcs*dkcs+dkss*dkss) |
1515 |
+ |
-6.0*(ckss*qkss+ckcs*qkcs) |
1516 |
+ |
+8.0*(dkss*qkcs-dkcs*qkss) |
1517 |
+ |
+5.0*(qkss*qkss+qkcs*qkcs)); |
1518 |
+ |
|
1519 |
+ |
// Calculate force and torque for each site: |
1520 |
+ |
|
1521 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1522 |
+ |
mol = info_->nextMolecule(mi)) { |
1523 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1524 |
+ |
atom = mol->nextAtom(ai)) { |
1525 |
+ |
|
1526 |
+ |
i = atom->getLocalIndex(); |
1527 |
+ |
atid = atom->getAtomType()->getIdent(); |
1528 |
+ |
data = ElectrostaticMap[Etids[atid]]; |
1529 |
+ |
|
1530 |
+ |
RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs) |
1531 |
+ |
- (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss)); |
1532 |
+ |
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
1533 |
+ |
-ckr[i]*(ckss+dkcs-qkss)); |
1534 |
+ |
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs) |
1535 |
+ |
+skr[i]*(ckss+dkcs-qkss)); |
1536 |
+ |
|
1537 |
+ |
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
1538 |
+ |
|
1539 |
+ |
if (atom->isFluctuatingCharge()) { |
1540 |
+ |
atom->addFlucQFrc( - 2.0 * rvol * qtrq2 ); |
1541 |
+ |
} |
1542 |
+ |
|
1543 |
+ |
if (data.is_Dipole) { |
1544 |
+ |
atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] ); |
1545 |
+ |
} |
1546 |
+ |
if (data.is_Quadrupole) { |
1547 |
+ |
atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] ); |
1548 |
+ |
} |
1549 |
+ |
} |
1550 |
+ |
} |
1551 |
+ |
} |
1552 |
+ |
} |
1553 |
+ |
nMin = 1; |
1554 |
+ |
} |
1555 |
+ |
mMin = 1; |
1556 |
+ |
} |
1557 |
+ |
pot += kPot; |
1558 |
|
} |
1559 |
|
} |