57 |
|
#include "math/erfc.hpp" |
58 |
|
#include "math/SquareMatrix.hpp" |
59 |
|
#include "primitives/Molecule.hpp" |
60 |
< |
|
60 |
> |
#ifdef IS_MPI |
61 |
> |
#include <mpi.h> |
62 |
> |
#endif |
63 |
|
|
64 |
|
namespace OpenMD { |
65 |
|
|
1196 |
|
} |
1197 |
|
|
1198 |
|
|
1199 |
< |
void Electrostatic::ReciprocalSpaceSum(potVec& pot) { |
1199 |
> |
void Electrostatic::ReciprocalSpaceSum(RealType& pot) { |
1200 |
|
|
1201 |
|
RealType kPot = 0.0; |
1202 |
|
RealType kVir = 0.0; |
1242 |
|
|
1243 |
|
// Calculate and store exponential factors |
1244 |
|
|
1245 |
< |
vector<vector<Vector3d> > eCos; |
1246 |
< |
vector<vector<Vector3d> > eSin; |
1245 |
> |
vector<vector<RealType> > elc; |
1246 |
> |
vector<vector<RealType> > emc; |
1247 |
> |
vector<vector<RealType> > enc; |
1248 |
> |
vector<vector<RealType> > els; |
1249 |
> |
vector<vector<RealType> > ems; |
1250 |
> |
vector<vector<RealType> > ens; |
1251 |
> |
|
1252 |
|
|
1253 |
|
int nMax = info_->getNAtoms(); |
1254 |
|
|
1255 |
< |
eCos.resize(kLimit+1); |
1256 |
< |
eSin.resize(kLimit+1); |
1255 |
> |
elc.resize(kLimit+1); |
1256 |
> |
emc.resize(kLimit+1); |
1257 |
> |
enc.resize(kLimit+1); |
1258 |
> |
els.resize(kLimit+1); |
1259 |
> |
ems.resize(kLimit+1); |
1260 |
> |
ens.resize(kLimit+1); |
1261 |
> |
|
1262 |
|
for (int j = 0; j < kLimit+1; j++) { |
1263 |
< |
eCos[j].resize(nMax); |
1264 |
< |
eSin[j].resize(nMax); |
1263 |
> |
elc[j].resize(nMax); |
1264 |
> |
emc[j].resize(nMax); |
1265 |
> |
enc[j].resize(nMax); |
1266 |
> |
els[j].resize(nMax); |
1267 |
> |
ems[j].resize(nMax); |
1268 |
> |
ens[j].resize(nMax); |
1269 |
|
} |
1270 |
|
|
1271 |
|
Vector3d t( 2.0 * M_PI ); |
1277 |
|
int i; |
1278 |
|
Vector3d r; |
1279 |
|
Vector3d tt; |
1264 |
– |
Vector3d w; |
1265 |
– |
Vector3d u; |
1266 |
– |
Vector3d a; |
1267 |
– |
Vector3d b; |
1280 |
|
|
1281 |
|
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1282 |
|
mol = info_->nextMolecule(mi)) { |
1289 |
|
|
1290 |
|
tt.Vmul(t, r); |
1291 |
|
|
1292 |
< |
|
1293 |
< |
eCos[1][i] = Vector3d(1.0, 1.0, 1.0); |
1294 |
< |
eSin[1][i] = Vector3d(0.0, 0.0, 0.0); |
1295 |
< |
eCos[2][i] = Vector3d(cos(tt.x()), cos(tt.y()), cos(tt.z())); |
1296 |
< |
eSin[2][i] = Vector3d(sin(tt.x()), sin(tt.y()), sin(tt.z())); |
1292 |
> |
elc[1][i] = 1.0; |
1293 |
> |
emc[1][i] = 1.0; |
1294 |
> |
enc[1][i] = 1.0; |
1295 |
> |
els[1][i] = 0.0; |
1296 |
> |
ems[1][i] = 0.0; |
1297 |
> |
ens[1][i] = 0.0; |
1298 |
|
|
1299 |
< |
u = eCos[2][i]; |
1300 |
< |
w = eSin[2][i]; |
1299 |
> |
elc[2][i] = cos(tt.x()); |
1300 |
> |
emc[2][i] = cos(tt.y()); |
1301 |
> |
enc[2][i] = cos(tt.z()); |
1302 |
> |
els[2][i] = sin(tt.x()); |
1303 |
> |
ems[2][i] = sin(tt.y()); |
1304 |
> |
ens[2][i] = sin(tt.z()); |
1305 |
|
|
1306 |
|
for(int l = 3; l <= kLimit; l++) { |
1307 |
< |
eCos[l][i].x() = eCos[l-1][i].x()*eCos[2][i].x() - eSin[l-1][i].x()*eSin[2][i].x(); |
1308 |
< |
eCos[l][i].y() = eCos[l-1][i].y()*eCos[2][i].y() - eSin[l-1][i].y()*eSin[2][i].y(); |
1309 |
< |
eCos[l][i].z() = eCos[l-1][i].z()*eCos[2][i].z() - eSin[l-1][i].z()*eSin[2][i].z(); |
1310 |
< |
|
1311 |
< |
eSin[l][i].x() = eSin[l-1][i].x()*eCos[2][i].x() + eCos[l-1][i].x()*eSin[2][i].x(); |
1312 |
< |
eSin[l][i].y() = eSin[l-1][i].y()*eCos[2][i].y() + eCos[l-1][i].y()*eSin[2][i].y(); |
1296 |
< |
eSin[l][i].z() = eSin[l-1][i].z()*eCos[2][i].z() + eCos[l-1][i].z()*eSin[2][i].z(); |
1297 |
< |
|
1298 |
< |
|
1299 |
< |
// a.Vmul(eCos[l-1][i], u); |
1300 |
< |
// b.Vmul(eSin[l-1][i], w); |
1301 |
< |
// eCos[l][i] = a - b; |
1302 |
< |
// a.Vmul(eSin[l-1][i], u); |
1303 |
< |
// b.Vmul(eCos[l-1][i], w); |
1304 |
< |
// eSin[l][i] = a + b; |
1305 |
< |
|
1307 |
> |
elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i]; |
1308 |
> |
emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i]; |
1309 |
> |
enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i]; |
1310 |
> |
els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i]; |
1311 |
> |
ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i]; |
1312 |
> |
ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i]; |
1313 |
|
} |
1314 |
|
} |
1315 |
|
} |
1353 |
|
std::vector<RealType> qks(nMax, 0.0); |
1354 |
|
std::vector<Vector3d> dxk(nMax, V3Zero); |
1355 |
|
std::vector<Vector3d> qxk(nMax, V3Zero); |
1356 |
< |
|
1356 |
> |
RealType rl, rm, rn; |
1357 |
> |
Vector3d kVec; |
1358 |
> |
Vector3d Qk; |
1359 |
> |
Mat3x3d k2; |
1360 |
> |
RealType ckcs, ckss, dkcs, dkss, qkcs, qkss; |
1361 |
> |
int atid; |
1362 |
> |
ElectrostaticAtomData data; |
1363 |
> |
RealType C, dk, qk; |
1364 |
> |
Vector3d D; |
1365 |
> |
Mat3x3d Q; |
1366 |
> |
|
1367 |
|
int mMin = kLimit; |
1368 |
|
int nMin = kLimit + 1; |
1369 |
|
for (int l = 1; l <= kLimit; l++) { |
1370 |
|
int ll = l - 1; |
1371 |
< |
RealType rl = xcl * float(ll); |
1371 |
> |
rl = xcl * float(ll); |
1372 |
|
for (int mmm = mMin; mmm <= kLim2; mmm++) { |
1373 |
|
int mm = mmm - kLimit; |
1374 |
|
int m = abs(mm) + 1; |
1375 |
< |
RealType rm = ycl * float(mm); |
1375 |
> |
rm = ycl * float(mm); |
1376 |
|
// Set temporary products of exponential terms |
1377 |
|
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1378 |
|
mol = info_->nextMolecule(mi)) { |
1381 |
|
|
1382 |
|
i = atom->getLocalIndex(); |
1383 |
|
if(mm < 0) { |
1384 |
< |
clm[i] = eCos[l][i].x()*eCos[m][i].y() |
1385 |
< |
+ eSin[l][i].x()*eSin[m][i].y(); |
1369 |
< |
slm[i] = eSin[l][i].x()*eCos[m][i].y() |
1370 |
< |
- eSin[m][i].y()*eCos[l][i].x(); |
1384 |
> |
clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i]; |
1385 |
> |
slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i]; |
1386 |
|
} else { |
1387 |
< |
clm[i] = eCos[l][i].x()*eCos[m][i].y() |
1388 |
< |
- eSin[l][i].x()*eSin[m][i].y(); |
1374 |
< |
slm[i] = eSin[l][i].x()*eCos[m][i].y() |
1375 |
< |
+ eSin[m][i].y()*eCos[l][i].x(); |
1387 |
> |
clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i]; |
1388 |
> |
slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i]; |
1389 |
|
} |
1390 |
|
} |
1391 |
|
} |
1392 |
|
for (int nnn = nMin; nnn <= kLim2; nnn++) { |
1393 |
|
int nn = nnn - kLimit; |
1394 |
|
int n = abs(nn) + 1; |
1395 |
< |
RealType rn = zcl * float(nn); |
1395 |
> |
rn = zcl * float(nn); |
1396 |
|
// Test on magnitude of k vector: |
1397 |
|
int kk=ll*ll + mm*mm + nn*nn; |
1398 |
|
if(kk <= kSqLim) { |
1399 |
< |
Vector3d kVec = Vector3d(rl, rm, rn); |
1400 |
< |
Mat3x3d k2 = outProduct(kVec, kVec); |
1399 |
> |
kVec = Vector3d(rl, rm, rn); |
1400 |
> |
k2 = outProduct(kVec, kVec); |
1401 |
|
// Calculate exp(ikr) terms |
1402 |
|
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1403 |
|
mol = info_->nextMolecule(mi)) { |
1406 |
|
i = atom->getLocalIndex(); |
1407 |
|
|
1408 |
|
if (nn < 0) { |
1409 |
< |
ckr[i]=clm[i]*eCos[n][i].z()+slm[i]*eSin[n][i].z(); |
1410 |
< |
skr[i]=slm[i]*eCos[n][i].z()-clm[i]*eSin[n][i].z(); |
1409 |
> |
ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i]; |
1410 |
> |
skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i]; |
1411 |
> |
|
1412 |
|
} else { |
1413 |
< |
ckr[i]=clm[i]*eCos[n][i].z()-slm[i]*eSin[n][i].z(); |
1414 |
< |
skr[i]=slm[i]*eCos[n][i].z()+clm[i]*eSin[n][i].z(); |
1413 |
> |
ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i]; |
1414 |
> |
skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i]; |
1415 |
|
} |
1416 |
|
} |
1417 |
|
} |
1424 |
|
atom = mol->nextAtom(ai)) { |
1425 |
|
i = atom->getLocalIndex(); |
1426 |
|
int atid = atom->getAtomType()->getIdent(); |
1427 |
< |
ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]]; |
1427 |
> |
data = ElectrostaticMap[Etids[atid]]; |
1428 |
|
|
1429 |
|
if (data.is_Charge) { |
1430 |
< |
RealType C = data.fixedCharge; |
1430 |
> |
C = data.fixedCharge; |
1431 |
|
if (atom->isFluctuatingCharge()) C += atom->getFlucQPos(); |
1432 |
|
ckc[i] = C * ckr[i]; |
1433 |
|
cks[i] = C * skr[i]; |
1434 |
|
} |
1435 |
|
|
1436 |
|
if (data.is_Dipole) { |
1437 |
< |
Vector3d D = atom->getDipole() * mPoleConverter; |
1438 |
< |
RealType dk = dot(D, kVec); |
1437 |
> |
D = atom->getDipole() * mPoleConverter; |
1438 |
> |
dk = dot(D, kVec); |
1439 |
|
dxk[i] = cross(D, kVec); |
1440 |
|
dkc[i] = dk * ckr[i]; |
1441 |
|
dks[i] = dk * skr[i]; |
1442 |
|
} |
1443 |
|
if (data.is_Quadrupole) { |
1444 |
< |
Mat3x3d Q = atom->getQuadrupole(); |
1444 |
> |
Q = atom->getQuadrupole(); |
1445 |
|
Q *= mPoleConverter; |
1446 |
< |
RealType qk = - doubleDot(Q, k2); |
1447 |
< |
// RealType qk = -( Q * k2 ).trace(); |
1448 |
< |
qxk[i] = -2.0 * cross(k2, Q); |
1446 |
> |
Qk = Q * kVec; |
1447 |
> |
qk = dot(kVec, Qk); |
1448 |
> |
qxk[i] = cross(kVec, Qk); |
1449 |
|
qkc[i] = qk * ckr[i]; |
1450 |
|
qks[i] = qk * skr[i]; |
1451 |
|
} |
1454 |
|
|
1455 |
|
// calculate vector sums |
1456 |
|
|
1457 |
< |
RealType ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0); |
1458 |
< |
RealType ckss = std::accumulate(cks.begin(),cks.end(),0.0); |
1459 |
< |
RealType dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0); |
1460 |
< |
RealType dkss = std::accumulate(dks.begin(),dks.end(),0.0); |
1461 |
< |
RealType qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0); |
1462 |
< |
RealType qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
1449 |
< |
|
1457 |
> |
ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0); |
1458 |
> |
ckss = std::accumulate(cks.begin(),cks.end(),0.0); |
1459 |
> |
dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0); |
1460 |
> |
dkss = std::accumulate(dks.begin(),dks.end(),0.0); |
1461 |
> |
qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0); |
1462 |
> |
qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
1463 |
|
|
1464 |
|
#ifdef IS_MPI |
1465 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE, |
1478 |
|
|
1479 |
|
// Accumulate potential energy and virial contribution: |
1480 |
|
|
1481 |
< |
kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss) |
1482 |
< |
+ (ckcs-dkss-qkcs)*(ckcs-dkss-qkss)); |
1481 |
> |
kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss) |
1482 |
> |
+ (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs)); |
1483 |
|
|
1484 |
< |
kVir -= 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss |
1485 |
< |
+4.0*(ckss*dkcs-ckcs*dkss) |
1486 |
< |
+3.0*(dkcs*dkcs+dkss*dkss) |
1487 |
< |
-6.0*(ckss*qkss+ckcs*qkcs) |
1488 |
< |
+8.0*(dkss*qkcs-dkcs*qkss) |
1489 |
< |
+5.0*(qkss*qkss+qkcs*qkcs)); |
1484 |
> |
kVir += 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss |
1485 |
> |
+4.0*(ckss*dkcs-ckcs*dkss) |
1486 |
> |
+3.0*(dkcs*dkcs+dkss*dkss) |
1487 |
> |
-6.0*(ckss*qkss+ckcs*qkcs) |
1488 |
> |
+8.0*(dkss*qkcs-dkcs*qkss) |
1489 |
> |
+5.0*(qkss*qkss+qkcs*qkcs)); |
1490 |
|
|
1491 |
|
// Calculate force and torque for each site: |
1492 |
|
|
1496 |
|
atom = mol->nextAtom(ai)) { |
1497 |
|
|
1498 |
|
i = atom->getLocalIndex(); |
1499 |
< |
int atid = atom->getAtomType()->getIdent(); |
1500 |
< |
ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]]; |
1501 |
< |
|
1499 |
> |
atid = atom->getAtomType()->getIdent(); |
1500 |
> |
data = ElectrostaticMap[Etids[atid]]; |
1501 |
> |
|
1502 |
|
RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs) |
1503 |
|
- (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss)); |
1504 |
|
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
1505 |
|
-ckr[i]*(ckss+dkcs-qkss)); |
1506 |
< |
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)+ |
1507 |
< |
skr[i]*(ckss+dkcs-qkss)); |
1506 |
> |
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs) |
1507 |
> |
+skr[i]*(ckss+dkcs-qkss)); |
1508 |
|
|
1509 |
|
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
1510 |
|
|
1522 |
|
} |
1523 |
|
mMin = 1; |
1524 |
|
} |
1525 |
< |
cerr << "kPot = " << kPot << "\n"; |
1513 |
< |
pot[ELECTROSTATIC_FAMILY] += kPot; |
1525 |
> |
pot += kPot; |
1526 |
|
} |
1527 |
|
} |