35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
+ |
#ifdef IS_MPI |
44 |
+ |
#include <mpi.h> |
45 |
+ |
#endif |
46 |
+ |
|
47 |
|
#include <stdio.h> |
48 |
|
#include <string.h> |
49 |
|
|
50 |
|
#include <cmath> |
51 |
+ |
#include <numeric> |
52 |
|
#include "nonbonded/Electrostatic.hpp" |
53 |
|
#include "utils/simError.h" |
54 |
|
#include "types/NonBondedInteractionType.hpp" |
58 |
|
#include "io/Globals.hpp" |
59 |
|
#include "nonbonded/SlaterIntegrals.hpp" |
60 |
|
#include "utils/PhysicalConstants.hpp" |
61 |
+ |
#include "math/erfc.hpp" |
62 |
+ |
#include "math/SquareMatrix.hpp" |
63 |
+ |
#include "primitives/Molecule.hpp" |
64 |
+ |
#include "flucq/FluctuatingChargeForces.hpp" |
65 |
|
|
57 |
– |
|
66 |
|
namespace OpenMD { |
67 |
|
|
68 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
70 |
|
haveCutoffRadius_(false), |
71 |
|
haveDampingAlpha_(false), |
72 |
|
haveDielectric_(false), |
73 |
< |
haveElectroSpline_(false) |
74 |
< |
{} |
73 |
> |
haveElectroSplines_(false) |
74 |
> |
{ |
75 |
> |
flucQ_ = new FluctuatingChargeForces(info_); |
76 |
> |
} |
77 |
|
|
78 |
+ |
void Electrostatic::setForceField(ForceField *ff) { |
79 |
+ |
forceField_ = ff; |
80 |
+ |
flucQ_->setForceField(forceField_); |
81 |
+ |
} |
82 |
+ |
|
83 |
+ |
void Electrostatic::setSimulatedAtomTypes(set<AtomType*> &simtypes) { |
84 |
+ |
simTypes_ = simtypes; |
85 |
+ |
flucQ_->setSimulatedAtomTypes(simTypes_); |
86 |
+ |
} |
87 |
+ |
|
88 |
|
void Electrostatic::initialize() { |
89 |
|
|
90 |
|
Globals* simParams_ = info_->getSimParams(); |
94 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
95 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
96 |
|
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
97 |
+ |
summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED; |
98 |
|
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
99 |
|
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
100 |
|
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
109 |
|
// Charge-Dipole, assuming charges are measured in electrons, and |
110 |
|
// dipoles are measured in debyes |
111 |
|
pre12_ = 69.13373; |
112 |
< |
// Dipole-Dipole, assuming dipoles are measured in debyes |
112 |
> |
// Dipole-Dipole, assuming dipoles are measured in Debye |
113 |
|
pre22_ = 14.39325; |
114 |
|
// Charge-Quadrupole, assuming charges are measured in electrons, and |
115 |
|
// quadrupoles are measured in 10^-26 esu cm^2 |
116 |
< |
// This unit is also known affectionately as an esu centi-barn. |
116 |
> |
// This unit is also known affectionately as an esu centibarn. |
117 |
|
pre14_ = 69.13373; |
118 |
< |
|
118 |
> |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
119 |
> |
// quadrupoles in esu centibarns: |
120 |
> |
pre24_ = 14.39325; |
121 |
> |
// Quadrupole-Quadrupole, assuming esu centibarns: |
122 |
> |
pre44_ = 14.39325; |
123 |
> |
|
124 |
|
// conversions for the simulation box dipole moment |
125 |
|
chargeToC_ = 1.60217733e-19; |
126 |
|
angstromToM_ = 1.0e-10; |
127 |
|
debyeToCm_ = 3.33564095198e-30; |
128 |
|
|
129 |
< |
// number of points for electrostatic splines |
129 |
> |
// Default number of points for electrostatic splines |
130 |
|
np_ = 100; |
131 |
|
|
132 |
|
// variables to handle different summation methods for long-range |
134 |
|
summationMethod_ = esm_HARD; |
135 |
|
screeningMethod_ = UNDAMPED; |
136 |
|
dielectric_ = 1.0; |
111 |
– |
one_third_ = 1.0 / 3.0; |
137 |
|
|
138 |
|
// check the summation method: |
139 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
149 |
|
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
150 |
|
"\t(Input file specified %s .)\n" |
151 |
|
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
152 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
153 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
152 |
> |
"\t\"shifted_potential\", \"shifted_force\",\n" |
153 |
> |
"\t\"taylor_shifted\", or \"reaction_field\".\n", |
154 |
> |
myMethod.c_str() ); |
155 |
|
painCave.isFatal = 1; |
156 |
|
simError(); |
157 |
|
} |
210 |
|
simError(); |
211 |
|
} |
212 |
|
|
213 |
< |
if (screeningMethod_ == DAMPED) { |
213 |
> |
if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) { |
214 |
|
if (!simParams_->haveDampingAlpha()) { |
215 |
|
// first set a cutoff dependent alpha value |
216 |
|
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
217 |
|
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
218 |
< |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
193 |
< |
|
218 |
> |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
219 |
|
// throw warning |
220 |
|
sprintf( painCave.errMsg, |
221 |
|
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
231 |
|
haveDampingAlpha_ = true; |
232 |
|
} |
233 |
|
|
234 |
< |
// find all of the Electrostatic atom Types: |
235 |
< |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
236 |
< |
ForceField::AtomTypeContainer::MapTypeIterator i; |
237 |
< |
AtomType* at; |
238 |
< |
|
239 |
< |
for (at = atomTypes->beginType(i); at != NULL; |
240 |
< |
at = atomTypes->nextType(i)) { |
241 |
< |
|
242 |
< |
if (at->isElectrostatic()) |
218 |
< |
addType(at); |
219 |
< |
} |
220 |
< |
|
221 |
< |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
222 |
< |
rcuti_ = 1.0 / cutoffRadius_; |
223 |
< |
rcuti2_ = rcuti_ * rcuti_; |
224 |
< |
rcuti3_ = rcuti2_ * rcuti_; |
225 |
< |
rcuti4_ = rcuti2_ * rcuti2_; |
234 |
> |
|
235 |
> |
Etypes.clear(); |
236 |
> |
Etids.clear(); |
237 |
> |
FQtypes.clear(); |
238 |
> |
FQtids.clear(); |
239 |
> |
ElectrostaticMap.clear(); |
240 |
> |
Jij.clear(); |
241 |
> |
nElectro_ = 0; |
242 |
> |
nFlucq_ = 0; |
243 |
|
|
244 |
< |
if (screeningMethod_ == DAMPED) { |
245 |
< |
|
229 |
< |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
230 |
< |
alpha4_ = alpha2_ * alpha2_; |
231 |
< |
alpha6_ = alpha4_ * alpha2_; |
232 |
< |
alpha8_ = alpha4_ * alpha4_; |
233 |
< |
|
234 |
< |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
235 |
< |
invRootPi_ = 0.56418958354775628695; |
236 |
< |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
244 |
> |
Etids.resize( forceField_->getNAtomType(), -1); |
245 |
> |
FQtids.resize( forceField_->getNAtomType(), -1); |
246 |
|
|
247 |
< |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
248 |
< |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
249 |
< |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
250 |
< |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
242 |
< |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
243 |
< |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
244 |
< |
} else { |
245 |
< |
c1c_ = rcuti_; |
246 |
< |
c2c_ = c1c_ * rcuti_; |
247 |
< |
c3c_ = 3.0 * c2c_ * rcuti_; |
248 |
< |
c4c_ = 5.0 * c3c_ * rcuti2_; |
249 |
< |
c5c_ = 7.0 * c4c_ * rcuti2_; |
250 |
< |
c6c_ = 9.0 * c5c_ * rcuti2_; |
247 |
> |
set<AtomType*>::iterator at; |
248 |
> |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
249 |
> |
if ((*at)->isElectrostatic()) nElectro_++; |
250 |
> |
if ((*at)->isFluctuatingCharge()) nFlucq_++; |
251 |
|
} |
252 |
< |
|
252 |
> |
|
253 |
> |
Jij.resize(nFlucq_); |
254 |
> |
|
255 |
> |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
256 |
> |
if ((*at)->isElectrostatic()) addType(*at); |
257 |
> |
} |
258 |
> |
|
259 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |
260 |
|
preRF_ = (dielectric_ - 1.0) / |
261 |
< |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
256 |
< |
preRF2_ = 2.0 * preRF_; |
261 |
> |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
262 |
|
} |
263 |
|
|
264 |
+ |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
265 |
+ |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
266 |
+ |
RealType a2, expTerm, invArootPi; |
267 |
+ |
|
268 |
+ |
RealType r = cutoffRadius_; |
269 |
+ |
RealType r2 = r * r; |
270 |
+ |
RealType ric = 1.0 / r; |
271 |
+ |
RealType ric2 = ric * ric; |
272 |
+ |
|
273 |
+ |
if (screeningMethod_ == DAMPED) { |
274 |
+ |
a2 = dampingAlpha_ * dampingAlpha_; |
275 |
+ |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
276 |
+ |
expTerm = exp(-a2 * r2); |
277 |
+ |
// values of Smith's B_l functions at the cutoff radius: |
278 |
+ |
b0c = erfc(dampingAlpha_ * r) / r; |
279 |
+ |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
280 |
+ |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
281 |
+ |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
282 |
+ |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
283 |
+ |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
284 |
+ |
// Half the Smith self piece: |
285 |
+ |
selfMult1_ = - a2 * invArootPi; |
286 |
+ |
selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0; |
287 |
+ |
selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0; |
288 |
+ |
} else { |
289 |
+ |
a2 = 0.0; |
290 |
+ |
b0c = 1.0 / r; |
291 |
+ |
b1c = ( b0c) / r2; |
292 |
+ |
b2c = (3.0 * b1c) / r2; |
293 |
+ |
b3c = (5.0 * b2c) / r2; |
294 |
+ |
b4c = (7.0 * b3c) / r2; |
295 |
+ |
b5c = (9.0 * b4c) / r2; |
296 |
+ |
selfMult1_ = 0.0; |
297 |
+ |
selfMult2_ = 0.0; |
298 |
+ |
selfMult4_ = 0.0; |
299 |
+ |
} |
300 |
+ |
|
301 |
+ |
// higher derivatives of B_0 at the cutoff radius: |
302 |
+ |
db0c_1 = -r * b1c; |
303 |
+ |
db0c_2 = -b1c + r2 * b2c; |
304 |
+ |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
305 |
+ |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
306 |
+ |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
307 |
+ |
|
308 |
+ |
if (summationMethod_ != esm_EWALD_FULL) { |
309 |
+ |
selfMult1_ -= b0c; |
310 |
+ |
selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0; |
311 |
+ |
selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0; |
312 |
+ |
} |
313 |
+ |
|
314 |
+ |
// working variables for the splines: |
315 |
+ |
RealType ri, ri2; |
316 |
+ |
RealType b0, b1, b2, b3, b4, b5; |
317 |
+ |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
318 |
+ |
RealType f, fc, f0; |
319 |
+ |
RealType g, gc, g0, g1, g2, g3, g4; |
320 |
+ |
RealType h, hc, h1, h2, h3, h4; |
321 |
+ |
RealType s, sc, s2, s3, s4; |
322 |
+ |
RealType t, tc, t3, t4; |
323 |
+ |
RealType u, uc, u4; |
324 |
+ |
|
325 |
+ |
// working variables for Taylor expansion: |
326 |
+ |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
327 |
+ |
|
328 |
+ |
// Approximate using splines using a maximum of 0.1 Angstroms |
329 |
+ |
// between points. |
330 |
+ |
int nptest = int((cutoffRadius_ + 2.0) / 0.1); |
331 |
+ |
np_ = (np_ > nptest) ? np_ : nptest; |
332 |
+ |
|
333 |
|
// Add a 2 angstrom safety window to deal with cutoffGroups that |
334 |
|
// have charged atoms longer than the cutoffRadius away from each |
335 |
< |
// other. Splining may not be the best choice here. Direct calls |
336 |
< |
// to erfc might be preferrable. |
335 |
> |
// other. Splining is almost certainly the best choice here. |
336 |
> |
// Direct calls to erfc would be preferrable if it is a very fast |
337 |
> |
// implementation. |
338 |
|
|
339 |
< |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
340 |
< |
RealType rval; |
341 |
< |
vector<RealType> rvals; |
342 |
< |
vector<RealType> yvals; |
343 |
< |
for (int i = 0; i < np_; i++) { |
344 |
< |
rval = RealType(i) * dx; |
345 |
< |
rvals.push_back(rval); |
346 |
< |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
339 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
340 |
> |
|
341 |
> |
// Storage vectors for the computed functions |
342 |
> |
vector<RealType> rv; |
343 |
> |
vector<RealType> v01v; |
344 |
> |
vector<RealType> v11v; |
345 |
> |
vector<RealType> v21v, v22v; |
346 |
> |
vector<RealType> v31v, v32v; |
347 |
> |
vector<RealType> v41v, v42v, v43v; |
348 |
> |
|
349 |
> |
for (int i = 1; i < np_ + 1; i++) { |
350 |
> |
r = RealType(i) * dx; |
351 |
> |
rv.push_back(r); |
352 |
> |
|
353 |
> |
ri = 1.0 / r; |
354 |
> |
ri2 = ri * ri; |
355 |
> |
|
356 |
> |
r2 = r * r; |
357 |
> |
expTerm = exp(-a2 * r2); |
358 |
> |
|
359 |
> |
// Taylor expansion factors (no need for factorials this way): |
360 |
> |
rmRc = r - cutoffRadius_; |
361 |
> |
rmRc2 = rmRc * rmRc / 2.0; |
362 |
> |
rmRc3 = rmRc2 * rmRc / 3.0; |
363 |
> |
rmRc4 = rmRc3 * rmRc / 4.0; |
364 |
> |
|
365 |
> |
// values of Smith's B_l functions at r: |
366 |
> |
if (screeningMethod_ == DAMPED) { |
367 |
> |
b0 = erfc(dampingAlpha_ * r) * ri; |
368 |
> |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
369 |
> |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
370 |
> |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
371 |
> |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
372 |
> |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
373 |
> |
} else { |
374 |
> |
b0 = ri; |
375 |
> |
b1 = ( b0) * ri2; |
376 |
> |
b2 = (3.0 * b1) * ri2; |
377 |
> |
b3 = (5.0 * b2) * ri2; |
378 |
> |
b4 = (7.0 * b3) * ri2; |
379 |
> |
b5 = (9.0 * b4) * ri2; |
380 |
> |
} |
381 |
> |
|
382 |
> |
// higher derivatives of B_0 at r: |
383 |
> |
db0_1 = -r * b1; |
384 |
> |
db0_2 = -b1 + r2 * b2; |
385 |
> |
db0_3 = 3.0*r*b2 - r2*r*b3; |
386 |
> |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
387 |
> |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
388 |
> |
|
389 |
> |
f = b0; |
390 |
> |
fc = b0c; |
391 |
> |
f0 = f - fc - rmRc*db0c_1; |
392 |
> |
|
393 |
> |
g = db0_1; |
394 |
> |
gc = db0c_1; |
395 |
> |
g0 = g - gc; |
396 |
> |
g1 = g0 - rmRc *db0c_2; |
397 |
> |
g2 = g1 - rmRc2*db0c_3; |
398 |
> |
g3 = g2 - rmRc3*db0c_4; |
399 |
> |
g4 = g3 - rmRc4*db0c_5; |
400 |
> |
|
401 |
> |
h = db0_2; |
402 |
> |
hc = db0c_2; |
403 |
> |
h1 = h - hc; |
404 |
> |
h2 = h1 - rmRc *db0c_3; |
405 |
> |
h3 = h2 - rmRc2*db0c_4; |
406 |
> |
h4 = h3 - rmRc3*db0c_5; |
407 |
> |
|
408 |
> |
s = db0_3; |
409 |
> |
sc = db0c_3; |
410 |
> |
s2 = s - sc; |
411 |
> |
s3 = s2 - rmRc *db0c_4; |
412 |
> |
s4 = s3 - rmRc2*db0c_5; |
413 |
> |
|
414 |
> |
t = db0_4; |
415 |
> |
tc = db0c_4; |
416 |
> |
t3 = t - tc; |
417 |
> |
t4 = t3 - rmRc *db0c_5; |
418 |
> |
|
419 |
> |
u = db0_5; |
420 |
> |
uc = db0c_5; |
421 |
> |
u4 = u - uc; |
422 |
> |
|
423 |
> |
// in what follows below, the various v functions are used for |
424 |
> |
// potentials and torques, while the w functions show up in the |
425 |
> |
// forces. |
426 |
> |
|
427 |
> |
switch (summationMethod_) { |
428 |
> |
case esm_SHIFTED_FORCE: |
429 |
> |
|
430 |
> |
v01 = f - fc - rmRc*gc; |
431 |
> |
v11 = g - gc - rmRc*hc; |
432 |
> |
v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric; |
433 |
> |
v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric); |
434 |
> |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric; |
435 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric) |
436 |
> |
- rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
437 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2 |
438 |
> |
- rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2; |
439 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric |
440 |
> |
- rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric; |
441 |
> |
|
442 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
443 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric) |
444 |
> |
- rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
445 |
> |
|
446 |
> |
dv01 = g - gc; |
447 |
> |
dv11 = h - hc; |
448 |
> |
dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric; |
449 |
> |
dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric); |
450 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric; |
451 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri) |
452 |
> |
- (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
453 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2; |
454 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri |
455 |
> |
- (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric; |
456 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri) |
457 |
> |
- (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
458 |
> |
|
459 |
> |
break; |
460 |
> |
|
461 |
> |
case esm_TAYLOR_SHIFTED: |
462 |
> |
|
463 |
> |
v01 = f0; |
464 |
> |
v11 = g1; |
465 |
> |
v21 = g2 * ri; |
466 |
> |
v22 = h2 - v21; |
467 |
> |
v31 = (h3 - g3 * ri) * ri; |
468 |
> |
v32 = s3 - 3.0*v31; |
469 |
> |
v41 = (h4 - g4 * ri) * ri2; |
470 |
> |
v42 = s4 * ri - 3.0*v41; |
471 |
> |
v43 = t4 - 6.0*v42 - 3.0*v41; |
472 |
> |
|
473 |
> |
dv01 = g0; |
474 |
> |
dv11 = h1; |
475 |
> |
dv21 = (h2 - g2*ri)*ri; |
476 |
> |
dv22 = (s2 - (h2 - g2*ri)*ri); |
477 |
> |
dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri; |
478 |
> |
dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri); |
479 |
> |
dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2; |
480 |
> |
dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri; |
481 |
> |
dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri); |
482 |
> |
|
483 |
> |
break; |
484 |
> |
|
485 |
> |
case esm_SHIFTED_POTENTIAL: |
486 |
> |
|
487 |
> |
v01 = f - fc; |
488 |
> |
v11 = g - gc; |
489 |
> |
v21 = g*ri - gc*ric; |
490 |
> |
v22 = h - g*ri - (hc - gc*ric); |
491 |
> |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
492 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
493 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
494 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
495 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
496 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
497 |
> |
|
498 |
> |
dv01 = g; |
499 |
> |
dv11 = h; |
500 |
> |
dv21 = (h - g*ri)*ri; |
501 |
> |
dv22 = (s - (h - g*ri)*ri); |
502 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
503 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
504 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
505 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
506 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
507 |
> |
|
508 |
> |
break; |
509 |
> |
|
510 |
> |
case esm_SWITCHING_FUNCTION: |
511 |
> |
case esm_HARD: |
512 |
> |
case esm_EWALD_FULL: |
513 |
> |
|
514 |
> |
v01 = f; |
515 |
> |
v11 = g; |
516 |
> |
v21 = g*ri; |
517 |
> |
v22 = h - g*ri; |
518 |
> |
v31 = (h-g*ri)*ri; |
519 |
> |
v32 = (s - 3.0*(h-g*ri)*ri); |
520 |
> |
v41 = (h - g*ri)*ri2; |
521 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri; |
522 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri); |
523 |
> |
|
524 |
> |
dv01 = g; |
525 |
> |
dv11 = h; |
526 |
> |
dv21 = (h - g*ri)*ri; |
527 |
> |
dv22 = (s - (h - g*ri)*ri); |
528 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
529 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
530 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
531 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
532 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
533 |
> |
|
534 |
> |
break; |
535 |
> |
|
536 |
> |
case esm_REACTION_FIELD: |
537 |
> |
|
538 |
> |
// following DL_POLY's lead for shifting the image charge potential: |
539 |
> |
f = b0 + preRF_ * r2; |
540 |
> |
fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_; |
541 |
> |
|
542 |
> |
g = db0_1 + preRF_ * 2.0 * r; |
543 |
> |
gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_; |
544 |
> |
|
545 |
> |
h = db0_2 + preRF_ * 2.0; |
546 |
> |
hc = db0c_2 + preRF_ * 2.0; |
547 |
> |
|
548 |
> |
v01 = f - fc; |
549 |
> |
v11 = g - gc; |
550 |
> |
v21 = g*ri - gc*ric; |
551 |
> |
v22 = h - g*ri - (hc - gc*ric); |
552 |
> |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
553 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
554 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
555 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
556 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
557 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
558 |
> |
|
559 |
> |
dv01 = g; |
560 |
> |
dv11 = h; |
561 |
> |
dv21 = (h - g*ri)*ri; |
562 |
> |
dv22 = (s - (h - g*ri)*ri); |
563 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
564 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
565 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
566 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
567 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
568 |
> |
|
569 |
> |
break; |
570 |
> |
|
571 |
> |
case esm_EWALD_PME: |
572 |
> |
case esm_EWALD_SPME: |
573 |
> |
default : |
574 |
> |
map<string, ElectrostaticSummationMethod>::iterator i; |
575 |
> |
std::string meth; |
576 |
> |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
577 |
> |
if ((*i).second == summationMethod_) meth = (*i).first; |
578 |
> |
} |
579 |
> |
sprintf( painCave.errMsg, |
580 |
> |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
581 |
> |
"\thas not been implemented yet. Please select one of:\n" |
582 |
> |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
583 |
> |
meth.c_str() ); |
584 |
> |
painCave.isFatal = 1; |
585 |
> |
simError(); |
586 |
> |
break; |
587 |
> |
} |
588 |
> |
|
589 |
> |
// Add these computed values to the storage vectors for spline creation: |
590 |
> |
v01v.push_back(v01); |
591 |
> |
v11v.push_back(v11); |
592 |
> |
v21v.push_back(v21); |
593 |
> |
v22v.push_back(v22); |
594 |
> |
v31v.push_back(v31); |
595 |
> |
v32v.push_back(v32); |
596 |
> |
v41v.push_back(v41); |
597 |
> |
v42v.push_back(v42); |
598 |
> |
v43v.push_back(v43); |
599 |
|
} |
273 |
– |
erfcSpline_ = new CubicSpline(); |
274 |
– |
erfcSpline_->addPoints(rvals, yvals); |
275 |
– |
haveElectroSpline_ = true; |
600 |
|
|
601 |
+ |
// construct the spline structures and fill them with the values we've |
602 |
+ |
// computed: |
603 |
+ |
|
604 |
+ |
v01s = new CubicSpline(); |
605 |
+ |
v01s->addPoints(rv, v01v); |
606 |
+ |
v11s = new CubicSpline(); |
607 |
+ |
v11s->addPoints(rv, v11v); |
608 |
+ |
v21s = new CubicSpline(); |
609 |
+ |
v21s->addPoints(rv, v21v); |
610 |
+ |
v22s = new CubicSpline(); |
611 |
+ |
v22s->addPoints(rv, v22v); |
612 |
+ |
v31s = new CubicSpline(); |
613 |
+ |
v31s->addPoints(rv, v31v); |
614 |
+ |
v32s = new CubicSpline(); |
615 |
+ |
v32s->addPoints(rv, v32v); |
616 |
+ |
v41s = new CubicSpline(); |
617 |
+ |
v41s->addPoints(rv, v41v); |
618 |
+ |
v42s = new CubicSpline(); |
619 |
+ |
v42s->addPoints(rv, v42v); |
620 |
+ |
v43s = new CubicSpline(); |
621 |
+ |
v43s->addPoints(rv, v43v); |
622 |
+ |
|
623 |
+ |
haveElectroSplines_ = true; |
624 |
+ |
|
625 |
|
initialized_ = true; |
626 |
|
} |
627 |
|
|
628 |
|
void Electrostatic::addType(AtomType* atomType){ |
629 |
< |
|
629 |
> |
|
630 |
|
ElectrostaticAtomData electrostaticAtomData; |
631 |
|
electrostaticAtomData.is_Charge = false; |
632 |
|
electrostaticAtomData.is_Dipole = false; |
285 |
– |
electrostaticAtomData.is_SplitDipole = false; |
633 |
|
electrostaticAtomData.is_Quadrupole = false; |
634 |
|
electrostaticAtomData.is_Fluctuating = false; |
635 |
|
|
644 |
|
if (ma.isMultipole()) { |
645 |
|
if (ma.isDipole()) { |
646 |
|
electrostaticAtomData.is_Dipole = true; |
647 |
< |
electrostaticAtomData.dipole_moment = ma.getDipoleMoment(); |
647 |
> |
electrostaticAtomData.dipole = ma.getDipole(); |
648 |
|
} |
302 |
– |
if (ma.isSplitDipole()) { |
303 |
– |
electrostaticAtomData.is_SplitDipole = true; |
304 |
– |
electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance(); |
305 |
– |
} |
649 |
|
if (ma.isQuadrupole()) { |
307 |
– |
// Quadrupoles in OpenMD are set as the diagonal elements |
308 |
– |
// of the diagonalized traceless quadrupole moment tensor. |
309 |
– |
// The column vectors of the unitary matrix that diagonalizes |
310 |
– |
// the quadrupole moment tensor become the eFrame (or the |
311 |
– |
// electrostatic version of the body-fixed frame. |
650 |
|
electrostaticAtomData.is_Quadrupole = true; |
651 |
< |
electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments(); |
651 |
> |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
652 |
|
} |
653 |
|
} |
654 |
|
|
662 |
|
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
663 |
|
} |
664 |
|
|
665 |
< |
pair<map<int,AtomType*>::iterator,bool> ret; |
666 |
< |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
667 |
< |
atomType) ); |
665 |
> |
int atid = atomType->getIdent(); |
666 |
> |
int etid = Etypes.size(); |
667 |
> |
int fqtid = FQtypes.size(); |
668 |
> |
|
669 |
> |
pair<set<int>::iterator,bool> ret; |
670 |
> |
ret = Etypes.insert( atid ); |
671 |
|
if (ret.second == false) { |
672 |
|
sprintf( painCave.errMsg, |
673 |
|
"Electrostatic already had a previous entry with ident %d\n", |
674 |
< |
atomType->getIdent() ); |
674 |
> |
atid); |
675 |
|
painCave.severity = OPENMD_INFO; |
676 |
|
painCave.isFatal = 0; |
677 |
|
simError(); |
678 |
|
} |
679 |
|
|
680 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
680 |
> |
Etids[ atid ] = etid; |
681 |
> |
ElectrostaticMap.push_back(electrostaticAtomData); |
682 |
|
|
683 |
< |
// Now, iterate over all known types and add to the mixing map: |
684 |
< |
|
685 |
< |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
686 |
< |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
687 |
< |
AtomType* atype2 = (*it).first; |
688 |
< |
ElectrostaticAtomData eaData2 = (*it).second; |
689 |
< |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
690 |
< |
|
683 |
> |
if (electrostaticAtomData.is_Fluctuating) { |
684 |
> |
ret = FQtypes.insert( atid ); |
685 |
> |
if (ret.second == false) { |
686 |
> |
sprintf( painCave.errMsg, |
687 |
> |
"Electrostatic already had a previous fluctuating charge entry with ident %d\n", |
688 |
> |
atid ); |
689 |
> |
painCave.severity = OPENMD_INFO; |
690 |
> |
painCave.isFatal = 0; |
691 |
> |
simError(); |
692 |
> |
} |
693 |
> |
FQtids[atid] = fqtid; |
694 |
> |
Jij[fqtid].resize(nFlucq_); |
695 |
> |
|
696 |
> |
// Now, iterate over all known fluctuating and add to the |
697 |
> |
// coulomb integral map: |
698 |
> |
|
699 |
> |
std::set<int>::iterator it; |
700 |
> |
for( it = FQtypes.begin(); it != FQtypes.end(); ++it) { |
701 |
> |
int etid2 = Etids[ (*it) ]; |
702 |
> |
int fqtid2 = FQtids[ (*it) ]; |
703 |
> |
ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ]; |
704 |
|
RealType a = electrostaticAtomData.slaterZeta; |
705 |
|
RealType b = eaData2.slaterZeta; |
706 |
|
int m = electrostaticAtomData.slaterN; |
707 |
|
int n = eaData2.slaterN; |
708 |
< |
|
708 |
> |
|
709 |
|
// Create the spline of the coulombic integral for s-type |
710 |
|
// Slater orbitals. Add a 2 angstrom safety window to deal |
711 |
|
// with cutoffGroups that have charged atoms longer than the |
712 |
|
// cutoffRadius away from each other. |
713 |
< |
|
713 |
> |
|
714 |
|
RealType rval; |
715 |
|
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
716 |
|
vector<RealType> rvals; |
717 |
< |
vector<RealType> J1vals; |
718 |
< |
vector<RealType> J2vals; |
719 |
< |
for (int i = 0; i < np_; i++) { |
717 |
> |
vector<RealType> Jvals; |
718 |
> |
// don't start at i = 0, as rval = 0 is undefined for the |
719 |
> |
// slater overlap integrals. |
720 |
> |
for (int i = 1; i < np_+1; i++) { |
721 |
|
rval = RealType(i) * dr; |
722 |
|
rvals.push_back(rval); |
723 |
< |
J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
724 |
< |
// may not be necessary if Slater coulomb integral is symmetric |
725 |
< |
J2vals.push_back(eaData2.hardness * sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
723 |
> |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
724 |
> |
PhysicalConstants::angstromToBohr ) * |
725 |
> |
PhysicalConstants::hartreeToKcal ); |
726 |
|
} |
371 |
– |
|
372 |
– |
CubicSpline* J1 = new CubicSpline(); |
373 |
– |
J1->addPoints(rvals, J1vals); |
374 |
– |
CubicSpline* J2 = new CubicSpline(); |
375 |
– |
J2->addPoints(rvals, J2vals); |
727 |
|
|
728 |
< |
pair<AtomType*, AtomType*> key1, key2; |
729 |
< |
key1 = make_pair(atomType, atype2); |
730 |
< |
key2 = make_pair(atype2, atomType); |
731 |
< |
|
732 |
< |
Jij[key1] = J1; |
733 |
< |
Jij[key2] = J2; |
734 |
< |
} |
384 |
< |
} |
385 |
< |
|
728 |
> |
CubicSpline* J = new CubicSpline(); |
729 |
> |
J->addPoints(rvals, Jvals); |
730 |
> |
Jij[fqtid][fqtid2] = J; |
731 |
> |
Jij[fqtid2].resize( nFlucq_ ); |
732 |
> |
Jij[fqtid2][fqtid] = J; |
733 |
> |
} |
734 |
> |
} |
735 |
|
return; |
736 |
|
} |
737 |
|
|
738 |
|
void Electrostatic::setCutoffRadius( RealType rCut ) { |
739 |
|
cutoffRadius_ = rCut; |
391 |
– |
rrf_ = cutoffRadius_; |
740 |
|
haveCutoffRadius_ = true; |
741 |
|
} |
742 |
|
|
395 |
– |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
396 |
– |
rt_ = rSwitch; |
397 |
– |
} |
743 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
744 |
|
summationMethod_ = esm; |
745 |
|
} |
757 |
|
|
758 |
|
void Electrostatic::calcForce(InteractionData &idat) { |
759 |
|
|
415 |
– |
// utility variables. Should clean these up and use the Vector3d and |
416 |
– |
// Mat3x3d to replace as many as we can in future versions: |
417 |
– |
|
418 |
– |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
419 |
– |
RealType qxx_i, qyy_i, qzz_i; |
420 |
– |
RealType qxx_j, qyy_j, qzz_j; |
421 |
– |
RealType cx_i, cy_i, cz_i; |
422 |
– |
RealType cx_j, cy_j, cz_j; |
423 |
– |
RealType cx2, cy2, cz2; |
424 |
– |
RealType ct_i, ct_j, ct_ij, a1; |
425 |
– |
RealType riji, ri, ri2, ri3, ri4; |
426 |
– |
RealType pref, vterm, epot, dudr; |
427 |
– |
RealType vpair(0.0); |
428 |
– |
RealType scale, sc2; |
429 |
– |
RealType pot_term, preVal, rfVal; |
430 |
– |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
431 |
– |
RealType preSw, preSwSc; |
432 |
– |
RealType c1, c2, c3, c4; |
433 |
– |
RealType erfcVal(1.0), derfcVal(0.0); |
434 |
– |
RealType BigR; |
435 |
– |
RealType two(2.0), three(3.0); |
436 |
– |
|
437 |
– |
Vector3d Q_i, Q_j; |
438 |
– |
Vector3d ux_i, uy_i, uz_i; |
439 |
– |
Vector3d ux_j, uy_j, uz_j; |
440 |
– |
Vector3d dudux_i, duduy_i, duduz_i; |
441 |
– |
Vector3d dudux_j, duduy_j, duduz_j; |
442 |
– |
Vector3d rhatdot2, rhatc4; |
443 |
– |
Vector3d dVdr; |
444 |
– |
|
445 |
– |
// variables for indirect (reaction field) interactions for excluded pairs: |
446 |
– |
RealType indirect_Pot(0.0); |
447 |
– |
RealType indirect_vpair(0.0); |
448 |
– |
Vector3d indirect_dVdr(V3Zero); |
449 |
– |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
450 |
– |
|
451 |
– |
RealType coulInt, vFluc1(0.0), vFluc2(0.0); |
452 |
– |
pair<RealType, RealType> res; |
453 |
– |
|
454 |
– |
// splines for coulomb integrals |
455 |
– |
CubicSpline* J1; |
456 |
– |
CubicSpline* J2; |
457 |
– |
|
760 |
|
if (!initialized_) initialize(); |
761 |
|
|
762 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
763 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
762 |
> |
data1 = ElectrostaticMap[Etids[idat.atid1]]; |
763 |
> |
data2 = ElectrostaticMap[Etids[idat.atid2]]; |
764 |
> |
|
765 |
> |
U = 0.0; // Potential |
766 |
> |
F.zero(); // Force |
767 |
> |
Ta.zero(); // Torque on site a |
768 |
> |
Tb.zero(); // Torque on site b |
769 |
> |
Ea.zero(); // Electric field at site a |
770 |
> |
Eb.zero(); // Electric field at site b |
771 |
> |
Pa = 0.0; // Site potential at site a |
772 |
> |
Pb = 0.0; // Site potential at site b |
773 |
> |
dUdCa = 0.0; // fluctuating charge force at site a |
774 |
> |
dUdCb = 0.0; // fluctuating charge force at site a |
775 |
|
|
776 |
< |
// some variables we'll need independent of electrostatic type: |
776 |
> |
// Indirect interactions mediated by the reaction field. |
777 |
> |
indirect_Pot = 0.0; // Potential |
778 |
> |
indirect_F.zero(); // Force |
779 |
> |
indirect_Ta.zero(); // Torque on site a |
780 |
> |
indirect_Tb.zero(); // Torque on site b |
781 |
|
|
782 |
< |
riji = 1.0 / *(idat.rij) ; |
783 |
< |
Vector3d rhat = *(idat.d) * riji; |
782 |
> |
// Excluded potential that is still computed for fluctuating charges |
783 |
> |
excluded_Pot= 0.0; |
784 |
|
|
785 |
+ |
// some variables we'll need independent of electrostatic type: |
786 |
+ |
|
787 |
+ |
ri = 1.0 / *(idat.rij); |
788 |
+ |
rhat = *(idat.d) * ri; |
789 |
+ |
|
790 |
|
// logicals |
791 |
|
|
792 |
< |
bool i_is_Charge = data1.is_Charge; |
793 |
< |
bool i_is_Dipole = data1.is_Dipole; |
794 |
< |
bool i_is_SplitDipole = data1.is_SplitDipole; |
795 |
< |
bool i_is_Quadrupole = data1.is_Quadrupole; |
474 |
< |
bool i_is_Fluctuating = data1.is_Fluctuating; |
792 |
> |
a_is_Charge = data1.is_Charge; |
793 |
> |
a_is_Dipole = data1.is_Dipole; |
794 |
> |
a_is_Quadrupole = data1.is_Quadrupole; |
795 |
> |
a_is_Fluctuating = data1.is_Fluctuating; |
796 |
|
|
797 |
< |
bool j_is_Charge = data2.is_Charge; |
798 |
< |
bool j_is_Dipole = data2.is_Dipole; |
799 |
< |
bool j_is_SplitDipole = data2.is_SplitDipole; |
800 |
< |
bool j_is_Quadrupole = data2.is_Quadrupole; |
801 |
< |
bool j_is_Fluctuating = data2.is_Fluctuating; |
797 |
> |
b_is_Charge = data2.is_Charge; |
798 |
> |
b_is_Dipole = data2.is_Dipole; |
799 |
> |
b_is_Quadrupole = data2.is_Quadrupole; |
800 |
> |
b_is_Fluctuating = data2.is_Fluctuating; |
801 |
> |
|
802 |
> |
// Obtain all of the required radial function values from the |
803 |
> |
// spline structures: |
804 |
|
|
805 |
< |
if (i_is_Charge) { |
806 |
< |
q_i = data1.fixedCharge; |
805 |
> |
// needed for fields (and forces): |
806 |
> |
if (a_is_Charge || b_is_Charge) { |
807 |
> |
v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01); |
808 |
> |
} |
809 |
> |
if (a_is_Dipole || b_is_Dipole) { |
810 |
> |
v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11); |
811 |
> |
v11or = ri * v11; |
812 |
> |
} |
813 |
> |
if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) { |
814 |
> |
v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21); |
815 |
> |
v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22); |
816 |
> |
v22or = ri * v22; |
817 |
> |
} |
818 |
|
|
819 |
< |
if (i_is_Fluctuating) { |
820 |
< |
q_i += *(idat.flucQ1); |
819 |
> |
// needed for potentials (and forces and torques): |
820 |
> |
if ((a_is_Dipole && b_is_Quadrupole) || |
821 |
> |
(b_is_Dipole && a_is_Quadrupole)) { |
822 |
> |
v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31); |
823 |
> |
v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32); |
824 |
> |
v31or = v31 * ri; |
825 |
> |
v32or = v32 * ri; |
826 |
> |
} |
827 |
> |
if (a_is_Quadrupole && b_is_Quadrupole) { |
828 |
> |
v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41); |
829 |
> |
v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42); |
830 |
> |
v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43); |
831 |
> |
v42or = v42 * ri; |
832 |
> |
v43or = v43 * ri; |
833 |
> |
} |
834 |
> |
|
835 |
> |
// calculate the single-site contributions (fields, etc). |
836 |
> |
|
837 |
> |
if (a_is_Charge) { |
838 |
> |
C_a = data1.fixedCharge; |
839 |
> |
|
840 |
> |
if (a_is_Fluctuating) { |
841 |
> |
C_a += *(idat.flucQ1); |
842 |
|
} |
843 |
|
|
844 |
|
if (idat.excluded) { |
845 |
< |
*(idat.skippedCharge2) += q_i; |
845 |
> |
*(idat.skippedCharge2) += C_a; |
846 |
> |
} else { |
847 |
> |
// only do the field and site potentials if we're not excluded: |
848 |
> |
Eb -= C_a * pre11_ * dv01 * rhat; |
849 |
> |
Pb += C_a * pre11_ * v01; |
850 |
|
} |
851 |
|
} |
852 |
< |
|
853 |
< |
if (i_is_Dipole) { |
854 |
< |
mu_i = data1.dipole_moment; |
855 |
< |
uz_i = idat.eFrame1->getColumn(2); |
856 |
< |
|
857 |
< |
ct_i = dot(uz_i, rhat); |
858 |
< |
|
859 |
< |
if (i_is_SplitDipole) |
860 |
< |
d_i = data1.split_dipole_distance; |
502 |
< |
|
503 |
< |
duduz_i = V3Zero; |
504 |
< |
} |
505 |
< |
|
506 |
< |
if (i_is_Quadrupole) { |
507 |
< |
Q_i = data1.quadrupole_moments; |
508 |
< |
qxx_i = Q_i.x(); |
509 |
< |
qyy_i = Q_i.y(); |
510 |
< |
qzz_i = Q_i.z(); |
511 |
< |
|
512 |
< |
ux_i = idat.eFrame1->getColumn(0); |
513 |
< |
uy_i = idat.eFrame1->getColumn(1); |
514 |
< |
uz_i = idat.eFrame1->getColumn(2); |
852 |
> |
|
853 |
> |
if (a_is_Dipole) { |
854 |
> |
D_a = *(idat.dipole1); |
855 |
> |
rdDa = dot(rhat, D_a); |
856 |
> |
rxDa = cross(rhat, D_a); |
857 |
> |
if (!idat.excluded) { |
858 |
> |
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
859 |
> |
Pb += pre12_ * v11 * rdDa; |
860 |
> |
} |
861 |
|
|
516 |
– |
cx_i = dot(ux_i, rhat); |
517 |
– |
cy_i = dot(uy_i, rhat); |
518 |
– |
cz_i = dot(uz_i, rhat); |
519 |
– |
|
520 |
– |
dudux_i = V3Zero; |
521 |
– |
duduy_i = V3Zero; |
522 |
– |
duduz_i = V3Zero; |
862 |
|
} |
863 |
< |
|
864 |
< |
if (j_is_Charge) { |
865 |
< |
q_j = data2.fixedCharge; |
866 |
< |
|
867 |
< |
if (j_is_Fluctuating) |
868 |
< |
q_j += *(idat.flucQ2); |
869 |
< |
|
870 |
< |
if (idat.excluded) { |
871 |
< |
*(idat.skippedCharge1) += q_j; |
863 |
> |
|
864 |
> |
if (a_is_Quadrupole) { |
865 |
> |
Q_a = *(idat.quadrupole1); |
866 |
> |
trQa = Q_a.trace(); |
867 |
> |
Qar = Q_a * rhat; |
868 |
> |
rQa = rhat * Q_a; |
869 |
> |
rdQar = dot(rhat, Qar); |
870 |
> |
rxQar = cross(rhat, Qar); |
871 |
> |
if (!idat.excluded) { |
872 |
> |
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
873 |
> |
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
874 |
> |
Pb += pre14_ * (v21 * trQa + v22 * rdQar); |
875 |
|
} |
876 |
|
} |
877 |
< |
|
878 |
< |
|
879 |
< |
if (j_is_Dipole) { |
538 |
< |
mu_j = data2.dipole_moment; |
539 |
< |
uz_j = idat.eFrame2->getColumn(2); |
877 |
> |
|
878 |
> |
if (b_is_Charge) { |
879 |
> |
C_b = data2.fixedCharge; |
880 |
|
|
881 |
< |
ct_j = dot(uz_j, rhat); |
882 |
< |
|
543 |
< |
if (j_is_SplitDipole) |
544 |
< |
d_j = data2.split_dipole_distance; |
881 |
> |
if (b_is_Fluctuating) |
882 |
> |
C_b += *(idat.flucQ2); |
883 |
|
|
884 |
< |
duduz_j = V3Zero; |
884 |
> |
if (idat.excluded) { |
885 |
> |
*(idat.skippedCharge1) += C_b; |
886 |
> |
} else { |
887 |
> |
// only do the field if we're not excluded: |
888 |
> |
Ea += C_b * pre11_ * dv01 * rhat; |
889 |
> |
Pa += C_b * pre11_ * v01; |
890 |
> |
|
891 |
> |
} |
892 |
|
} |
893 |
|
|
894 |
< |
if (j_is_Quadrupole) { |
895 |
< |
Q_j = data2.quadrupole_moments; |
896 |
< |
qxx_j = Q_j.x(); |
897 |
< |
qyy_j = Q_j.y(); |
898 |
< |
qzz_j = Q_j.z(); |
899 |
< |
|
900 |
< |
ux_j = idat.eFrame2->getColumn(0); |
901 |
< |
uy_j = idat.eFrame2->getColumn(1); |
557 |
< |
uz_j = idat.eFrame2->getColumn(2); |
558 |
< |
|
559 |
< |
cx_j = dot(ux_j, rhat); |
560 |
< |
cy_j = dot(uy_j, rhat); |
561 |
< |
cz_j = dot(uz_j, rhat); |
562 |
< |
|
563 |
< |
dudux_j = V3Zero; |
564 |
< |
duduy_j = V3Zero; |
565 |
< |
duduz_j = V3Zero; |
894 |
> |
if (b_is_Dipole) { |
895 |
> |
D_b = *(idat.dipole2); |
896 |
> |
rdDb = dot(rhat, D_b); |
897 |
> |
rxDb = cross(rhat, D_b); |
898 |
> |
if (!idat.excluded) { |
899 |
> |
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
900 |
> |
Pa += pre12_ * v11 * rdDb; |
901 |
> |
} |
902 |
|
} |
903 |
|
|
904 |
< |
if (i_is_Fluctuating && j_is_Fluctuating) { |
905 |
< |
J1 = Jij[idat.atypes]; |
906 |
< |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
904 |
> |
if (b_is_Quadrupole) { |
905 |
> |
Q_b = *(idat.quadrupole2); |
906 |
> |
trQb = Q_b.trace(); |
907 |
> |
Qbr = Q_b * rhat; |
908 |
> |
rQb = rhat * Q_b; |
909 |
> |
rdQbr = dot(rhat, Qbr); |
910 |
> |
rxQbr = cross(rhat, Qbr); |
911 |
> |
if (!idat.excluded) { |
912 |
> |
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
913 |
> |
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
914 |
> |
Pa += pre14_ * (v21 * trQb + v22 * rdQbr); |
915 |
> |
} |
916 |
|
} |
917 |
+ |
|
918 |
|
|
919 |
< |
epot = 0.0; |
920 |
< |
dVdr = V3Zero; |
921 |
< |
|
922 |
< |
if (i_is_Charge) { |
919 |
> |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
920 |
> |
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
921 |
> |
} |
922 |
> |
|
923 |
> |
if (a_is_Charge) { |
924 |
|
|
925 |
< |
if (j_is_Charge) { |
926 |
< |
if (screeningMethod_ == DAMPED) { |
927 |
< |
// assemble the damping variables |
928 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
582 |
< |
//erfcVal = res.first; |
583 |
< |
//derfcVal = res.second; |
925 |
> |
if (b_is_Charge) { |
926 |
> |
pref = pre11_ * *(idat.electroMult); |
927 |
> |
U += C_a * C_b * pref * v01; |
928 |
> |
F += C_a * C_b * pref * dv01 * rhat; |
929 |
|
|
930 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
931 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
930 |
> |
// If this is an excluded pair, there are still indirect |
931 |
> |
// interactions via the reaction field we must worry about: |
932 |
|
|
933 |
< |
c1 = erfcVal * riji; |
934 |
< |
c2 = (-derfcVal + c1) * riji; |
935 |
< |
} else { |
936 |
< |
c1 = riji; |
592 |
< |
c2 = c1 * riji; |
933 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
934 |
> |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
935 |
> |
indirect_Pot += rfContrib; |
936 |
> |
indirect_F += rfContrib * 2.0 * ri * rhat; |
937 |
|
} |
938 |
|
|
939 |
< |
preVal = *(idat.electroMult) * pre11_; |
940 |
< |
|
941 |
< |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
598 |
< |
vterm = preVal * (c1 - c1c_); |
599 |
< |
dudr = - *(idat.sw) * preVal * c2; |
939 |
> |
// Fluctuating charge forces are handled via Coulomb integrals |
940 |
> |
// for excluded pairs (i.e. those connected via bonds) and |
941 |
> |
// with the standard charge-charge interaction otherwise. |
942 |
|
|
943 |
< |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
944 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
945 |
< |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
943 |
> |
if (idat.excluded) { |
944 |
> |
if (a_is_Fluctuating || b_is_Fluctuating) { |
945 |
> |
coulInt = J->getValueAt( *(idat.rij) ); |
946 |
> |
if (a_is_Fluctuating) dUdCa += C_b * coulInt; |
947 |
> |
if (b_is_Fluctuating) dUdCb += C_a * coulInt; |
948 |
> |
} |
949 |
> |
} else { |
950 |
> |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
951 |
> |
if (b_is_Fluctuating) dUdCb += C_a * pref * v01; |
952 |
> |
} |
953 |
> |
} |
954 |
|
|
955 |
< |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
956 |
< |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
955 |
> |
if (b_is_Dipole) { |
956 |
> |
pref = pre12_ * *(idat.electroMult); |
957 |
> |
U += C_a * pref * v11 * rdDb; |
958 |
> |
F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b); |
959 |
> |
Tb += C_a * pref * v11 * rxDb; |
960 |
|
|
961 |
< |
vterm = preVal * ( riji + rfVal ); |
609 |
< |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
610 |
< |
|
611 |
< |
// if this is an excluded pair, there are still indirect |
612 |
< |
// interactions via the reaction field we must worry about: |
961 |
> |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
962 |
|
|
963 |
< |
if (idat.excluded) { |
964 |
< |
indirect_vpair += preVal * rfVal; |
965 |
< |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
617 |
< |
indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat; |
618 |
< |
} |
619 |
< |
|
620 |
< |
} else { |
963 |
> |
// Even if we excluded this pair from direct interactions, we |
964 |
> |
// still have the reaction-field-mediated charge-dipole |
965 |
> |
// interaction: |
966 |
|
|
967 |
< |
vterm = preVal * riji * erfcVal; |
968 |
< |
dudr = - *(idat.sw) * preVal * c2; |
969 |
< |
|
967 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
968 |
> |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
969 |
> |
indirect_Pot += rfContrib * rdDb; |
970 |
> |
indirect_F += rfContrib * D_b / (*idat.rij); |
971 |
> |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
972 |
|
} |
973 |
< |
|
627 |
< |
vpair += vterm * q_i * q_j; |
628 |
< |
epot += *(idat.sw) * vterm * q_i * q_j; |
629 |
< |
dVdr += dudr * rhat * q_i * q_j; |
973 |
> |
} |
974 |
|
|
975 |
< |
if (i_is_Fluctuating) { |
976 |
< |
if (idat.excluded) { |
977 |
< |
// vFluc1 is the difference between the direct coulomb integral |
978 |
< |
// and the normal 1/r-like interaction between point charges. |
979 |
< |
coulInt = J1->getValueAt( *(idat.rij) ); |
980 |
< |
vFluc1 = coulInt - (*(idat.sw) * vterm); |
637 |
< |
} else { |
638 |
< |
vFluc1 = 0.0; |
639 |
< |
} |
640 |
< |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j; |
641 |
< |
} |
975 |
> |
if (b_is_Quadrupole) { |
976 |
> |
pref = pre14_ * *(idat.electroMult); |
977 |
> |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
978 |
> |
F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or); |
979 |
> |
F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or); |
980 |
> |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
981 |
|
|
982 |
< |
if (j_is_Fluctuating) { |
644 |
< |
if (idat.excluded) { |
645 |
< |
// vFluc2 is the difference between the direct coulomb integral |
646 |
< |
// and the normal 1/r-like interaction between point charges. |
647 |
< |
coulInt = J2->getValueAt( *(idat.rij) ); |
648 |
< |
vFluc2 = coulInt - (*(idat.sw) * vterm); |
649 |
< |
} else { |
650 |
< |
vFluc2 = 0.0; |
651 |
< |
} |
652 |
< |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i; |
653 |
< |
} |
654 |
< |
|
655 |
< |
|
982 |
> |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
983 |
|
} |
984 |
+ |
} |
985 |
|
|
986 |
< |
if (j_is_Dipole) { |
659 |
< |
// pref is used by all the possible methods |
660 |
< |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
661 |
< |
preSw = *(idat.sw) * pref; |
986 |
> |
if (a_is_Dipole) { |
987 |
|
|
988 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
989 |
< |
ri2 = riji * riji; |
665 |
< |
ri3 = ri2 * riji; |
666 |
< |
|
667 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
668 |
< |
vpair += vterm; |
669 |
< |
epot += *(idat.sw) * vterm; |
988 |
> |
if (b_is_Charge) { |
989 |
> |
pref = pre12_ * *(idat.electroMult); |
990 |
|
|
991 |
< |
dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
992 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
991 |
> |
U -= C_b * pref * v11 * rdDa; |
992 |
> |
F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
993 |
> |
Ta -= C_b * pref * v11 * rxDa; |
994 |
|
|
995 |
< |
// Even if we excluded this pair from direct interactions, |
675 |
< |
// we still have the reaction-field-mediated charge-dipole |
676 |
< |
// interaction: |
995 |
> |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
996 |
|
|
997 |
< |
if (idat.excluded) { |
998 |
< |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
999 |
< |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
1000 |
< |
indirect_dVdr += preSw * preRF2_ * uz_j; |
1001 |
< |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
1002 |
< |
} |
1003 |
< |
|
1004 |
< |
} else { |
686 |
< |
// determine the inverse r used if we have split dipoles |
687 |
< |
if (j_is_SplitDipole) { |
688 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
689 |
< |
ri = 1.0 / BigR; |
690 |
< |
scale = *(idat.rij) * ri; |
691 |
< |
} else { |
692 |
< |
ri = riji; |
693 |
< |
scale = 1.0; |
694 |
< |
} |
695 |
< |
|
696 |
< |
sc2 = scale * scale; |
697 |
< |
|
698 |
< |
if (screeningMethod_ == DAMPED) { |
699 |
< |
// assemble the damping variables |
700 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
701 |
< |
//erfcVal = res.first; |
702 |
< |
//derfcVal = res.second; |
703 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
704 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
705 |
< |
c1 = erfcVal * ri; |
706 |
< |
c2 = (-derfcVal + c1) * ri; |
707 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
708 |
< |
} else { |
709 |
< |
c1 = ri; |
710 |
< |
c2 = c1 * ri; |
711 |
< |
c3 = 3.0 * c2 * ri; |
712 |
< |
} |
713 |
< |
|
714 |
< |
c2ri = c2 * ri; |
715 |
< |
|
716 |
< |
// calculate the potential |
717 |
< |
pot_term = scale * c2; |
718 |
< |
vterm = -pref * ct_j * pot_term; |
719 |
< |
vpair += vterm; |
720 |
< |
epot += *(idat.sw) * vterm; |
721 |
< |
|
722 |
< |
// calculate derivatives for forces and torques |
723 |
< |
|
724 |
< |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
725 |
< |
duduz_j += -preSw * pot_term * rhat; |
726 |
< |
|
997 |
> |
// Even if we excluded this pair from direct interactions, |
998 |
> |
// we still have the reaction-field-mediated charge-dipole |
999 |
> |
// interaction: |
1000 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
1001 |
> |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
1002 |
> |
indirect_Pot -= rfContrib * rdDa; |
1003 |
> |
indirect_F -= rfContrib * D_a / (*idat.rij); |
1004 |
> |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
1005 |
|
} |
728 |
– |
if (i_is_Fluctuating) { |
729 |
– |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
730 |
– |
} |
1006 |
|
} |
1007 |
|
|
1008 |
< |
if (j_is_Quadrupole) { |
1009 |
< |
// first precalculate some necessary variables |
1010 |
< |
cx2 = cx_j * cx_j; |
1011 |
< |
cy2 = cy_j * cy_j; |
737 |
< |
cz2 = cz_j * cz_j; |
738 |
< |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
739 |
< |
|
740 |
< |
if (screeningMethod_ == DAMPED) { |
741 |
< |
// assemble the damping variables |
742 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
743 |
< |
//erfcVal = res.first; |
744 |
< |
//derfcVal = res.second; |
745 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
746 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
747 |
< |
c1 = erfcVal * riji; |
748 |
< |
c2 = (-derfcVal + c1) * riji; |
749 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
750 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
751 |
< |
} else { |
752 |
< |
c1 = riji; |
753 |
< |
c2 = c1 * riji; |
754 |
< |
c3 = 3.0 * c2 * riji; |
755 |
< |
c4 = 5.0 * c3 * riji * riji; |
756 |
< |
} |
1008 |
> |
if (b_is_Dipole) { |
1009 |
> |
pref = pre22_ * *(idat.electroMult); |
1010 |
> |
DadDb = dot(D_a, D_b); |
1011 |
> |
DaxDb = cross(D_a, D_b); |
1012 |
|
|
1013 |
< |
// precompute variables for convenience |
1014 |
< |
preSw = *(idat.sw) * pref; |
1015 |
< |
c2ri = c2 * riji; |
1016 |
< |
c3ri = c3 * riji; |
1017 |
< |
c4rij = c4 * *(idat.rij) ; |
1018 |
< |
rhatdot2 = two * rhat * c3; |
1019 |
< |
rhatc4 = rhat * c4rij; |
1020 |
< |
|
1021 |
< |
// calculate the potential |
1022 |
< |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
1023 |
< |
qyy_j * (cy2*c3 - c2ri) + |
1024 |
< |
qzz_j * (cz2*c3 - c2ri) ); |
1025 |
< |
vterm = pref * pot_term; |
771 |
< |
vpair += vterm; |
772 |
< |
epot += *(idat.sw) * vterm; |
773 |
< |
|
774 |
< |
// calculate derivatives for the forces and torques |
775 |
< |
|
776 |
< |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) + |
777 |
< |
qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) + |
778 |
< |
qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri)); |
779 |
< |
|
780 |
< |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
781 |
< |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
782 |
< |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
783 |
< |
if (i_is_Fluctuating) { |
784 |
< |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
1013 |
> |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
1014 |
> |
F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b)); |
1015 |
> |
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
1016 |
> |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
1017 |
> |
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
1018 |
> |
// Even if we excluded this pair from direct interactions, we |
1019 |
> |
// still have the reaction-field-mediated dipole-dipole |
1020 |
> |
// interaction: |
1021 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
1022 |
> |
rfContrib = -pref * preRF_ * 2.0; |
1023 |
> |
indirect_Pot += rfContrib * DadDb; |
1024 |
> |
indirect_Ta += rfContrib * DaxDb; |
1025 |
> |
indirect_Tb -= rfContrib * DaxDb; |
1026 |
|
} |
1027 |
+ |
} |
1028 |
|
|
1029 |
+ |
if (b_is_Quadrupole) { |
1030 |
+ |
pref = pre24_ * *(idat.electroMult); |
1031 |
+ |
DadQb = D_a * Q_b; |
1032 |
+ |
DadQbr = dot(D_a, Qbr); |
1033 |
+ |
DaxQbr = cross(D_a, Qbr); |
1034 |
+ |
|
1035 |
+ |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
1036 |
+ |
F -= pref * (trQb*D_a + 2.0*DadQb) * v31or; |
1037 |
+ |
F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat; |
1038 |
+ |
F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or; |
1039 |
+ |
F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or)); |
1040 |
+ |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
1041 |
+ |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
1042 |
+ |
- 2.0*rdDa*rxQbr*v32); |
1043 |
|
} |
1044 |
|
} |
789 |
– |
|
790 |
– |
if (i_is_Dipole) { |
1045 |
|
|
1046 |
< |
if (j_is_Charge) { |
1047 |
< |
// variables used by all the methods |
1048 |
< |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
1049 |
< |
preSw = *(idat.sw) * pref; |
1046 |
> |
if (a_is_Quadrupole) { |
1047 |
> |
if (b_is_Charge) { |
1048 |
> |
pref = pre14_ * *(idat.electroMult); |
1049 |
> |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
1050 |
> |
F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or); |
1051 |
> |
F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or); |
1052 |
> |
Ta += C_b * pref * 2.0 * rxQar * v22; |
1053 |
|
|
1054 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1054 |
> |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
1055 |
> |
} |
1056 |
> |
if (b_is_Dipole) { |
1057 |
> |
pref = pre24_ * *(idat.electroMult); |
1058 |
> |
DbdQa = D_b * Q_a; |
1059 |
> |
DbdQar = dot(D_b, Qar); |
1060 |
> |
DbxQar = cross(D_b, Qar); |
1061 |
|
|
1062 |
< |
ri2 = riji * riji; |
1063 |
< |
ri3 = ri2 * riji; |
1062 |
> |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
1063 |
> |
F += pref * (trQa*D_b + 2.0*DbdQa) * v31or; |
1064 |
> |
F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat; |
1065 |
> |
F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or; |
1066 |
> |
F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or)); |
1067 |
> |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
1068 |
> |
+ 2.0*rdDb*rxQar*v32); |
1069 |
> |
Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
1070 |
> |
} |
1071 |
> |
if (b_is_Quadrupole) { |
1072 |
> |
pref = pre44_ * *(idat.electroMult); // yes |
1073 |
> |
QaQb = Q_a * Q_b; |
1074 |
> |
trQaQb = QaQb.trace(); |
1075 |
> |
rQaQb = rhat * QaQb; |
1076 |
> |
QaQbr = QaQb * rhat; |
1077 |
> |
QaxQb = mCross(Q_a, Q_b); |
1078 |
> |
rQaQbr = dot(rQa, Qbr); |
1079 |
> |
rQaxQbr = cross(rQa, Qbr); |
1080 |
> |
|
1081 |
> |
U += pref * (trQa * trQb + 2.0 * trQaQb) * v41; |
1082 |
> |
U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42; |
1083 |
> |
U += pref * (rdQar * rdQbr) * v43; |
1084 |
|
|
1085 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
1086 |
< |
vpair += vterm; |
1087 |
< |
epot += *(idat.sw) * vterm; |
805 |
< |
|
806 |
< |
dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i); |
807 |
< |
|
808 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
1085 |
> |
F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41; |
1086 |
> |
F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or); |
1087 |
> |
F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or); |
1088 |
|
|
1089 |
< |
// Even if we excluded this pair from direct interactions, |
1090 |
< |
// we still have the reaction-field-mediated charge-dipole |
1091 |
< |
// interaction: |
1089 |
> |
F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or; |
1090 |
> |
F += pref * 4.0 * (rQaQb + QaQbr) * v42or; |
1091 |
> |
F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or; |
1092 |
|
|
1093 |
< |
if (idat.excluded) { |
1094 |
< |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
1095 |
< |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
1096 |
< |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
1097 |
< |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
819 |
< |
} |
820 |
< |
|
821 |
< |
} else { |
822 |
< |
|
823 |
< |
// determine inverse r if we are using split dipoles |
824 |
< |
if (i_is_SplitDipole) { |
825 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
826 |
< |
ri = 1.0 / BigR; |
827 |
< |
scale = *(idat.rij) * ri; |
828 |
< |
} else { |
829 |
< |
ri = riji; |
830 |
< |
scale = 1.0; |
831 |
< |
} |
832 |
< |
|
833 |
< |
sc2 = scale * scale; |
834 |
< |
|
835 |
< |
if (screeningMethod_ == DAMPED) { |
836 |
< |
// assemble the damping variables |
837 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
838 |
< |
//erfcVal = res.first; |
839 |
< |
//derfcVal = res.second; |
840 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
841 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
842 |
< |
c1 = erfcVal * ri; |
843 |
< |
c2 = (-derfcVal + c1) * ri; |
844 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
845 |
< |
} else { |
846 |
< |
c1 = ri; |
847 |
< |
c2 = c1 * ri; |
848 |
< |
c3 = 3.0 * c2 * ri; |
849 |
< |
} |
850 |
< |
|
851 |
< |
c2ri = c2 * ri; |
852 |
< |
|
853 |
< |
// calculate the potential |
854 |
< |
pot_term = c2 * scale; |
855 |
< |
vterm = pref * ct_i * pot_term; |
856 |
< |
vpair += vterm; |
857 |
< |
epot += *(idat.sw) * vterm; |
1093 |
> |
Ta += pref * (- 4.0 * QaxQb * v41); |
1094 |
> |
Ta += pref * (- 2.0 * trQb * cross(rQa, rhat) |
1095 |
> |
+ 4.0 * cross(rhat, QaQbr) |
1096 |
> |
- 4.0 * rQaxQbr) * v42; |
1097 |
> |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
1098 |
|
|
859 |
– |
// calculate derivatives for the forces and torques |
860 |
– |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
861 |
– |
duduz_i += preSw * pot_term * rhat; |
862 |
– |
} |
1099 |
|
|
1100 |
< |
if (j_is_Fluctuating) { |
1101 |
< |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
1102 |
< |
} |
1100 |
> |
Tb += pref * (+ 4.0 * QaxQb * v41); |
1101 |
> |
Tb += pref * (- 2.0 * trQa * cross(rQb, rhat) |
1102 |
> |
- 4.0 * cross(rQaQb, rhat) |
1103 |
> |
+ 4.0 * rQaxQbr) * v42; |
1104 |
> |
// Possible replacement for line 2 above: |
1105 |
> |
// + 4.0 * cross(rhat, QbQar) |
1106 |
|
|
1107 |
+ |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1108 |
|
} |
1109 |
+ |
} |
1110 |
|
|
1111 |
< |
if (j_is_Dipole) { |
1112 |
< |
// variables used by all methods |
1113 |
< |
ct_ij = dot(uz_i, uz_j); |
873 |
< |
|
874 |
< |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
875 |
< |
preSw = *(idat.sw) * pref; |
876 |
< |
|
877 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
878 |
< |
ri2 = riji * riji; |
879 |
< |
ri3 = ri2 * riji; |
880 |
< |
ri4 = ri2 * ri2; |
881 |
< |
|
882 |
< |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
883 |
< |
preRF2_ * ct_ij ); |
884 |
< |
vpair += vterm; |
885 |
< |
epot += *(idat.sw) * vterm; |
886 |
< |
|
887 |
< |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
888 |
< |
|
889 |
< |
dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
890 |
< |
|
891 |
< |
duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
892 |
< |
duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i); |
893 |
< |
|
894 |
< |
if (idat.excluded) { |
895 |
< |
indirect_vpair += - pref * preRF2_ * ct_ij; |
896 |
< |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
897 |
< |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
898 |
< |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
899 |
< |
} |
900 |
< |
|
901 |
< |
} else { |
902 |
< |
|
903 |
< |
if (i_is_SplitDipole) { |
904 |
< |
if (j_is_SplitDipole) { |
905 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
906 |
< |
} else { |
907 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
908 |
< |
} |
909 |
< |
ri = 1.0 / BigR; |
910 |
< |
scale = *(idat.rij) * ri; |
911 |
< |
} else { |
912 |
< |
if (j_is_SplitDipole) { |
913 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
914 |
< |
ri = 1.0 / BigR; |
915 |
< |
scale = *(idat.rij) * ri; |
916 |
< |
} else { |
917 |
< |
ri = riji; |
918 |
< |
scale = 1.0; |
919 |
< |
} |
920 |
< |
} |
921 |
< |
if (screeningMethod_ == DAMPED) { |
922 |
< |
// assemble damping variables |
923 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
924 |
< |
//erfcVal = res.first; |
925 |
< |
//derfcVal = res.second; |
926 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
927 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
928 |
< |
c1 = erfcVal * ri; |
929 |
< |
c2 = (-derfcVal + c1) * ri; |
930 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
931 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
932 |
< |
} else { |
933 |
< |
c1 = ri; |
934 |
< |
c2 = c1 * ri; |
935 |
< |
c3 = 3.0 * c2 * ri; |
936 |
< |
c4 = 5.0 * c3 * ri * ri; |
937 |
< |
} |
938 |
< |
|
939 |
< |
// precompute variables for convenience |
940 |
< |
sc2 = scale * scale; |
941 |
< |
cti3 = ct_i * sc2 * c3; |
942 |
< |
ctj3 = ct_j * sc2 * c3; |
943 |
< |
ctidotj = ct_i * ct_j * sc2; |
944 |
< |
preSwSc = preSw * scale; |
945 |
< |
c2ri = c2 * ri; |
946 |
< |
c3ri = c3 * ri; |
947 |
< |
c4rij = c4 * *(idat.rij) ; |
948 |
< |
|
949 |
< |
// calculate the potential |
950 |
< |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
951 |
< |
vterm = pref * pot_term; |
952 |
< |
vpair += vterm; |
953 |
< |
epot += *(idat.sw) * vterm; |
954 |
< |
|
955 |
< |
// calculate derivatives for the forces and torques |
956 |
< |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
957 |
< |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
958 |
< |
|
959 |
< |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
960 |
< |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
961 |
< |
} |
962 |
< |
} |
1111 |
> |
if (idat.doElectricField) { |
1112 |
> |
*(idat.eField1) += Ea * *(idat.electroMult); |
1113 |
> |
*(idat.eField2) += Eb * *(idat.electroMult); |
1114 |
|
} |
1115 |
|
|
1116 |
< |
if (i_is_Quadrupole) { |
1117 |
< |
if (j_is_Charge) { |
1118 |
< |
// precompute some necessary variables |
968 |
< |
cx2 = cx_i * cx_i; |
969 |
< |
cy2 = cy_i * cy_i; |
970 |
< |
cz2 = cz_i * cz_i; |
971 |
< |
|
972 |
< |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
973 |
< |
|
974 |
< |
if (screeningMethod_ == DAMPED) { |
975 |
< |
// assemble the damping variables |
976 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
977 |
< |
//erfcVal = res.first; |
978 |
< |
//derfcVal = res.second; |
979 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
980 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
981 |
< |
c1 = erfcVal * riji; |
982 |
< |
c2 = (-derfcVal + c1) * riji; |
983 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
984 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
985 |
< |
} else { |
986 |
< |
c1 = riji; |
987 |
< |
c2 = c1 * riji; |
988 |
< |
c3 = 3.0 * c2 * riji; |
989 |
< |
c4 = 5.0 * c3 * riji * riji; |
990 |
< |
} |
991 |
< |
|
992 |
< |
// precompute some variables for convenience |
993 |
< |
preSw = *(idat.sw) * pref; |
994 |
< |
c2ri = c2 * riji; |
995 |
< |
c3ri = c3 * riji; |
996 |
< |
c4rij = c4 * *(idat.rij) ; |
997 |
< |
rhatdot2 = two * rhat * c3; |
998 |
< |
rhatc4 = rhat * c4rij; |
999 |
< |
|
1000 |
< |
// calculate the potential |
1001 |
< |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
1002 |
< |
qyy_i * (cy2 * c3 - c2ri) + |
1003 |
< |
qzz_i * (cz2 * c3 - c2ri) ); |
1004 |
< |
|
1005 |
< |
vterm = pref * pot_term; |
1006 |
< |
vpair += vterm; |
1007 |
< |
epot += *(idat.sw) * vterm; |
1008 |
< |
|
1009 |
< |
// calculate the derivatives for the forces and torques |
1010 |
< |
|
1011 |
< |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) + |
1012 |
< |
qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) + |
1013 |
< |
qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri)); |
1014 |
< |
|
1015 |
< |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
1016 |
< |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
1017 |
< |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
1018 |
< |
|
1019 |
< |
if (j_is_Fluctuating) { |
1020 |
< |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
1021 |
< |
} |
1022 |
< |
|
1023 |
< |
} |
1116 |
> |
if (idat.doSitePotential) { |
1117 |
> |
*(idat.sPot1) += Pa * *(idat.electroMult); |
1118 |
> |
*(idat.sPot2) += Pb * *(idat.electroMult); |
1119 |
|
} |
1120 |
|
|
1121 |
+ |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1122 |
+ |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1123 |
|
|
1124 |
|
if (!idat.excluded) { |
1028 |
– |
*(idat.vpair) += vpair; |
1029 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
1030 |
– |
*(idat.f1) += dVdr; |
1125 |
|
|
1126 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
1127 |
< |
*(idat.t1) -= cross(uz_i, duduz_i); |
1128 |
< |
if (i_is_Quadrupole) { |
1035 |
< |
*(idat.t1) -= cross(ux_i, dudux_i); |
1036 |
< |
*(idat.t1) -= cross(uy_i, duduy_i); |
1037 |
< |
} |
1126 |
> |
*(idat.vpair) += U; |
1127 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
1128 |
> |
*(idat.f1) += F * *(idat.sw); |
1129 |
|
|
1130 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
1131 |
< |
*(idat.t2) -= cross(uz_j, duduz_j); |
1041 |
< |
if (j_is_Quadrupole) { |
1042 |
< |
*(idat.t2) -= cross(uz_j, dudux_j); |
1043 |
< |
*(idat.t2) -= cross(uz_j, duduy_j); |
1044 |
< |
} |
1130 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
1131 |
> |
*(idat.t1) += Ta * *(idat.sw); |
1132 |
|
|
1133 |
+ |
if (b_is_Dipole || b_is_Quadrupole) |
1134 |
+ |
*(idat.t2) += Tb * *(idat.sw); |
1135 |
+ |
|
1136 |
|
} else { |
1137 |
|
|
1138 |
|
// only accumulate the forces and torques resulting from the |
1139 |
|
// indirect reaction field terms. |
1140 |
|
|
1141 |
< |
*(idat.vpair) += indirect_vpair; |
1142 |
< |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1143 |
< |
*(idat.f1) += indirect_dVdr; |
1141 |
> |
*(idat.vpair) += indirect_Pot; |
1142 |
> |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
1143 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
1144 |
> |
*(idat.f1) += *(idat.sw) * indirect_F; |
1145 |
|
|
1146 |
< |
if (i_is_Dipole) |
1147 |
< |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
1148 |
< |
if (j_is_Dipole) |
1149 |
< |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1146 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
1147 |
> |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
1148 |
> |
|
1149 |
> |
if (b_is_Dipole || b_is_Quadrupole) |
1150 |
> |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
1151 |
|
} |
1060 |
– |
|
1152 |
|
return; |
1153 |
< |
} |
1153 |
> |
} |
1154 |
|
|
1155 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1156 |
< |
RealType mu1, preVal, self; |
1156 |
> |
|
1157 |
|
if (!initialized_) initialize(); |
1158 |
|
|
1159 |
< |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1160 |
< |
|
1159 |
> |
ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]]; |
1160 |
> |
|
1161 |
|
// logicals |
1162 |
|
bool i_is_Charge = data.is_Charge; |
1163 |
|
bool i_is_Dipole = data.is_Dipole; |
1164 |
+ |
bool i_is_Quadrupole = data.is_Quadrupole; |
1165 |
|
bool i_is_Fluctuating = data.is_Fluctuating; |
1166 |
< |
RealType chg1 = data.fixedCharge; |
1167 |
< |
|
1166 |
> |
RealType C_a = data.fixedCharge; |
1167 |
> |
RealType self(0.0), preVal, DdD, trQ, trQQ; |
1168 |
> |
|
1169 |
> |
if (i_is_Dipole) { |
1170 |
> |
DdD = data.dipole.lengthSquare(); |
1171 |
> |
} |
1172 |
> |
|
1173 |
|
if (i_is_Fluctuating) { |
1174 |
< |
chg1 += *(sdat.flucQ); |
1175 |
< |
// dVdFQ is really a force, so this is negative the derivative |
1176 |
< |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1174 |
> |
C_a += *(sdat.flucQ); |
1175 |
> |
|
1176 |
> |
flucQ_->getSelfInteraction(sdat.atid, *(sdat.flucQ), |
1177 |
> |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY], |
1178 |
> |
*(sdat.flucQfrc) ); |
1179 |
> |
|
1180 |
|
} |
1181 |
|
|
1182 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1183 |
< |
if (i_is_Dipole) { |
1184 |
< |
mu1 = data.dipole_moment; |
1185 |
< |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1186 |
< |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1187 |
< |
|
1188 |
< |
// The self-correction term adds into the reaction field vector |
1189 |
< |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1190 |
< |
Vector3d ei = preVal * uz_i; |
1182 |
> |
switch (summationMethod_) { |
1183 |
> |
case esm_REACTION_FIELD: |
1184 |
> |
|
1185 |
> |
if (i_is_Charge) { |
1186 |
> |
// Self potential [see Wang and Hermans, "Reaction Field |
1187 |
> |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
1188 |
> |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
1189 |
> |
preVal = pre11_ * preRF_ * C_a * C_a; |
1190 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
1191 |
> |
} |
1192 |
|
|
1193 |
< |
// This looks very wrong. A vector crossed with itself is zero. |
1194 |
< |
*(sdat.t) -= cross(uz_i, ei); |
1193 |
> |
if (i_is_Dipole) { |
1194 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD; |
1195 |
|
} |
1196 |
< |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1197 |
< |
if (i_is_Charge) { |
1198 |
< |
if (screeningMethod_ == DAMPED) { |
1199 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1200 |
< |
} else { |
1201 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1202 |
< |
} |
1203 |
< |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1196 |
> |
|
1197 |
> |
break; |
1198 |
> |
|
1199 |
> |
case esm_SHIFTED_FORCE: |
1200 |
> |
case esm_SHIFTED_POTENTIAL: |
1201 |
> |
case esm_TAYLOR_SHIFTED: |
1202 |
> |
case esm_EWALD_FULL: |
1203 |
> |
if (i_is_Charge) |
1204 |
> |
self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge)); |
1205 |
> |
if (i_is_Dipole) |
1206 |
> |
self += selfMult2_ * pre22_ * DdD; |
1207 |
> |
if (i_is_Quadrupole) { |
1208 |
> |
trQ = data.quadrupole.trace(); |
1209 |
> |
trQQ = (data.quadrupole * data.quadrupole).trace(); |
1210 |
> |
self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ); |
1211 |
> |
if (i_is_Charge) |
1212 |
> |
self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ; |
1213 |
|
} |
1214 |
+ |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1215 |
+ |
break; |
1216 |
+ |
default: |
1217 |
+ |
break; |
1218 |
|
} |
1219 |
|
} |
1220 |
< |
|
1220 |
> |
|
1221 |
|
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1222 |
|
// This seems to work moderately well as a default. There's no |
1223 |
|
// inherent scale for 1/r interactions that we can standardize. |
1224 |
|
// 12 angstroms seems to be a reasonably good guess for most |
1225 |
|
// cases. |
1226 |
|
return 12.0; |
1227 |
+ |
} |
1228 |
+ |
|
1229 |
+ |
|
1230 |
+ |
void Electrostatic::ReciprocalSpaceSum(RealType& pot) { |
1231 |
+ |
|
1232 |
+ |
RealType kPot = 0.0; |
1233 |
+ |
RealType kVir = 0.0; |
1234 |
+ |
|
1235 |
+ |
const RealType mPoleConverter = 0.20819434; // converts from the |
1236 |
+ |
// internal units of |
1237 |
+ |
// Debye (for dipoles) |
1238 |
+ |
// or Debye-angstroms |
1239 |
+ |
// (for quadrupoles) to |
1240 |
+ |
// electron angstroms or |
1241 |
+ |
// electron-angstroms^2 |
1242 |
+ |
|
1243 |
+ |
const RealType eConverter = 332.0637778; // convert the |
1244 |
+ |
// Charge-Charge |
1245 |
+ |
// electrostatic |
1246 |
+ |
// interactions into kcal / |
1247 |
+ |
// mol assuming distances |
1248 |
+ |
// are measured in |
1249 |
+ |
// angstroms. |
1250 |
+ |
|
1251 |
+ |
Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
1252 |
+ |
Vector3d box = hmat.diagonals(); |
1253 |
+ |
RealType boxMax = box.max(); |
1254 |
+ |
|
1255 |
+ |
//int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) ); |
1256 |
+ |
int kMax = 7; |
1257 |
+ |
int kSqMax = kMax*kMax + 2; |
1258 |
+ |
|
1259 |
+ |
int kLimit = kMax+1; |
1260 |
+ |
int kLim2 = 2*kMax+1; |
1261 |
+ |
int kSqLim = kSqMax; |
1262 |
+ |
|
1263 |
+ |
vector<RealType> AK(kSqLim+1, 0.0); |
1264 |
+ |
RealType xcl = 2.0 * M_PI / box.x(); |
1265 |
+ |
RealType ycl = 2.0 * M_PI / box.y(); |
1266 |
+ |
RealType zcl = 2.0 * M_PI / box.z(); |
1267 |
+ |
RealType rcl = 2.0 * M_PI / boxMax; |
1268 |
+ |
RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z()); |
1269 |
+ |
|
1270 |
+ |
if(dampingAlpha_ < 1.0e-12) return; |
1271 |
+ |
|
1272 |
+ |
RealType ralph = -0.25/pow(dampingAlpha_,2); |
1273 |
+ |
|
1274 |
+ |
// Calculate and store exponential factors |
1275 |
+ |
|
1276 |
+ |
vector<vector<RealType> > elc; |
1277 |
+ |
vector<vector<RealType> > emc; |
1278 |
+ |
vector<vector<RealType> > enc; |
1279 |
+ |
vector<vector<RealType> > els; |
1280 |
+ |
vector<vector<RealType> > ems; |
1281 |
+ |
vector<vector<RealType> > ens; |
1282 |
+ |
|
1283 |
+ |
int nMax = info_->getNAtoms(); |
1284 |
+ |
|
1285 |
+ |
elc.resize(kLimit+1); |
1286 |
+ |
emc.resize(kLimit+1); |
1287 |
+ |
enc.resize(kLimit+1); |
1288 |
+ |
els.resize(kLimit+1); |
1289 |
+ |
ems.resize(kLimit+1); |
1290 |
+ |
ens.resize(kLimit+1); |
1291 |
+ |
|
1292 |
+ |
for (int j = 0; j < kLimit+1; j++) { |
1293 |
+ |
elc[j].resize(nMax); |
1294 |
+ |
emc[j].resize(nMax); |
1295 |
+ |
enc[j].resize(nMax); |
1296 |
+ |
els[j].resize(nMax); |
1297 |
+ |
ems[j].resize(nMax); |
1298 |
+ |
ens[j].resize(nMax); |
1299 |
+ |
} |
1300 |
+ |
|
1301 |
+ |
Vector3d t( 2.0 * M_PI ); |
1302 |
+ |
t.Vdiv(t, box); |
1303 |
+ |
|
1304 |
+ |
SimInfo::MoleculeIterator mi; |
1305 |
+ |
Molecule::AtomIterator ai; |
1306 |
+ |
int i; |
1307 |
+ |
Vector3d r; |
1308 |
+ |
Vector3d tt; |
1309 |
+ |
|
1310 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1311 |
+ |
mol = info_->nextMolecule(mi)) { |
1312 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1313 |
+ |
atom = mol->nextAtom(ai)) { |
1314 |
+ |
|
1315 |
+ |
i = atom->getLocalIndex(); |
1316 |
+ |
r = atom->getPos(); |
1317 |
+ |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r); |
1318 |
+ |
|
1319 |
+ |
tt.Vmul(t, r); |
1320 |
+ |
|
1321 |
+ |
elc[1][i] = 1.0; |
1322 |
+ |
emc[1][i] = 1.0; |
1323 |
+ |
enc[1][i] = 1.0; |
1324 |
+ |
els[1][i] = 0.0; |
1325 |
+ |
ems[1][i] = 0.0; |
1326 |
+ |
ens[1][i] = 0.0; |
1327 |
+ |
|
1328 |
+ |
elc[2][i] = cos(tt.x()); |
1329 |
+ |
emc[2][i] = cos(tt.y()); |
1330 |
+ |
enc[2][i] = cos(tt.z()); |
1331 |
+ |
els[2][i] = sin(tt.x()); |
1332 |
+ |
ems[2][i] = sin(tt.y()); |
1333 |
+ |
ens[2][i] = sin(tt.z()); |
1334 |
+ |
|
1335 |
+ |
for(int l = 3; l <= kLimit; l++) { |
1336 |
+ |
elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i]; |
1337 |
+ |
emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i]; |
1338 |
+ |
enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i]; |
1339 |
+ |
els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i]; |
1340 |
+ |
ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i]; |
1341 |
+ |
ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i]; |
1342 |
+ |
} |
1343 |
+ |
} |
1344 |
+ |
} |
1345 |
+ |
|
1346 |
+ |
// Calculate and store AK coefficients: |
1347 |
+ |
|
1348 |
+ |
RealType eksq = 1.0; |
1349 |
+ |
RealType expf = 0.0; |
1350 |
+ |
if (ralph < 0.0) expf = exp(ralph*rcl*rcl); |
1351 |
+ |
for (i = 1; i <= kSqLim; i++) { |
1352 |
+ |
RealType rksq = float(i)*rcl*rcl; |
1353 |
+ |
eksq = expf*eksq; |
1354 |
+ |
AK[i] = eConverter * eksq/rksq; |
1355 |
+ |
} |
1356 |
+ |
|
1357 |
+ |
/* |
1358 |
+ |
* Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz) |
1359 |
+ |
* the values of ll, mm and nn are selected so that the symmetry of |
1360 |
+ |
* reciprocal lattice is taken into account i.e. the following |
1361 |
+ |
* rules apply. |
1362 |
+ |
* |
1363 |
+ |
* ll ranges over the values 0 to kMax only. |
1364 |
+ |
* |
1365 |
+ |
* mm ranges over 0 to kMax when ll=0 and over |
1366 |
+ |
* -kMax to kMax otherwise. |
1367 |
+ |
* nn ranges over 1 to kMax when ll=mm=0 and over |
1368 |
+ |
* -kMax to kMax otherwise. |
1369 |
+ |
* |
1370 |
+ |
* Hence the result of the summation must be doubled at the end. |
1371 |
+ |
*/ |
1372 |
+ |
|
1373 |
+ |
std::vector<RealType> clm(nMax, 0.0); |
1374 |
+ |
std::vector<RealType> slm(nMax, 0.0); |
1375 |
+ |
std::vector<RealType> ckr(nMax, 0.0); |
1376 |
+ |
std::vector<RealType> skr(nMax, 0.0); |
1377 |
+ |
std::vector<RealType> ckc(nMax, 0.0); |
1378 |
+ |
std::vector<RealType> cks(nMax, 0.0); |
1379 |
+ |
std::vector<RealType> dkc(nMax, 0.0); |
1380 |
+ |
std::vector<RealType> dks(nMax, 0.0); |
1381 |
+ |
std::vector<RealType> qkc(nMax, 0.0); |
1382 |
+ |
std::vector<RealType> qks(nMax, 0.0); |
1383 |
+ |
std::vector<Vector3d> dxk(nMax, V3Zero); |
1384 |
+ |
std::vector<Vector3d> qxk(nMax, V3Zero); |
1385 |
+ |
RealType rl, rm, rn; |
1386 |
+ |
Vector3d kVec; |
1387 |
+ |
Vector3d Qk; |
1388 |
+ |
Mat3x3d k2; |
1389 |
+ |
RealType ckcs, ckss, dkcs, dkss, qkcs, qkss; |
1390 |
+ |
int atid; |
1391 |
+ |
ElectrostaticAtomData data; |
1392 |
+ |
RealType C, dk, qk; |
1393 |
+ |
Vector3d D; |
1394 |
+ |
Mat3x3d Q; |
1395 |
+ |
|
1396 |
+ |
int mMin = kLimit; |
1397 |
+ |
int nMin = kLimit + 1; |
1398 |
+ |
for (int l = 1; l <= kLimit; l++) { |
1399 |
+ |
int ll = l - 1; |
1400 |
+ |
rl = xcl * float(ll); |
1401 |
+ |
for (int mmm = mMin; mmm <= kLim2; mmm++) { |
1402 |
+ |
int mm = mmm - kLimit; |
1403 |
+ |
int m = abs(mm) + 1; |
1404 |
+ |
rm = ycl * float(mm); |
1405 |
+ |
// Set temporary products of exponential terms |
1406 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1407 |
+ |
mol = info_->nextMolecule(mi)) { |
1408 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1409 |
+ |
atom = mol->nextAtom(ai)) { |
1410 |
+ |
|
1411 |
+ |
i = atom->getLocalIndex(); |
1412 |
+ |
if(mm < 0) { |
1413 |
+ |
clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i]; |
1414 |
+ |
slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i]; |
1415 |
+ |
} else { |
1416 |
+ |
clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i]; |
1417 |
+ |
slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i]; |
1418 |
+ |
} |
1419 |
+ |
} |
1420 |
+ |
} |
1421 |
+ |
for (int nnn = nMin; nnn <= kLim2; nnn++) { |
1422 |
+ |
int nn = nnn - kLimit; |
1423 |
+ |
int n = abs(nn) + 1; |
1424 |
+ |
rn = zcl * float(nn); |
1425 |
+ |
// Test on magnitude of k vector: |
1426 |
+ |
int kk=ll*ll + mm*mm + nn*nn; |
1427 |
+ |
if(kk <= kSqLim) { |
1428 |
+ |
kVec = Vector3d(rl, rm, rn); |
1429 |
+ |
k2 = outProduct(kVec, kVec); |
1430 |
+ |
// Calculate exp(ikr) terms |
1431 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1432 |
+ |
mol = info_->nextMolecule(mi)) { |
1433 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1434 |
+ |
atom = mol->nextAtom(ai)) { |
1435 |
+ |
i = atom->getLocalIndex(); |
1436 |
+ |
|
1437 |
+ |
if (nn < 0) { |
1438 |
+ |
ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i]; |
1439 |
+ |
skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i]; |
1440 |
+ |
|
1441 |
+ |
} else { |
1442 |
+ |
ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i]; |
1443 |
+ |
skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i]; |
1444 |
+ |
} |
1445 |
+ |
} |
1446 |
+ |
} |
1447 |
+ |
|
1448 |
+ |
// Calculate scalar and vector products for each site: |
1449 |
+ |
|
1450 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1451 |
+ |
mol = info_->nextMolecule(mi)) { |
1452 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1453 |
+ |
atom = mol->nextAtom(ai)) { |
1454 |
+ |
i = atom->getLocalIndex(); |
1455 |
+ |
int atid = atom->getAtomType()->getIdent(); |
1456 |
+ |
data = ElectrostaticMap[Etids[atid]]; |
1457 |
+ |
|
1458 |
+ |
if (data.is_Charge) { |
1459 |
+ |
C = data.fixedCharge; |
1460 |
+ |
if (atom->isFluctuatingCharge()) C += atom->getFlucQPos(); |
1461 |
+ |
ckc[i] = C * ckr[i]; |
1462 |
+ |
cks[i] = C * skr[i]; |
1463 |
+ |
} |
1464 |
+ |
|
1465 |
+ |
if (data.is_Dipole) { |
1466 |
+ |
D = atom->getDipole() * mPoleConverter; |
1467 |
+ |
dk = dot(D, kVec); |
1468 |
+ |
dxk[i] = cross(D, kVec); |
1469 |
+ |
dkc[i] = dk * ckr[i]; |
1470 |
+ |
dks[i] = dk * skr[i]; |
1471 |
+ |
} |
1472 |
+ |
if (data.is_Quadrupole) { |
1473 |
+ |
Q = atom->getQuadrupole() * mPoleConverter; |
1474 |
+ |
Qk = Q * kVec; |
1475 |
+ |
qk = dot(kVec, Qk); |
1476 |
+ |
qxk[i] = -cross(kVec, Qk); |
1477 |
+ |
qkc[i] = qk * ckr[i]; |
1478 |
+ |
qks[i] = qk * skr[i]; |
1479 |
+ |
} |
1480 |
+ |
} |
1481 |
+ |
} |
1482 |
+ |
|
1483 |
+ |
// calculate vector sums |
1484 |
+ |
|
1485 |
+ |
ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0); |
1486 |
+ |
ckss = std::accumulate(cks.begin(),cks.end(),0.0); |
1487 |
+ |
dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0); |
1488 |
+ |
dkss = std::accumulate(dks.begin(),dks.end(),0.0); |
1489 |
+ |
qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0); |
1490 |
+ |
qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
1491 |
+ |
|
1492 |
+ |
#ifdef IS_MPI |
1493 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &ckcs, 1, MPI_REALTYPE, |
1494 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1495 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &ckss, 1, MPI_REALTYPE, |
1496 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1497 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &dkcs, 1, MPI_REALTYPE, |
1498 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1499 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &dkss, 1, MPI_REALTYPE, |
1500 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1501 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &qkcs, 1, MPI_REALTYPE, |
1502 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1503 |
+ |
MPI_Allreduce(MPI_IN_PLACE, &qkss, 1, MPI_REALTYPE, |
1504 |
+ |
MPI_SUM, MPI_COMM_WORLD); |
1505 |
+ |
#endif |
1506 |
+ |
|
1507 |
+ |
// Accumulate potential energy and virial contribution: |
1508 |
+ |
|
1509 |
+ |
kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss) |
1510 |
+ |
+ (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs)); |
1511 |
+ |
|
1512 |
+ |
kVir += 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss |
1513 |
+ |
+4.0*(ckss*dkcs-ckcs*dkss) |
1514 |
+ |
+3.0*(dkcs*dkcs+dkss*dkss) |
1515 |
+ |
-6.0*(ckss*qkss+ckcs*qkcs) |
1516 |
+ |
+8.0*(dkss*qkcs-dkcs*qkss) |
1517 |
+ |
+5.0*(qkss*qkss+qkcs*qkcs)); |
1518 |
+ |
|
1519 |
+ |
// Calculate force and torque for each site: |
1520 |
+ |
|
1521 |
+ |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1522 |
+ |
mol = info_->nextMolecule(mi)) { |
1523 |
+ |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1524 |
+ |
atom = mol->nextAtom(ai)) { |
1525 |
+ |
|
1526 |
+ |
i = atom->getLocalIndex(); |
1527 |
+ |
atid = atom->getAtomType()->getIdent(); |
1528 |
+ |
data = ElectrostaticMap[Etids[atid]]; |
1529 |
+ |
|
1530 |
+ |
RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs) |
1531 |
+ |
- (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss)); |
1532 |
+ |
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
1533 |
+ |
-ckr[i]*(ckss+dkcs-qkss)); |
1534 |
+ |
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs) |
1535 |
+ |
+skr[i]*(ckss+dkcs-qkss)); |
1536 |
+ |
|
1537 |
+ |
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
1538 |
+ |
|
1539 |
+ |
if (atom->isFluctuatingCharge()) { |
1540 |
+ |
atom->addFlucQFrc( - 2.0 * rvol * qtrq2 ); |
1541 |
+ |
} |
1542 |
+ |
|
1543 |
+ |
if (data.is_Dipole) { |
1544 |
+ |
atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] ); |
1545 |
+ |
} |
1546 |
+ |
if (data.is_Quadrupole) { |
1547 |
+ |
atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] ); |
1548 |
+ |
} |
1549 |
+ |
} |
1550 |
+ |
} |
1551 |
+ |
} |
1552 |
+ |
} |
1553 |
+ |
nMin = 1; |
1554 |
+ |
} |
1555 |
+ |
mMin = 1; |
1556 |
+ |
} |
1557 |
+ |
pot += kPot; |
1558 |
|
} |
1559 |
|
} |