ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing:
branches/development/src/nonbonded/Electrostatic.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC vs.
trunk/src/nonbonded/Electrostatic.cpp (file contents), Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43 + #ifdef IS_MPI
44 + #include <mpi.h>
45 + #endif
46 +
47   #include <stdio.h>
48   #include <string.h>
49  
50   #include <cmath>
51 + #include <numeric>
52   #include "nonbonded/Electrostatic.hpp"
53   #include "utils/simError.h"
54   #include "types/NonBondedInteractionType.hpp"
# Line 53 | Line 58
58   #include "io/Globals.hpp"
59   #include "nonbonded/SlaterIntegrals.hpp"
60   #include "utils/PhysicalConstants.hpp"
61 + #include "math/erfc.hpp"
62 + #include "math/SquareMatrix.hpp"
63 + #include "primitives/Molecule.hpp"
64 + #include "flucq/FluctuatingChargeForces.hpp"
65  
57
66   namespace OpenMD {
67    
68    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
# Line 62 | Line 70 | namespace OpenMD {
70                                    haveCutoffRadius_(false),
71                                    haveDampingAlpha_(false),
72                                    haveDielectric_(false),
73 <                                  haveElectroSpline_(false)
74 <  {}
73 >                                  haveElectroSplines_(false)
74 >  {
75 >    flucQ_ = new FluctuatingChargeForces(info_);
76 >  }
77    
78 +  void Electrostatic::setForceField(ForceField *ff) {
79 +    forceField_ = ff;
80 +    flucQ_->setForceField(forceField_);
81 +  }
82 +
83 +  void Electrostatic::setSimulatedAtomTypes(set<AtomType*> &simtypes) {
84 +    simTypes_ = simtypes;
85 +    flucQ_->setSimulatedAtomTypes(simTypes_);
86 +  }
87 +
88    void Electrostatic::initialize() {
89      
90      Globals* simParams_ = info_->getSimParams();
# Line 74 | Line 94 | namespace OpenMD {
94      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
95      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
96      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
97 +    summationMap_["TAYLOR_SHIFTED"]     = esm_TAYLOR_SHIFTED;    
98      summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
99      summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
100      summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
# Line 88 | Line 109 | namespace OpenMD {
109      // Charge-Dipole, assuming charges are measured in electrons, and
110      // dipoles are measured in debyes
111      pre12_ = 69.13373;
112 <    // Dipole-Dipole, assuming dipoles are measured in debyes
112 >    // Dipole-Dipole, assuming dipoles are measured in Debye
113      pre22_ = 14.39325;
114      // Charge-Quadrupole, assuming charges are measured in electrons, and
115      // quadrupoles are measured in 10^-26 esu cm^2
116 <    // This unit is also known affectionately as an esu centi-barn.
116 >    // This unit is also known affectionately as an esu centibarn.
117      pre14_ = 69.13373;
118 <    
118 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
119 >    // quadrupoles in esu centibarns:
120 >    pre24_ = 14.39325;
121 >    // Quadrupole-Quadrupole, assuming esu centibarns:
122 >    pre44_ = 14.39325;
123 >
124      // conversions for the simulation box dipole moment
125      chargeToC_ = 1.60217733e-19;
126      angstromToM_ = 1.0e-10;
127      debyeToCm_ = 3.33564095198e-30;
128      
129 <    // number of points for electrostatic splines
129 >    // Default number of points for electrostatic splines
130      np_ = 100;
131      
132      // variables to handle different summation methods for long-range
# Line 108 | Line 134 | namespace OpenMD {
134      summationMethod_ = esm_HARD;    
135      screeningMethod_ = UNDAMPED;
136      dielectric_ = 1.0;
111    one_third_ = 1.0 / 3.0;
137    
138      // check the summation method:
139      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 124 | Line 149 | namespace OpenMD {
149                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
150                   "\t(Input file specified %s .)\n"
151                   "\telectrostaticSummationMethod must be one of: \"hard\",\n"
152 <                 "\t\"shifted_potential\", \"shifted_force\", or \n"
153 <                 "\t\"reaction_field\".\n", myMethod.c_str() );
152 >                 "\t\"shifted_potential\", \"shifted_force\",\n"
153 >                 "\t\"taylor_shifted\", or \"reaction_field\".\n",
154 >                 myMethod.c_str() );
155          painCave.isFatal = 1;
156          simError();
157        }
# Line 184 | Line 210 | namespace OpenMD {
210        simError();
211      }
212            
213 <    if (screeningMethod_ == DAMPED) {      
213 >    if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
214        if (!simParams_->haveDampingAlpha()) {
215          // first set a cutoff dependent alpha value
216          // we assume alpha depends linearly with rcut from 0 to 20.5 ang
217          dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
218 <        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193 <        
218 >        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;        
219          // throw warning
220          sprintf( painCave.errMsg,
221                   "Electrostatic::initialize: dampingAlpha was not specified in the\n"
# Line 206 | Line 231 | namespace OpenMD {
231        haveDampingAlpha_ = true;
232      }
233  
234 <    // find all of the Electrostatic atom Types:
235 <    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
236 <    ForceField::AtomTypeContainer::MapTypeIterator i;
237 <    AtomType* at;
238 <    
239 <    for (at = atomTypes->beginType(i); at != NULL;
240 <         at = atomTypes->nextType(i)) {
241 <      
242 <      if (at->isElectrostatic())
218 <        addType(at);
219 <    }
220 <    
221 <    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222 <    rcuti_ = 1.0 / cutoffRadius_;
223 <    rcuti2_ = rcuti_ * rcuti_;
224 <    rcuti3_ = rcuti2_ * rcuti_;
225 <    rcuti4_ = rcuti2_ * rcuti2_;
234 >
235 >    Etypes.clear();
236 >    Etids.clear();
237 >    FQtypes.clear();
238 >    FQtids.clear();
239 >    ElectrostaticMap.clear();
240 >    Jij.clear();
241 >    nElectro_ = 0;
242 >    nFlucq_ = 0;
243  
244 <    if (screeningMethod_ == DAMPED) {
245 <      
229 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
230 <      alpha4_ = alpha2_ * alpha2_;
231 <      alpha6_ = alpha4_ * alpha2_;
232 <      alpha8_ = alpha4_ * alpha4_;
233 <      
234 <      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 <      invRootPi_ = 0.56418958354775628695;
236 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
244 >    Etids.resize( forceField_->getNAtomType(), -1);
245 >    FQtids.resize( forceField_->getNAtomType(), -1);
246  
247 <      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
248 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
249 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
250 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
244 <    } else {
245 <      c1c_ = rcuti_;
246 <      c2c_ = c1c_ * rcuti_;
247 <      c3c_ = 3.0 * c2c_ * rcuti_;
248 <      c4c_ = 5.0 * c3c_ * rcuti2_;
249 <      c5c_ = 7.0 * c4c_ * rcuti2_;
250 <      c6c_ = 9.0 * c5c_ * rcuti2_;
247 >    set<AtomType*>::iterator at;
248 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {    
249 >      if ((*at)->isElectrostatic()) nElectro_++;
250 >      if ((*at)->isFluctuatingCharge()) nFlucq_++;
251      }
252 <  
252 >    
253 >    Jij.resize(nFlucq_);
254 >
255 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
256 >      if ((*at)->isElectrostatic()) addType(*at);
257 >    }  
258 >    
259      if (summationMethod_ == esm_REACTION_FIELD) {
260        preRF_ = (dielectric_ - 1.0) /
261 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 <      preRF2_ = 2.0 * preRF_;
261 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
262      }
263      
264 +    RealType b0c, b1c, b2c, b3c, b4c, b5c;
265 +    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
266 +    RealType a2, expTerm, invArootPi;
267 +    
268 +    RealType r = cutoffRadius_;
269 +    RealType r2 = r * r;
270 +    RealType ric = 1.0 / r;
271 +    RealType ric2 = ric * ric;
272 +
273 +    if (screeningMethod_ == DAMPED) {      
274 +      a2 = dampingAlpha_ * dampingAlpha_;
275 +      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
276 +      expTerm = exp(-a2 * r2);
277 +      // values of Smith's B_l functions at the cutoff radius:
278 +      b0c = erfc(dampingAlpha_ * r) / r;
279 +      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
280 +      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
281 +      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
282 +      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
283 +      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
284 +      // Half the Smith self piece:
285 +      selfMult1_ = - a2 * invArootPi;
286 +      selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
287 +      selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
288 +    } else {
289 +      a2 = 0.0;
290 +      b0c = 1.0 / r;
291 +      b1c = (      b0c) / r2;
292 +      b2c = (3.0 * b1c) / r2;
293 +      b3c = (5.0 * b2c) / r2;
294 +      b4c = (7.0 * b3c) / r2;
295 +      b5c = (9.0 * b4c) / r2;
296 +      selfMult1_ = 0.0;
297 +      selfMult2_ = 0.0;
298 +      selfMult4_ = 0.0;
299 +    }
300 +
301 +    // higher derivatives of B_0 at the cutoff radius:
302 +    db0c_1 = -r * b1c;
303 +    db0c_2 =     -b1c + r2 * b2c;
304 +    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
305 +    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
306 +    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;  
307 +
308 +    if (summationMethod_ != esm_EWALD_FULL) {
309 +      selfMult1_ -= b0c;
310 +      selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) /  3.0;
311 +      selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
312 +    }
313 +
314 +    // working variables for the splines:
315 +    RealType ri, ri2;
316 +    RealType b0, b1, b2, b3, b4, b5;
317 +    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
318 +    RealType f, fc, f0;
319 +    RealType g, gc, g0, g1, g2, g3, g4;
320 +    RealType h, hc, h1, h2, h3, h4;
321 +    RealType s, sc, s2, s3, s4;
322 +    RealType t, tc, t3, t4;
323 +    RealType u, uc, u4;
324 +
325 +    // working variables for Taylor expansion:
326 +    RealType rmRc, rmRc2, rmRc3, rmRc4;
327 +
328 +    // Approximate using splines using a maximum of 0.1 Angstroms
329 +    // between points.
330 +    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
331 +    np_ = (np_ > nptest) ? np_ : nptest;
332 +  
333      // Add a 2 angstrom safety window to deal with cutoffGroups that
334      // have charged atoms longer than the cutoffRadius away from each
335 <    // other.  Splining may not be the best choice here.  Direct calls
336 <    // to erfc might be preferrable.
335 >    // other.  Splining is almost certainly the best choice here.
336 >    // Direct calls to erfc would be preferrable if it is a very fast
337 >    // implementation.
338  
339 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
340 <    RealType rval;
341 <    vector<RealType> rvals;
342 <    vector<RealType> yvals;
343 <    for (int i = 0; i < np_; i++) {
344 <      rval = RealType(i) * dx;
345 <      rvals.push_back(rval);
346 <      yvals.push_back(erfc(dampingAlpha_ * rval));
339 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
340 >
341 >    // Storage vectors for the computed functions    
342 >    vector<RealType> rv;
343 >    vector<RealType> v01v;
344 >    vector<RealType> v11v;
345 >    vector<RealType> v21v, v22v;
346 >    vector<RealType> v31v, v32v;
347 >    vector<RealType> v41v, v42v, v43v;
348 >
349 >    for (int i = 1; i < np_ + 1; i++) {
350 >      r = RealType(i) * dx;
351 >      rv.push_back(r);
352 >
353 >      ri = 1.0 / r;
354 >      ri2 = ri * ri;
355 >
356 >      r2 = r * r;
357 >      expTerm = exp(-a2 * r2);
358 >
359 >      // Taylor expansion factors (no need for factorials this way):
360 >      rmRc = r - cutoffRadius_;
361 >      rmRc2 = rmRc  * rmRc / 2.0;
362 >      rmRc3 = rmRc2 * rmRc / 3.0;
363 >      rmRc4 = rmRc3 * rmRc / 4.0;
364 >
365 >      // values of Smith's B_l functions at r:
366 >      if (screeningMethod_ == DAMPED) {            
367 >        b0 = erfc(dampingAlpha_ * r) * ri;
368 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
369 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
370 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
371 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
372 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
373 >      } else {
374 >        b0 = ri;
375 >        b1 = (      b0) * ri2;
376 >        b2 = (3.0 * b1) * ri2;
377 >        b3 = (5.0 * b2) * ri2;
378 >        b4 = (7.0 * b3) * ri2;
379 >        b5 = (9.0 * b4) * ri2;
380 >      }
381 >                
382 >      // higher derivatives of B_0 at r:
383 >      db0_1 = -r * b1;
384 >      db0_2 =     -b1 + r2 * b2;
385 >      db0_3 =          3.0*r*b2   - r2*r*b3;
386 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
387 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
388 >
389 >      f = b0;
390 >      fc = b0c;
391 >      f0 = f - fc - rmRc*db0c_1;
392 >
393 >      g = db0_1;        
394 >      gc = db0c_1;
395 >      g0 = g - gc;
396 >      g1 = g0 - rmRc *db0c_2;
397 >      g2 = g1 - rmRc2*db0c_3;
398 >      g3 = g2 - rmRc3*db0c_4;
399 >      g4 = g3 - rmRc4*db0c_5;
400 >
401 >      h = db0_2;      
402 >      hc = db0c_2;
403 >      h1 = h - hc;
404 >      h2 = h1 - rmRc *db0c_3;
405 >      h3 = h2 - rmRc2*db0c_4;
406 >      h4 = h3 - rmRc3*db0c_5;
407 >
408 >      s = db0_3;      
409 >      sc = db0c_3;
410 >      s2 = s - sc;
411 >      s3 = s2 - rmRc *db0c_4;
412 >      s4 = s3 - rmRc2*db0c_5;
413 >
414 >      t = db0_4;      
415 >      tc = db0c_4;
416 >      t3 = t - tc;
417 >      t4 = t3 - rmRc *db0c_5;
418 >      
419 >      u = db0_5;        
420 >      uc = db0c_5;
421 >      u4 = u - uc;
422 >
423 >      // in what follows below, the various v functions are used for
424 >      // potentials and torques, while the w functions show up in the
425 >      // forces.
426 >
427 >      switch (summationMethod_) {
428 >      case esm_SHIFTED_FORCE:
429 >                
430 >        v01 = f - fc - rmRc*gc;
431 >        v11 = g - gc - rmRc*hc;
432 >        v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
433 >        v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
434 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
435 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
436 >          - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
437 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
438 >          - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
439 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
440 >          - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
441 >        
442 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
443 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
444 >          - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
445 >
446 >        dv01 = g - gc;
447 >        dv11 = h - hc;
448 >        dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
449 >        dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);        
450 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
451 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
452 >          - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
453 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
454 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
455 >          - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
456 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
457 >          - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
458 >        
459 >        break;
460 >
461 >      case esm_TAYLOR_SHIFTED:
462 >        
463 >        v01 = f0;
464 >        v11 = g1;
465 >        v21 = g2 * ri;
466 >        v22 = h2 - v21;
467 >        v31 = (h3 - g3 * ri) * ri;
468 >        v32 = s3 - 3.0*v31;
469 >        v41 = (h4 - g4 * ri) * ri2;
470 >        v42 = s4 * ri - 3.0*v41;
471 >        v43 = t4 - 6.0*v42 - 3.0*v41;
472 >
473 >        dv01 = g0;
474 >        dv11 = h1;
475 >        dv21 = (h2 - g2*ri)*ri;
476 >        dv22 = (s2 - (h2 - g2*ri)*ri);
477 >        dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
478 >        dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
479 >        dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
480 >        dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
481 >        dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
482 >
483 >        break;
484 >
485 >      case esm_SHIFTED_POTENTIAL:
486 >
487 >        v01 = f - fc;
488 >        v11 = g - gc;
489 >        v21 = g*ri - gc*ric;
490 >        v22 = h - g*ri - (hc - gc*ric);
491 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
492 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
493 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
494 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
495 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
496 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
497 >
498 >        dv01 = g;
499 >        dv11 = h;
500 >        dv21 = (h - g*ri)*ri;
501 >        dv22 = (s - (h - g*ri)*ri);
502 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
503 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
504 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
505 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
506 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
507 >
508 >        break;
509 >
510 >      case esm_SWITCHING_FUNCTION:
511 >      case esm_HARD:
512 >      case esm_EWALD_FULL:
513 >
514 >        v01 = f;
515 >        v11 = g;
516 >        v21 = g*ri;
517 >        v22 = h - g*ri;
518 >        v31 = (h-g*ri)*ri;
519 >        v32 = (s - 3.0*(h-g*ri)*ri);
520 >        v41 = (h - g*ri)*ri2;
521 >        v42 = (s-3.0*(h-g*ri)*ri)*ri;        
522 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
523 >
524 >        dv01 = g;
525 >        dv11 = h;
526 >        dv21 = (h - g*ri)*ri;
527 >        dv22 = (s - (h - g*ri)*ri);
528 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
529 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
530 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
531 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
532 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
533 >
534 >        break;
535 >
536 >      case esm_REACTION_FIELD:
537 >        
538 >        // following DL_POLY's lead for shifting the image charge potential:
539 >        f = b0 + preRF_ * r2;
540 >        fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
541 >
542 >        g = db0_1 + preRF_ * 2.0 * r;        
543 >        gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
544 >
545 >        h = db0_2 + preRF_ * 2.0;
546 >        hc = db0c_2 + preRF_ * 2.0;
547 >
548 >        v01 = f - fc;
549 >        v11 = g - gc;
550 >        v21 = g*ri - gc*ric;
551 >        v22 = h - g*ri - (hc - gc*ric);
552 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
553 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
554 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
555 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
556 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
557 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
558 >
559 >        dv01 = g;
560 >        dv11 = h;
561 >        dv21 = (h - g*ri)*ri;
562 >        dv22 = (s - (h - g*ri)*ri);
563 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
564 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
565 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
566 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
567 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
568 >
569 >        break;
570 >                
571 >      case esm_EWALD_PME:
572 >      case esm_EWALD_SPME:
573 >      default :
574 >        map<string, ElectrostaticSummationMethod>::iterator i;
575 >        std::string meth;
576 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
577 >          if ((*i).second == summationMethod_) meth = (*i).first;
578 >        }
579 >        sprintf( painCave.errMsg,
580 >                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
581 >                 "\thas not been implemented yet. Please select one of:\n"
582 >                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
583 >                 meth.c_str() );
584 >        painCave.isFatal = 1;
585 >        simError();
586 >        break;      
587 >      }
588 >
589 >      // Add these computed values to the storage vectors for spline creation:
590 >      v01v.push_back(v01);
591 >      v11v.push_back(v11);
592 >      v21v.push_back(v21);
593 >      v22v.push_back(v22);
594 >      v31v.push_back(v31);
595 >      v32v.push_back(v32);      
596 >      v41v.push_back(v41);
597 >      v42v.push_back(v42);
598 >      v43v.push_back(v43);
599      }
273    erfcSpline_ = new CubicSpline();
274    erfcSpline_->addPoints(rvals, yvals);
275    haveElectroSpline_ = true;
600  
601 +    // construct the spline structures and fill them with the values we've
602 +    // computed:
603 +
604 +    v01s = new CubicSpline();
605 +    v01s->addPoints(rv, v01v);
606 +    v11s = new CubicSpline();
607 +    v11s->addPoints(rv, v11v);
608 +    v21s = new CubicSpline();
609 +    v21s->addPoints(rv, v21v);
610 +    v22s = new CubicSpline();
611 +    v22s->addPoints(rv, v22v);
612 +    v31s = new CubicSpline();
613 +    v31s->addPoints(rv, v31v);
614 +    v32s = new CubicSpline();
615 +    v32s->addPoints(rv, v32v);
616 +    v41s = new CubicSpline();
617 +    v41s->addPoints(rv, v41v);
618 +    v42s = new CubicSpline();
619 +    v42s->addPoints(rv, v42v);
620 +    v43s = new CubicSpline();
621 +    v43s->addPoints(rv, v43v);
622 +
623 +    haveElectroSplines_ = true;
624 +
625      initialized_ = true;
626    }
627        
628    void Electrostatic::addType(AtomType* atomType){
629 <
629 >    
630      ElectrostaticAtomData electrostaticAtomData;
631      electrostaticAtomData.is_Charge = false;
632      electrostaticAtomData.is_Dipole = false;
285    electrostaticAtomData.is_SplitDipole = false;
633      electrostaticAtomData.is_Quadrupole = false;
634      electrostaticAtomData.is_Fluctuating = false;
635  
# Line 297 | Line 644 | namespace OpenMD {
644      if (ma.isMultipole()) {
645        if (ma.isDipole()) {
646          electrostaticAtomData.is_Dipole = true;
647 <        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
647 >        electrostaticAtomData.dipole = ma.getDipole();
648        }
302      if (ma.isSplitDipole()) {
303        electrostaticAtomData.is_SplitDipole = true;
304        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305      }
649        if (ma.isQuadrupole()) {
307        // Quadrupoles in OpenMD are set as the diagonal elements
308        // of the diagonalized traceless quadrupole moment tensor.
309        // The column vectors of the unitary matrix that diagonalizes
310        // the quadrupole moment tensor become the eFrame (or the
311        // electrostatic version of the body-fixed frame.
650          electrostaticAtomData.is_Quadrupole = true;
651 <        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
651 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
652        }
653      }
654      
# Line 324 | Line 662 | namespace OpenMD {
662        electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
663      }
664  
665 <    pair<map<int,AtomType*>::iterator,bool> ret;    
666 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
667 <                                                        atomType) );
665 >    int atid = atomType->getIdent();
666 >    int etid = Etypes.size();
667 >    int fqtid = FQtypes.size();
668 >
669 >    pair<set<int>::iterator,bool> ret;    
670 >    ret = Etypes.insert( atid );
671      if (ret.second == false) {
672        sprintf( painCave.errMsg,
673                 "Electrostatic already had a previous entry with ident %d\n",
674 <               atomType->getIdent() );
674 >               atid);
675        painCave.severity = OPENMD_INFO;
676        painCave.isFatal = 0;
677        simError();        
678      }
679      
680 <    ElectrostaticMap[atomType] = electrostaticAtomData;  
680 >    Etids[ atid ] = etid;
681 >    ElectrostaticMap.push_back(electrostaticAtomData);
682  
683 <    // Now, iterate over all known types and add to the mixing map:
684 <    
685 <    map<AtomType*, ElectrostaticAtomData>::iterator it;
686 <    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
687 <      AtomType* atype2 = (*it).first;
688 <      ElectrostaticAtomData eaData2 = (*it).second;
689 <      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
690 <        
683 >    if (electrostaticAtomData.is_Fluctuating) {
684 >      ret = FQtypes.insert( atid );
685 >      if (ret.second == false) {
686 >        sprintf( painCave.errMsg,
687 >                 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
688 >                 atid );
689 >        painCave.severity = OPENMD_INFO;
690 >        painCave.isFatal = 0;
691 >        simError();        
692 >      }
693 >      FQtids[atid] = fqtid;
694 >      Jij[fqtid].resize(nFlucq_);
695 >
696 >      // Now, iterate over all known fluctuating and add to the
697 >      // coulomb integral map:
698 >      
699 >      std::set<int>::iterator it;
700 >      for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {    
701 >        int etid2 = Etids[ (*it) ];
702 >        int fqtid2 = FQtids[ (*it) ];
703 >        ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
704          RealType a = electrostaticAtomData.slaterZeta;
705          RealType b = eaData2.slaterZeta;
706          int m = electrostaticAtomData.slaterN;
707          int n = eaData2.slaterN;
708 <
708 >        
709          // Create the spline of the coulombic integral for s-type
710          // Slater orbitals.  Add a 2 angstrom safety window to deal
711          // with cutoffGroups that have charged atoms longer than the
712          // cutoffRadius away from each other.
713 <
713 >        
714          RealType rval;
715          RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
716          vector<RealType> rvals;
717 <        vector<RealType> J1vals;
718 <        vector<RealType> J2vals;
719 <        for (int i = 0; i < np_; i++) {
717 >        vector<RealType> Jvals;
718 >        // don't start at i = 0, as rval = 0 is undefined for the
719 >        // slater overlap integrals.
720 >        for (int i = 1; i < np_+1; i++) {
721            rval = RealType(i) * dr;
722            rvals.push_back(rval);
723 <          J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
724 <          // may not be necessary if Slater coulomb integral is symmetric
725 <          J2vals.push_back(eaData2.hardness *  sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
723 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
724 >                                       PhysicalConstants::angstromToBohr ) *
725 >                          PhysicalConstants::hartreeToKcal );
726          }
371
372        CubicSpline* J1 = new CubicSpline();
373        J1->addPoints(rvals, J1vals);
374        CubicSpline* J2 = new CubicSpline();
375        J2->addPoints(rvals, J2vals);
727          
728 <        pair<AtomType*, AtomType*> key1, key2;
729 <        key1 = make_pair(atomType, atype2);
730 <        key2 = make_pair(atype2, atomType);
731 <        
732 <        Jij[key1] = J1;
733 <        Jij[key2] = J2;
734 <      }
384 <    }
385 <
728 >        CubicSpline* J = new CubicSpline();
729 >        J->addPoints(rvals, Jvals);
730 >        Jij[fqtid][fqtid2] = J;
731 >        Jij[fqtid2].resize( nFlucq_ );
732 >        Jij[fqtid2][fqtid] = J;
733 >      }      
734 >    }      
735      return;
736    }
737    
738    void Electrostatic::setCutoffRadius( RealType rCut ) {
739      cutoffRadius_ = rCut;
391    rrf_ = cutoffRadius_;
740      haveCutoffRadius_ = true;
741    }
742  
395  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
396    rt_ = rSwitch;
397  }
743    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
744      summationMethod_ = esm;
745    }
# Line 412 | Line 757 | namespace OpenMD {
757  
758    void Electrostatic::calcForce(InteractionData &idat) {
759  
415    // utility variables.  Should clean these up and use the Vector3d and
416    // Mat3x3d to replace as many as we can in future versions:
417
418    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
419    RealType qxx_i, qyy_i, qzz_i;
420    RealType qxx_j, qyy_j, qzz_j;
421    RealType cx_i, cy_i, cz_i;
422    RealType cx_j, cy_j, cz_j;
423    RealType cx2, cy2, cz2;
424    RealType ct_i, ct_j, ct_ij, a1;
425    RealType riji, ri, ri2, ri3, ri4;
426    RealType pref, vterm, epot, dudr;
427    RealType vpair(0.0);
428    RealType scale, sc2;
429    RealType pot_term, preVal, rfVal;
430    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
431    RealType preSw, preSwSc;
432    RealType c1, c2, c3, c4;
433    RealType erfcVal(1.0), derfcVal(0.0);
434    RealType BigR;
435    RealType two(2.0), three(3.0);
436
437    Vector3d Q_i, Q_j;
438    Vector3d ux_i, uy_i, uz_i;
439    Vector3d ux_j, uy_j, uz_j;
440    Vector3d dudux_i, duduy_i, duduz_i;
441    Vector3d dudux_j, duduy_j, duduz_j;
442    Vector3d rhatdot2, rhatc4;
443    Vector3d dVdr;
444
445    // variables for indirect (reaction field) interactions for excluded pairs:
446    RealType indirect_Pot(0.0);
447    RealType indirect_vpair(0.0);
448    Vector3d indirect_dVdr(V3Zero);
449    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
450
451    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452    pair<RealType, RealType> res;
453    
454    // splines for coulomb integrals
455    CubicSpline* J1;
456    CubicSpline* J2;
457    
760      if (!initialized_) initialize();
761      
762 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
763 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
762 >    data1 = ElectrostaticMap[Etids[idat.atid1]];
763 >    data2 = ElectrostaticMap[Etids[idat.atid2]];
764 >
765 >    U = 0.0;  // Potential
766 >    F.zero();  // Force
767 >    Ta.zero(); // Torque on site a
768 >    Tb.zero(); // Torque on site b
769 >    Ea.zero(); // Electric field at site a
770 >    Eb.zero(); // Electric field at site b
771 >    Pa = 0.0;  // Site potential at site a
772 >    Pb = 0.0;  // Site potential at site b
773 >    dUdCa = 0.0; // fluctuating charge force at site a
774 >    dUdCb = 0.0; // fluctuating charge force at site a
775      
776 <    // some variables we'll need independent of electrostatic type:
776 >    // Indirect interactions mediated by the reaction field.
777 >    indirect_Pot = 0.0;   // Potential
778 >    indirect_F.zero();    // Force
779 >    indirect_Ta.zero();   // Torque on site a
780 >    indirect_Tb.zero();   // Torque on site b
781  
782 <    riji = 1.0 /  *(idat.rij) ;
783 <    Vector3d rhat =  *(idat.d)   * riji;
782 >    // Excluded potential that is still computed for fluctuating charges
783 >    excluded_Pot= 0.0;
784  
785 +    // some variables we'll need independent of electrostatic type:
786 +
787 +    ri = 1.0 /  *(idat.rij);
788 +    rhat =  *(idat.d)  * ri;
789 +      
790      // logicals
791  
792 <    bool i_is_Charge = data1.is_Charge;
793 <    bool i_is_Dipole = data1.is_Dipole;
794 <    bool i_is_SplitDipole = data1.is_SplitDipole;
795 <    bool i_is_Quadrupole = data1.is_Quadrupole;
474 <    bool i_is_Fluctuating = data1.is_Fluctuating;
792 >    a_is_Charge = data1.is_Charge;
793 >    a_is_Dipole = data1.is_Dipole;
794 >    a_is_Quadrupole = data1.is_Quadrupole;
795 >    a_is_Fluctuating = data1.is_Fluctuating;
796  
797 <    bool j_is_Charge = data2.is_Charge;
798 <    bool j_is_Dipole = data2.is_Dipole;
799 <    bool j_is_SplitDipole = data2.is_SplitDipole;
800 <    bool j_is_Quadrupole = data2.is_Quadrupole;
801 <    bool j_is_Fluctuating = data2.is_Fluctuating;
797 >    b_is_Charge = data2.is_Charge;
798 >    b_is_Dipole = data2.is_Dipole;
799 >    b_is_Quadrupole = data2.is_Quadrupole;
800 >    b_is_Fluctuating = data2.is_Fluctuating;
801 >
802 >    // Obtain all of the required radial function values from the
803 >    // spline structures:
804      
805 <    if (i_is_Charge) {
806 <      q_i = data1.fixedCharge;
805 >    // needed for fields (and forces):
806 >    if (a_is_Charge || b_is_Charge) {
807 >      v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
808 >    }
809 >    if (a_is_Dipole || b_is_Dipole) {
810 >      v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
811 >      v11or = ri * v11;
812 >    }
813 >    if (a_is_Quadrupole || b_is_Quadrupole ||  (a_is_Dipole && b_is_Dipole)) {
814 >      v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
815 >      v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
816 >      v22or = ri * v22;
817 >    }      
818  
819 <      if (i_is_Fluctuating) {
820 <        q_i += *(idat.flucQ1);
819 >    // needed for potentials (and forces and torques):
820 >    if ((a_is_Dipole && b_is_Quadrupole) ||
821 >        (b_is_Dipole && a_is_Quadrupole)) {
822 >      v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
823 >      v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
824 >      v31or = v31 * ri;
825 >      v32or = v32 * ri;
826 >    }
827 >    if (a_is_Quadrupole && b_is_Quadrupole) {
828 >      v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
829 >      v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
830 >      v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
831 >      v42or = v42 * ri;
832 >      v43or = v43 * ri;
833 >    }
834 >
835 >    // calculate the single-site contributions (fields, etc).
836 >    
837 >    if (a_is_Charge) {
838 >      C_a = data1.fixedCharge;
839 >      
840 >      if (a_is_Fluctuating) {
841 >        C_a += *(idat.flucQ1);
842        }
843        
844        if (idat.excluded) {
845 <        *(idat.skippedCharge2) += q_i;
845 >        *(idat.skippedCharge2) += C_a;
846 >      } else {
847 >        // only do the field and site potentials if we're not excluded:
848 >        Eb -= C_a *  pre11_ * dv01 * rhat;
849 >        Pb += C_a *  pre11_ * v01;
850        }
851      }
852 <
853 <    if (i_is_Dipole) {
854 <      mu_i = data1.dipole_moment;
855 <      uz_i = idat.eFrame1->getColumn(2);
856 <      
857 <      ct_i = dot(uz_i, rhat);
858 <
859 <      if (i_is_SplitDipole)
860 <        d_i = data1.split_dipole_distance;
502 <      
503 <      duduz_i = V3Zero;
504 <    }
505 <    
506 <    if (i_is_Quadrupole) {
507 <      Q_i = data1.quadrupole_moments;
508 <      qxx_i = Q_i.x();
509 <      qyy_i = Q_i.y();
510 <      qzz_i = Q_i.z();
511 <      
512 <      ux_i = idat.eFrame1->getColumn(0);
513 <      uy_i = idat.eFrame1->getColumn(1);
514 <      uz_i = idat.eFrame1->getColumn(2);
852 >    
853 >    if (a_is_Dipole) {
854 >      D_a = *(idat.dipole1);
855 >      rdDa = dot(rhat, D_a);
856 >      rxDa = cross(rhat, D_a);
857 >      if (!idat.excluded) {
858 >        Eb -=  pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
859 >        Pb +=  pre12_ * v11 * rdDa;
860 >      }
861  
516      cx_i = dot(ux_i, rhat);
517      cy_i = dot(uy_i, rhat);
518      cz_i = dot(uz_i, rhat);
519
520      dudux_i = V3Zero;
521      duduy_i = V3Zero;
522      duduz_i = V3Zero;
862      }
863 <
864 <    if (j_is_Charge) {
865 <      q_j = data2.fixedCharge;
866 <
867 <      if (j_is_Fluctuating)
868 <        q_j += *(idat.flucQ2);
869 <
870 <      if (idat.excluded) {
871 <        *(idat.skippedCharge1) += q_j;
863 >    
864 >    if (a_is_Quadrupole) {
865 >      Q_a = *(idat.quadrupole1);
866 >      trQa =  Q_a.trace();
867 >      Qar =   Q_a * rhat;
868 >      rQa = rhat * Q_a;
869 >      rdQar = dot(rhat, Qar);
870 >      rxQar = cross(rhat, Qar);
871 >      if (!idat.excluded) {
872 >        Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
873 >                        + rdQar * rhat * (dv22 - 2.0*v22or));
874 >        Pb += pre14_ * (v21 * trQa + v22 * rdQar);
875        }
876      }
877 <
878 <
879 <    if (j_is_Dipole) {
538 <      mu_j = data2.dipole_moment;
539 <      uz_j = idat.eFrame2->getColumn(2);
877 >    
878 >    if (b_is_Charge) {
879 >      C_b = data2.fixedCharge;
880        
881 <      ct_j = dot(uz_j, rhat);
882 <
543 <      if (j_is_SplitDipole)
544 <        d_j = data2.split_dipole_distance;
881 >      if (b_is_Fluctuating)
882 >        C_b += *(idat.flucQ2);
883        
884 <      duduz_j = V3Zero;
884 >      if (idat.excluded) {
885 >        *(idat.skippedCharge1) += C_b;
886 >      } else {
887 >        // only do the field if we're not excluded:
888 >        Ea += C_b *  pre11_ * dv01 * rhat;
889 >        Pa += C_b *  pre11_ * v01;
890 >
891 >      }
892      }
893      
894 <    if (j_is_Quadrupole) {
895 <      Q_j = data2.quadrupole_moments;
896 <      qxx_j = Q_j.x();
897 <      qyy_j = Q_j.y();
898 <      qzz_j = Q_j.z();
899 <      
900 <      ux_j = idat.eFrame2->getColumn(0);
901 <      uy_j = idat.eFrame2->getColumn(1);
557 <      uz_j = idat.eFrame2->getColumn(2);
558 <
559 <      cx_j = dot(ux_j, rhat);
560 <      cy_j = dot(uy_j, rhat);
561 <      cz_j = dot(uz_j, rhat);
562 <
563 <      dudux_j = V3Zero;
564 <      duduy_j = V3Zero;
565 <      duduz_j = V3Zero;
894 >    if (b_is_Dipole) {
895 >      D_b = *(idat.dipole2);
896 >      rdDb = dot(rhat, D_b);
897 >      rxDb = cross(rhat, D_b);
898 >      if (!idat.excluded) {
899 >        Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
900 >        Pa += pre12_ * v11 * rdDb;
901 >      }
902      }
903      
904 <    if (i_is_Fluctuating && j_is_Fluctuating) {
905 <      J1 = Jij[idat.atypes];
906 <      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
904 >    if (b_is_Quadrupole) {
905 >      Q_b = *(idat.quadrupole2);
906 >      trQb =  Q_b.trace();
907 >      Qbr =   Q_b * rhat;
908 >      rQb = rhat * Q_b;
909 >      rdQbr = dot(rhat, Qbr);
910 >      rxQbr = cross(rhat, Qbr);
911 >      if (!idat.excluded) {
912 >        Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
913 >                        + rdQbr * rhat * (dv22 - 2.0*v22or));
914 >        Pa += pre14_ * (v21 * trQb + v22 * rdQbr);
915 >      }
916      }
917 +        
918  
919 <    epot = 0.0;
920 <    dVdr = V3Zero;
921 <    
922 <    if (i_is_Charge) {
919 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
920 >      J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
921 >    }    
922 >
923 >    if (a_is_Charge) {    
924        
925 <      if (j_is_Charge) {
926 <        if (screeningMethod_ == DAMPED) {
927 <          // assemble the damping variables
928 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582 <          //erfcVal = res.first;
583 <          //derfcVal = res.second;
925 >      if (b_is_Charge) {
926 >        pref =  pre11_ * *(idat.electroMult);      
927 >        U  += C_a * C_b * pref * v01;
928 >        F  += C_a * C_b * pref * dv01 * rhat;
929  
930 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
931 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
930 >        // If this is an excluded pair, there are still indirect
931 >        // interactions via the reaction field we must worry about:
932  
933 <          c1 = erfcVal * riji;
934 <          c2 = (-derfcVal + c1) * riji;
935 <        } else {
936 <          c1 = riji;
592 <          c2 = c1 * riji;
933 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
934 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
935 >          indirect_Pot += rfContrib;
936 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
937          }
938  
939 <        preVal =  *(idat.electroMult) * pre11_;
940 <        
941 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
598 <          vterm = preVal * (c1 - c1c_);
599 <          dudr  = - *(idat.sw)  * preVal * c2;
939 >        // Fluctuating charge forces are handled via Coulomb integrals
940 >        // for excluded pairs (i.e. those connected via bonds) and
941 >        // with the standard charge-charge interaction otherwise.
942  
943 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
944 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
945 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
943 >        if (idat.excluded) {
944 >          if (a_is_Fluctuating || b_is_Fluctuating) {
945 >            coulInt = J->getValueAt( *(idat.rij) );
946 >            if (a_is_Fluctuating) dUdCa += C_b * coulInt;
947 >            if (b_is_Fluctuating) dUdCb += C_a * coulInt;          
948 >          }
949 >        } else {
950 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
951 >          if (b_is_Fluctuating) dUdCb += C_a * pref * v01;
952 >        }              
953 >      }
954  
955 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
956 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
955 >      if (b_is_Dipole) {
956 >        pref =  pre12_ * *(idat.electroMult);        
957 >        U  += C_a * pref * v11 * rdDb;
958 >        F  += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
959 >        Tb += C_a * pref * v11 * rxDb;
960  
961 <          vterm = preVal * ( riji + rfVal );            
609 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
610 <          
611 <          // if this is an excluded pair, there are still indirect
612 <          // interactions via the reaction field we must worry about:
961 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
962  
963 <          if (idat.excluded) {
964 <            indirect_vpair += preVal * rfVal;
965 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
617 <            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
618 <          }
619 <          
620 <        } else {
963 >        // Even if we excluded this pair from direct interactions, we
964 >        // still have the reaction-field-mediated charge-dipole
965 >        // interaction:
966  
967 <          vterm = preVal * riji * erfcVal;          
968 <          dudr  = -  *(idat.sw)  * preVal * c2;
969 <          
967 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
968 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
969 >          indirect_Pot += rfContrib * rdDb;
970 >          indirect_F   += rfContrib * D_b / (*idat.rij);
971 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
972          }
973 <        
627 <        vpair += vterm * q_i * q_j;
628 <        epot +=  *(idat.sw)  * vterm * q_i * q_j;
629 <        dVdr += dudr * rhat * q_i * q_j;
973 >      }
974  
975 <        if (i_is_Fluctuating) {
976 <          if (idat.excluded) {
977 <            // vFluc1 is the difference between the direct coulomb integral
978 <            // and the normal 1/r-like  interaction between point charges.
979 <            coulInt = J1->getValueAt( *(idat.rij) );
980 <            vFluc1 = coulInt - (*(idat.sw) * vterm);
637 <          } else {
638 <            vFluc1 = 0.0;
639 <          }
640 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641 <        }
975 >      if (b_is_Quadrupole) {
976 >        pref = pre14_ * *(idat.electroMult);
977 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
978 >        F  +=  C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
979 >        F  +=  C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
980 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
981  
982 <        if (j_is_Fluctuating) {
644 <          if (idat.excluded) {
645 <            // vFluc2 is the difference between the direct coulomb integral
646 <            // and the normal 1/r-like  interaction between point charges.
647 <            coulInt = J2->getValueAt( *(idat.rij) );
648 <            vFluc2 = coulInt - (*(idat.sw) * vterm);
649 <          } else {
650 <            vFluc2 = 0.0;
651 <          }
652 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653 <        }
654 <          
655 <
982 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
983        }
984 +    }
985  
986 <      if (j_is_Dipole) {
659 <        // pref is used by all the possible methods
660 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
661 <        preSw =  *(idat.sw)  * pref;
986 >    if (a_is_Dipole) {
987  
988 <        if (summationMethod_ == esm_REACTION_FIELD) {
989 <          ri2 = riji * riji;
665 <          ri3 = ri2 * riji;
666 <    
667 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
668 <          vpair += vterm;
669 <          epot +=  *(idat.sw)  * vterm;
988 >      if (b_is_Charge) {
989 >        pref = pre12_ * *(idat.electroMult);
990  
991 <          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
992 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
991 >        U  -= C_b * pref * v11 * rdDa;
992 >        F  -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
993 >        Ta -= C_b * pref * v11 * rxDa;
994  
995 <          // Even if we excluded this pair from direct interactions,
675 <          // we still have the reaction-field-mediated charge-dipole
676 <          // interaction:
995 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
996  
997 <          if (idat.excluded) {
998 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
999 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
1000 <            indirect_dVdr += preSw * preRF2_ * uz_j;
1001 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
1002 <          }
1003 <                      
1004 <        } else {
686 <          // determine the inverse r used if we have split dipoles
687 <          if (j_is_SplitDipole) {
688 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
689 <            ri = 1.0 / BigR;
690 <            scale =  *(idat.rij)  * ri;
691 <          } else {
692 <            ri = riji;
693 <            scale = 1.0;
694 <          }
695 <          
696 <          sc2 = scale * scale;
697 <
698 <          if (screeningMethod_ == DAMPED) {
699 <            // assemble the damping variables
700 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 <            //erfcVal = res.first;
702 <            //derfcVal = res.second;
703 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705 <            c1 = erfcVal * ri;
706 <            c2 = (-derfcVal + c1) * ri;
707 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
708 <          } else {
709 <            c1 = ri;
710 <            c2 = c1 * ri;
711 <            c3 = 3.0 * c2 * ri;
712 <          }
713 <            
714 <          c2ri = c2 * ri;
715 <
716 <          // calculate the potential
717 <          pot_term =  scale * c2;
718 <          vterm = -pref * ct_j * pot_term;
719 <          vpair += vterm;
720 <          epot +=  *(idat.sw)  * vterm;
721 <            
722 <          // calculate derivatives for forces and torques
723 <
724 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
725 <          duduz_j += -preSw * pot_term * rhat;
726 <
997 >        // Even if we excluded this pair from direct interactions,
998 >        // we still have the reaction-field-mediated charge-dipole
999 >        // interaction:
1000 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1001 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
1002 >          indirect_Pot -= rfContrib * rdDa;
1003 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
1004 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
1005          }
728        if (i_is_Fluctuating) {
729          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730        }
1006        }
1007  
1008 <      if (j_is_Quadrupole) {
1009 <        // first precalculate some necessary variables
1010 <        cx2 = cx_j * cx_j;
1011 <        cy2 = cy_j * cy_j;
737 <        cz2 = cz_j * cz_j;
738 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
739 <          
740 <        if (screeningMethod_ == DAMPED) {
741 <          // assemble the damping variables
742 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 <          //erfcVal = res.first;
744 <          //derfcVal = res.second;
745 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747 <          c1 = erfcVal * riji;
748 <          c2 = (-derfcVal + c1) * riji;
749 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
750 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
751 <        } else {
752 <          c1 = riji;
753 <          c2 = c1 * riji;
754 <          c3 = 3.0 * c2 * riji;
755 <          c4 = 5.0 * c3 * riji * riji;
756 <        }
1008 >      if (b_is_Dipole) {
1009 >        pref = pre22_ * *(idat.electroMult);
1010 >        DadDb = dot(D_a, D_b);
1011 >        DaxDb = cross(D_a, D_b);
1012  
1013 <        // precompute variables for convenience
1014 <        preSw =  *(idat.sw)  * pref;
1015 <        c2ri = c2 * riji;
1016 <        c3ri = c3 * riji;
1017 <        c4rij = c4 *  *(idat.rij) ;
1018 <        rhatdot2 = two * rhat * c3;
1019 <        rhatc4 = rhat * c4rij;
1020 <
1021 <        // calculate the potential
1022 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
1023 <                     qyy_j * (cy2*c3 - c2ri) +
1024 <                     qzz_j * (cz2*c3 - c2ri) );
1025 <        vterm = pref * pot_term;
771 <        vpair += vterm;
772 <        epot +=  *(idat.sw)  * vterm;
773 <                
774 <        // calculate derivatives for the forces and torques
775 <
776 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 <                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 <                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779 <                          
780 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 <        if (i_is_Fluctuating) {
784 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
1013 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
1014 >        F  -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
1015 >        F  -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
1016 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
1017 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
1018 >        // Even if we excluded this pair from direct interactions, we
1019 >        // still have the reaction-field-mediated dipole-dipole
1020 >        // interaction:
1021 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1022 >          rfContrib = -pref * preRF_ * 2.0;
1023 >          indirect_Pot += rfContrib * DadDb;
1024 >          indirect_Ta  += rfContrib * DaxDb;
1025 >          indirect_Tb  -= rfContrib * DaxDb;
1026          }
1027 +      }
1028  
1029 +      if (b_is_Quadrupole) {
1030 +        pref = pre24_ * *(idat.electroMult);
1031 +        DadQb = D_a * Q_b;
1032 +        DadQbr = dot(D_a, Qbr);
1033 +        DaxQbr = cross(D_a, Qbr);
1034 +
1035 +        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1036 +        F  -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1037 +        F  -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1038 +        F  -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1039 +        F  -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1040 +        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1041 +        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1042 +                      - 2.0*rdDa*rxQbr*v32);
1043        }
1044      }
789    
790    if (i_is_Dipole) {
1045  
1046 <      if (j_is_Charge) {
1047 <        // variables used by all the methods
1048 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1049 <        preSw =  *(idat.sw)  * pref;
1046 >    if (a_is_Quadrupole) {
1047 >      if (b_is_Charge) {
1048 >        pref = pre14_ * *(idat.electroMult);
1049 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
1050 >        F  += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1051 >        F  += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1052 >        Ta += C_b * pref * 2.0 * rxQar * v22;
1053  
1054 <        if (summationMethod_ == esm_REACTION_FIELD) {
1054 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1055 >      }
1056 >      if (b_is_Dipole) {
1057 >        pref = pre24_ * *(idat.electroMult);
1058 >        DbdQa = D_b * Q_a;
1059 >        DbdQar = dot(D_b, Qar);
1060 >        DbxQar = cross(D_b, Qar);
1061  
1062 <          ri2 = riji * riji;
1063 <          ri3 = ri2 * riji;
1062 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1063 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1064 >        F  += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1065 >        F  += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1066 >        F  += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1067 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1068 >                      + 2.0*rdDb*rxQar*v32);
1069 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1070 >      }
1071 >      if (b_is_Quadrupole) {
1072 >        pref = pre44_ * *(idat.electroMult);  // yes
1073 >        QaQb = Q_a * Q_b;
1074 >        trQaQb = QaQb.trace();
1075 >        rQaQb = rhat * QaQb;
1076 >        QaQbr = QaQb * rhat;
1077 >        QaxQb = mCross(Q_a, Q_b);
1078 >        rQaQbr = dot(rQa, Qbr);
1079 >        rQaxQbr = cross(rQa, Qbr);
1080 >        
1081 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1082 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1083 >        U  += pref * (rdQar * rdQbr) * v43;
1084  
1085 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1086 <          vpair += vterm;
1087 <          epot +=  *(idat.sw)  * vterm;
805 <          
806 <          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
807 <          
808 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1085 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1086 >        F  += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1087 >        F  += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1088  
1089 <          // Even if we excluded this pair from direct interactions,
1090 <          // we still have the reaction-field-mediated charge-dipole
1091 <          // interaction:
1089 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1090 >        F  += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1091 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1092  
1093 <          if (idat.excluded) {
1094 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
1095 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
1096 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
1097 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
819 <          }
820 <            
821 <        } else {
822 <          
823 <          // determine inverse r if we are using split dipoles
824 <          if (i_is_SplitDipole) {
825 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
826 <            ri = 1.0 / BigR;
827 <            scale =  *(idat.rij)  * ri;
828 <          } else {
829 <            ri = riji;
830 <            scale = 1.0;
831 <          }
832 <          
833 <          sc2 = scale * scale;
834 <            
835 <          if (screeningMethod_ == DAMPED) {
836 <            // assemble the damping variables
837 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 <            //erfcVal = res.first;
839 <            //derfcVal = res.second;
840 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842 <            c1 = erfcVal * ri;
843 <            c2 = (-derfcVal + c1) * ri;
844 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
845 <          } else {
846 <            c1 = ri;
847 <            c2 = c1 * ri;
848 <            c3 = 3.0 * c2 * ri;
849 <          }
850 <          
851 <          c2ri = c2 * ri;
852 <              
853 <          // calculate the potential
854 <          pot_term = c2 * scale;
855 <          vterm = pref * ct_i * pot_term;
856 <          vpair += vterm;
857 <          epot +=  *(idat.sw)  * vterm;
1093 >        Ta += pref * (- 4.0 * QaxQb * v41);
1094 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1095 >                      + 4.0 * cross(rhat, QaQbr)
1096 >                      - 4.0 * rQaxQbr) * v42;
1097 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1098  
859          // calculate derivatives for the forces and torques
860          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
861          duduz_i += preSw * pot_term * rhat;
862        }
1099  
1100 <        if (j_is_Fluctuating) {
1101 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1102 <        }
1100 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1101 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1102 >                      - 4.0 * cross(rQaQb, rhat)
1103 >                      + 4.0 * rQaxQbr) * v42;
1104 >        // Possible replacement for line 2 above:
1105 >        //             + 4.0 * cross(rhat, QbQar)
1106  
1107 +        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1108        }
1109 +    }
1110  
1111 <      if (j_is_Dipole) {
1112 <        // variables used by all methods
1113 <        ct_ij = dot(uz_i, uz_j);
873 <
874 <        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
875 <        preSw =  *(idat.sw)  * pref;
876 <
877 <        if (summationMethod_ == esm_REACTION_FIELD) {
878 <          ri2 = riji * riji;
879 <          ri3 = ri2 * riji;
880 <          ri4 = ri2 * ri2;
881 <
882 <          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883 <                           preRF2_ * ct_ij );
884 <          vpair += vterm;
885 <          epot +=  *(idat.sw)  * vterm;
886 <            
887 <          a1 = 5.0 * ct_i * ct_j - ct_ij;
888 <            
889 <          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890 <
891 <          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892 <          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893 <
894 <          if (idat.excluded) {
895 <            indirect_vpair +=  - pref * preRF2_ * ct_ij;
896 <            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
897 <            indirect_duduz_i += -preSw * preRF2_ * uz_j;
898 <            indirect_duduz_j += -preSw * preRF2_ * uz_i;
899 <          }
900 <
901 <        } else {
902 <          
903 <          if (i_is_SplitDipole) {
904 <            if (j_is_SplitDipole) {
905 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906 <            } else {
907 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
908 <            }
909 <            ri = 1.0 / BigR;
910 <            scale =  *(idat.rij)  * ri;
911 <          } else {
912 <            if (j_is_SplitDipole) {
913 <              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
914 <              ri = 1.0 / BigR;
915 <              scale =  *(idat.rij)  * ri;
916 <            } else {
917 <              ri = riji;
918 <              scale = 1.0;
919 <            }
920 <          }
921 <          if (screeningMethod_ == DAMPED) {
922 <            // assemble damping variables
923 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924 <            //erfcVal = res.first;
925 <            //derfcVal = res.second;
926 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928 <            c1 = erfcVal * ri;
929 <            c2 = (-derfcVal + c1) * ri;
930 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
931 <            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
932 <          } else {
933 <            c1 = ri;
934 <            c2 = c1 * ri;
935 <            c3 = 3.0 * c2 * ri;
936 <            c4 = 5.0 * c3 * ri * ri;
937 <          }
938 <
939 <          // precompute variables for convenience
940 <          sc2 = scale * scale;
941 <          cti3 = ct_i * sc2 * c3;
942 <          ctj3 = ct_j * sc2 * c3;
943 <          ctidotj = ct_i * ct_j * sc2;
944 <          preSwSc = preSw * scale;
945 <          c2ri = c2 * ri;
946 <          c3ri = c3 * ri;
947 <          c4rij = c4 *  *(idat.rij) ;
948 <
949 <          // calculate the potential
950 <          pot_term = (ct_ij * c2ri - ctidotj * c3);
951 <          vterm = pref * pot_term;
952 <          vpair += vterm;
953 <          epot +=  *(idat.sw)  * vterm;
954 <
955 <          // calculate derivatives for the forces and torques
956 <          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
957 <                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
958 <          
959 <          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
960 <          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
961 <        }
962 <      }
1111 >    if (idat.doElectricField) {
1112 >      *(idat.eField1) += Ea * *(idat.electroMult);
1113 >      *(idat.eField2) += Eb * *(idat.electroMult);
1114      }
1115  
1116 <    if (i_is_Quadrupole) {
1117 <      if (j_is_Charge) {
1118 <        // precompute some necessary variables
968 <        cx2 = cx_i * cx_i;
969 <        cy2 = cy_i * cy_i;
970 <        cz2 = cz_i * cz_i;
971 <
972 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
973 <
974 <        if (screeningMethod_ == DAMPED) {
975 <          // assemble the damping variables
976 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 <          //erfcVal = res.first;
978 <          //derfcVal = res.second;
979 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981 <          c1 = erfcVal * riji;
982 <          c2 = (-derfcVal + c1) * riji;
983 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
984 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
985 <        } else {
986 <          c1 = riji;
987 <          c2 = c1 * riji;
988 <          c3 = 3.0 * c2 * riji;
989 <          c4 = 5.0 * c3 * riji * riji;
990 <        }
991 <          
992 <        // precompute some variables for convenience
993 <        preSw =  *(idat.sw)  * pref;
994 <        c2ri = c2 * riji;
995 <        c3ri = c3 * riji;
996 <        c4rij = c4 *  *(idat.rij) ;
997 <        rhatdot2 = two * rhat * c3;
998 <        rhatc4 = rhat * c4rij;
999 <
1000 <        // calculate the potential
1001 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1002 <                     qyy_i * (cy2 * c3 - c2ri) +
1003 <                     qzz_i * (cz2 * c3 - c2ri) );
1004 <        
1005 <        vterm = pref * pot_term;
1006 <        vpair += vterm;
1007 <        epot +=  *(idat.sw)  * vterm;
1008 <
1009 <        // calculate the derivatives for the forces and torques
1010 <
1011 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 <                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 <                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014 <
1015 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1016 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1017 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1018 <
1019 <        if (j_is_Fluctuating) {
1020 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 <        }
1022 <
1023 <      }
1116 >    if (idat.doSitePotential) {
1117 >      *(idat.sPot1) += Pa * *(idat.electroMult);
1118 >      *(idat.sPot2) += Pb * *(idat.electroMult);
1119      }
1120  
1121 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1122 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1123  
1124      if (!idat.excluded) {
1028      *(idat.vpair) += vpair;
1029      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030      *(idat.f1) += dVdr;
1125        
1126 <      if (i_is_Dipole || i_is_Quadrupole)
1127 <        *(idat.t1) -= cross(uz_i, duduz_i);
1128 <      if (i_is_Quadrupole) {
1035 <        *(idat.t1) -= cross(ux_i, dudux_i);
1036 <        *(idat.t1) -= cross(uy_i, duduy_i);
1037 <      }
1126 >      *(idat.vpair) += U;
1127 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1128 >      *(idat.f1) += F * *(idat.sw);
1129        
1130 <      if (j_is_Dipole || j_is_Quadrupole)
1131 <        *(idat.t2) -= cross(uz_j, duduz_j);
1041 <      if (j_is_Quadrupole) {
1042 <        *(idat.t2) -= cross(uz_j, dudux_j);
1043 <        *(idat.t2) -= cross(uz_j, duduy_j);
1044 <      }
1130 >      if (a_is_Dipole || a_is_Quadrupole)
1131 >        *(idat.t1) += Ta * *(idat.sw);
1132  
1133 +      if (b_is_Dipole || b_is_Quadrupole)
1134 +        *(idat.t2) += Tb * *(idat.sw);
1135 +      
1136      } else {
1137  
1138        // only accumulate the forces and torques resulting from the
1139        // indirect reaction field terms.
1140  
1141 <      *(idat.vpair) += indirect_vpair;
1142 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1143 <      *(idat.f1) += indirect_dVdr;
1141 >      *(idat.vpair) += indirect_Pot;      
1142 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1143 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1144 >      *(idat.f1) += *(idat.sw) * indirect_F;
1145        
1146 <      if (i_is_Dipole)
1147 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1148 <      if (j_is_Dipole)
1149 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1146 >      if (a_is_Dipole || a_is_Quadrupole)
1147 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1148 >            
1149 >      if (b_is_Dipole || b_is_Quadrupole)
1150 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1151      }
1060
1152      return;
1153 <  }  
1153 >  }
1154      
1155    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1156 <    RealType mu1, preVal, self;
1156 >
1157      if (!initialized_) initialize();
1158  
1159 <    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1160 <  
1159 >    ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1160 >    
1161      // logicals
1162      bool i_is_Charge = data.is_Charge;
1163      bool i_is_Dipole = data.is_Dipole;
1164 +    bool i_is_Quadrupole = data.is_Quadrupole;
1165      bool i_is_Fluctuating = data.is_Fluctuating;
1166 <    RealType chg1 = data.fixedCharge;  
1167 <    
1166 >    RealType C_a = data.fixedCharge;  
1167 >    RealType self(0.0), preVal, DdD, trQ, trQQ;
1168 >
1169 >    if (i_is_Dipole) {
1170 >      DdD = data.dipole.lengthSquare();
1171 >    }
1172 >        
1173      if (i_is_Fluctuating) {
1174 <      chg1 += *(sdat.flucQ);
1175 <      // dVdFQ is really a force, so this is negative the derivative
1176 <      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1174 >      C_a += *(sdat.flucQ);
1175 >
1176 >      flucQ_->getSelfInteraction(sdat.atid, *(sdat.flucQ),  
1177 >                                 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY],
1178 >                                 *(sdat.flucQfrc) );
1179 >
1180      }
1181  
1182 <    if (summationMethod_ == esm_REACTION_FIELD) {
1183 <      if (i_is_Dipole) {
1184 <        mu1 = data.dipole_moment;          
1185 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1186 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1187 <        
1188 <        // The self-correction term adds into the reaction field vector
1189 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1190 <        Vector3d ei = preVal * uz_i;
1182 >    switch (summationMethod_) {
1183 >    case esm_REACTION_FIELD:
1184 >      
1185 >      if (i_is_Charge) {
1186 >        // Self potential [see Wang and Hermans, "Reaction Field
1187 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1188 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1189 >        preVal = pre11_ * preRF_ * C_a * C_a;
1190 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1191 >      }
1192  
1193 <        // This looks very wrong.  A vector crossed with itself is zero.
1194 <        *(sdat.t) -= cross(uz_i, ei);
1193 >      if (i_is_Dipole) {
1194 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1195        }
1196 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1197 <      if (i_is_Charge) {        
1198 <        if (screeningMethod_ == DAMPED) {
1199 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1200 <        } else {        
1201 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1202 <        }
1203 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1196 >      
1197 >      break;
1198 >      
1199 >    case esm_SHIFTED_FORCE:
1200 >    case esm_SHIFTED_POTENTIAL:
1201 >    case esm_TAYLOR_SHIFTED:
1202 >    case esm_EWALD_FULL:
1203 >      if (i_is_Charge)
1204 >        self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));      
1205 >      if (i_is_Dipole)
1206 >        self += selfMult2_ * pre22_ * DdD;      
1207 >      if (i_is_Quadrupole) {
1208 >        trQ = data.quadrupole.trace();
1209 >        trQQ = (data.quadrupole * data.quadrupole).trace();
1210 >        self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1211 >        if (i_is_Charge)
1212 >          self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1213        }
1214 +      (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;      
1215 +      break;
1216 +    default:
1217 +      break;
1218      }
1219    }
1220 <
1220 >  
1221    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1222      // This seems to work moderately well as a default.  There's no
1223      // inherent scale for 1/r interactions that we can standardize.
1224      // 12 angstroms seems to be a reasonably good guess for most
1225      // cases.
1226      return 12.0;
1227 +  }
1228 +
1229 +
1230 +  void Electrostatic::ReciprocalSpaceSum(RealType& pot) {
1231 +    
1232 +    RealType kPot = 0.0;
1233 +    RealType kVir = 0.0;
1234 +    
1235 +    const RealType mPoleConverter = 0.20819434; // converts from the
1236 +                                                // internal units of
1237 +                                                // Debye (for dipoles)
1238 +                                                // or Debye-angstroms
1239 +                                                // (for quadrupoles) to
1240 +                                                // electron angstroms or
1241 +                                                // electron-angstroms^2
1242 +    
1243 +    const RealType eConverter = 332.0637778; // convert the
1244 +                                             // Charge-Charge
1245 +                                             // electrostatic
1246 +                                             // interactions into kcal /
1247 +                                             // mol assuming distances
1248 +                                             // are measured in
1249 +                                             // angstroms.
1250 +
1251 +    Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1252 +    Vector3d box = hmat.diagonals();
1253 +    RealType boxMax = box.max();
1254 +    
1255 +    //int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) );
1256 +    int kMax = 7;
1257 +    int kSqMax = kMax*kMax + 2;
1258 +    
1259 +    int kLimit = kMax+1;
1260 +    int kLim2 = 2*kMax+1;
1261 +    int kSqLim = kSqMax;
1262 +    
1263 +    vector<RealType> AK(kSqLim+1, 0.0);
1264 +    RealType xcl = 2.0 * M_PI / box.x();
1265 +    RealType ycl = 2.0 * M_PI / box.y();
1266 +    RealType zcl = 2.0 * M_PI / box.z();
1267 +    RealType rcl = 2.0 * M_PI / boxMax;
1268 +    RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1269 +    
1270 +    if(dampingAlpha_ < 1.0e-12) return;
1271 +    
1272 +    RealType ralph = -0.25/pow(dampingAlpha_,2);
1273 +    
1274 +    // Calculate and store exponential factors  
1275 +    
1276 +    vector<vector<RealType> > elc;
1277 +    vector<vector<RealType> > emc;
1278 +    vector<vector<RealType> > enc;
1279 +    vector<vector<RealType> > els;
1280 +    vector<vector<RealType> > ems;
1281 +    vector<vector<RealType> > ens;
1282 +    
1283 +    int nMax = info_->getNAtoms();
1284 +    
1285 +    elc.resize(kLimit+1);
1286 +    emc.resize(kLimit+1);
1287 +    enc.resize(kLimit+1);
1288 +    els.resize(kLimit+1);
1289 +    ems.resize(kLimit+1);
1290 +    ens.resize(kLimit+1);
1291 +
1292 +    for (int j = 0; j < kLimit+1; j++) {
1293 +      elc[j].resize(nMax);
1294 +      emc[j].resize(nMax);
1295 +      enc[j].resize(nMax);
1296 +      els[j].resize(nMax);
1297 +      ems[j].resize(nMax);
1298 +      ens[j].resize(nMax);
1299 +    }
1300 +    
1301 +    Vector3d t( 2.0 * M_PI );
1302 +    t.Vdiv(t, box);
1303 +
1304 +    SimInfo::MoleculeIterator mi;
1305 +    Molecule::AtomIterator ai;
1306 +    int i;
1307 +    Vector3d r;
1308 +    Vector3d tt;
1309 +    
1310 +    for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1311 +         mol = info_->nextMolecule(mi)) {
1312 +      for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1313 +          atom = mol->nextAtom(ai)) {  
1314 +        
1315 +        i = atom->getLocalIndex();
1316 +        r = atom->getPos();
1317 +        info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1318 +        
1319 +        tt.Vmul(t, r);
1320 +
1321 +        elc[1][i] = 1.0;
1322 +        emc[1][i] = 1.0;
1323 +        enc[1][i] = 1.0;
1324 +        els[1][i] = 0.0;
1325 +        ems[1][i] = 0.0;
1326 +        ens[1][i] = 0.0;
1327 +
1328 +        elc[2][i] = cos(tt.x());
1329 +        emc[2][i] = cos(tt.y());
1330 +        enc[2][i] = cos(tt.z());
1331 +        els[2][i] = sin(tt.x());
1332 +        ems[2][i] = sin(tt.y());
1333 +        ens[2][i] = sin(tt.z());
1334 +        
1335 +        for(int l = 3; l <= kLimit; l++) {
1336 +          elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i];
1337 +          emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i];
1338 +          enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i];
1339 +          els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i];
1340 +          ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i];
1341 +          ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i];
1342 +        }
1343 +      }
1344 +    }
1345 +    
1346 +    // Calculate and store AK coefficients:
1347 +    
1348 +    RealType eksq = 1.0;
1349 +    RealType expf = 0.0;
1350 +    if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1351 +    for (i = 1; i <= kSqLim; i++) {
1352 +      RealType rksq = float(i)*rcl*rcl;
1353 +      eksq = expf*eksq;
1354 +      AK[i] = eConverter * eksq/rksq;
1355 +    }
1356 +    
1357 +    /*
1358 +     * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1359 +     * the values of ll, mm and nn are selected so that the symmetry of
1360 +     * reciprocal lattice is taken into account i.e. the following
1361 +     * rules apply.
1362 +     *
1363 +     * ll ranges over the values 0 to kMax only.
1364 +     *
1365 +     * mm ranges over 0 to kMax when ll=0 and over
1366 +     *            -kMax to kMax otherwise.
1367 +     * nn ranges over 1 to kMax when ll=mm=0 and over
1368 +     *            -kMax to kMax otherwise.
1369 +     *
1370 +     * Hence the result of the summation must be doubled at the end.    
1371 +     */
1372 +    
1373 +    std::vector<RealType> clm(nMax, 0.0);
1374 +    std::vector<RealType> slm(nMax, 0.0);
1375 +    std::vector<RealType> ckr(nMax, 0.0);
1376 +    std::vector<RealType> skr(nMax, 0.0);
1377 +    std::vector<RealType> ckc(nMax, 0.0);
1378 +    std::vector<RealType> cks(nMax, 0.0);
1379 +    std::vector<RealType> dkc(nMax, 0.0);
1380 +    std::vector<RealType> dks(nMax, 0.0);
1381 +    std::vector<RealType> qkc(nMax, 0.0);
1382 +    std::vector<RealType> qks(nMax, 0.0);
1383 +    std::vector<Vector3d> dxk(nMax, V3Zero);
1384 +    std::vector<Vector3d> qxk(nMax, V3Zero);
1385 +    RealType rl, rm, rn;
1386 +    Vector3d kVec;
1387 +    Vector3d Qk;
1388 +    Mat3x3d k2;
1389 +    RealType ckcs, ckss, dkcs, dkss, qkcs, qkss;
1390 +    int atid;
1391 +    ElectrostaticAtomData data;
1392 +    RealType C, dk, qk;
1393 +    Vector3d D;
1394 +    Mat3x3d  Q;
1395 +
1396 +    int mMin = kLimit;
1397 +    int nMin = kLimit + 1;
1398 +    for (int l = 1; l <= kLimit; l++) {
1399 +      int ll = l - 1;
1400 +      rl = xcl * float(ll);
1401 +      for (int mmm = mMin; mmm <= kLim2; mmm++) {
1402 +        int mm = mmm - kLimit;
1403 +        int m = abs(mm) + 1;
1404 +        rm = ycl * float(mm);
1405 +        // Set temporary products of exponential terms
1406 +        for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1407 +             mol = info_->nextMolecule(mi)) {
1408 +          for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1409 +              atom = mol->nextAtom(ai)) {
1410 +            
1411 +            i = atom->getLocalIndex();
1412 +            if(mm < 0) {
1413 +              clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i];
1414 +              slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i];
1415 +            } else {
1416 +              clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i];
1417 +              slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i];
1418 +            }
1419 +          }
1420 +        }
1421 +        for (int nnn = nMin; nnn <= kLim2; nnn++) {
1422 +          int nn = nnn - kLimit;          
1423 +          int n = abs(nn) + 1;
1424 +          rn = zcl * float(nn);
1425 +          // Test on magnitude of k vector:
1426 +          int kk=ll*ll + mm*mm + nn*nn;
1427 +          if(kk <= kSqLim) {
1428 +            kVec = Vector3d(rl, rm, rn);
1429 +            k2 = outProduct(kVec, kVec);
1430 +            // Calculate exp(ikr) terms
1431 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1432 +                 mol = info_->nextMolecule(mi)) {
1433 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1434 +                  atom = mol->nextAtom(ai)) {
1435 +                i = atom->getLocalIndex();
1436 +                
1437 +                if (nn < 0) {
1438 +                  ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i];
1439 +                  skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i];
1440 +
1441 +                } else {
1442 +                  ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i];
1443 +                  skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i];
1444 +                }
1445 +              }
1446 +            }
1447 +            
1448 +            // Calculate scalar and vector products for each site:
1449 +            
1450 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1451 +                 mol = info_->nextMolecule(mi)) {
1452 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1453 +                  atom = mol->nextAtom(ai)) {
1454 +                i = atom->getLocalIndex();
1455 +                int atid = atom->getAtomType()->getIdent();
1456 +                data = ElectrostaticMap[Etids[atid]];
1457 +                              
1458 +                if (data.is_Charge) {
1459 +                  C = data.fixedCharge;
1460 +                  if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1461 +                  ckc[i] = C * ckr[i];
1462 +                  cks[i] = C * skr[i];
1463 +                }
1464 +                
1465 +                if (data.is_Dipole) {
1466 +                  D = atom->getDipole() * mPoleConverter;
1467 +                  dk = dot(D, kVec);
1468 +                  dxk[i] = cross(D, kVec);
1469 +                  dkc[i] = dk * ckr[i];
1470 +                  dks[i] = dk * skr[i];
1471 +                }
1472 +                if (data.is_Quadrupole) {
1473 +                  Q = atom->getQuadrupole() * mPoleConverter;
1474 +                  Qk = Q * kVec;                  
1475 +                  qk = dot(kVec, Qk);
1476 +                  qxk[i] = -cross(kVec, Qk);
1477 +                  qkc[i] = qk * ckr[i];
1478 +                  qks[i] = qk * skr[i];
1479 +                }              
1480 +              }
1481 +            }
1482 +
1483 +            // calculate vector sums
1484 +            
1485 +            ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1486 +            ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1487 +            dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1488 +            dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1489 +            qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1490 +            qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1491 +            
1492 + #ifdef IS_MPI
1493 +            MPI_Allreduce(MPI_IN_PLACE, &ckcs, 1, MPI_REALTYPE,
1494 +                          MPI_SUM, MPI_COMM_WORLD);
1495 +            MPI_Allreduce(MPI_IN_PLACE, &ckss, 1, MPI_REALTYPE,
1496 +                          MPI_SUM, MPI_COMM_WORLD);
1497 +            MPI_Allreduce(MPI_IN_PLACE, &dkcs, 1, MPI_REALTYPE,
1498 +                          MPI_SUM, MPI_COMM_WORLD);
1499 +            MPI_Allreduce(MPI_IN_PLACE, &dkss, 1, MPI_REALTYPE,
1500 +                          MPI_SUM, MPI_COMM_WORLD);
1501 +            MPI_Allreduce(MPI_IN_PLACE, &qkcs, 1, MPI_REALTYPE,
1502 +                          MPI_SUM, MPI_COMM_WORLD);
1503 +            MPI_Allreduce(MPI_IN_PLACE, &qkss, 1, MPI_REALTYPE,
1504 +                          MPI_SUM, MPI_COMM_WORLD);
1505 + #endif        
1506 +            
1507 +            // Accumulate potential energy and virial contribution:
1508 +
1509 +            kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1510 +                                         + (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs));
1511 +
1512 +            kVir += 2.0 * rvol  * AK[kk]*(ckcs*ckcs+ckss*ckss
1513 +                                          +4.0*(ckss*dkcs-ckcs*dkss)
1514 +                                          +3.0*(dkcs*dkcs+dkss*dkss)
1515 +                                          -6.0*(ckss*qkss+ckcs*qkcs)
1516 +                                          +8.0*(dkss*qkcs-dkcs*qkss)
1517 +                                          +5.0*(qkss*qkss+qkcs*qkcs));
1518 +            
1519 +            // Calculate force and torque for each site:
1520 +            
1521 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1522 +                 mol = info_->nextMolecule(mi)) {
1523 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1524 +                  atom = mol->nextAtom(ai)) {
1525 +                
1526 +                i = atom->getLocalIndex();
1527 +                atid = atom->getAtomType()->getIdent();
1528 +                data = ElectrostaticMap[Etids[atid]];
1529 +
1530 +                RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1531 +                                     - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1532 +                RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1533 +                                         -ckr[i]*(ckss+dkcs-qkss));
1534 +                RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)
1535 +                                            +skr[i]*(ckss+dkcs-qkss));
1536 +              
1537 +                atom->addFrc( 4.0 * rvol * qfrc * kVec );
1538 +
1539 +                if (atom->isFluctuatingCharge()) {
1540 +                  atom->addFlucQFrc( - 2.0 * rvol * qtrq2 );
1541 +                }
1542 +                  
1543 +                if (data.is_Dipole) {
1544 +                  atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1545 +                }
1546 +                if (data.is_Quadrupole) {
1547 +                  atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1548 +                }
1549 +              }
1550 +            }
1551 +          }
1552 +        }
1553 +        nMin = 1;
1554 +      }
1555 +      mMin = 1;
1556 +    }
1557 +    pot += kPot;  
1558    }
1559   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines