ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing:
branches/development/src/nonbonded/Electrostatic.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC vs.
trunk/src/nonbonded/Electrostatic.cpp (file contents), Revision 1925 by gezelter, Wed Aug 7 15:24:16 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 44 | Line 44
44   #include <string.h>
45  
46   #include <cmath>
47 + #include <numeric>
48   #include "nonbonded/Electrostatic.hpp"
49   #include "utils/simError.h"
50   #include "types/NonBondedInteractionType.hpp"
# Line 53 | Line 54
54   #include "io/Globals.hpp"
55   #include "nonbonded/SlaterIntegrals.hpp"
56   #include "utils/PhysicalConstants.hpp"
57 + #include "math/erfc.hpp"
58 + #include "math/SquareMatrix.hpp"
59 + #include "primitives/Molecule.hpp"
60 + #ifdef IS_MPI
61 + #include <mpi.h>
62 + #endif
63  
57
64   namespace OpenMD {
65    
66    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
# Line 62 | Line 68 | namespace OpenMD {
68                                    haveCutoffRadius_(false),
69                                    haveDampingAlpha_(false),
70                                    haveDielectric_(false),
71 <                                  haveElectroSpline_(false)
71 >                                  haveElectroSplines_(false)
72    {}
73    
74    void Electrostatic::initialize() {
# Line 74 | Line 80 | namespace OpenMD {
80      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
81      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
82      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
83 +    summationMap_["TAYLOR_SHIFTED"]     = esm_TAYLOR_SHIFTED;    
84      summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
85      summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
86      summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
# Line 88 | Line 95 | namespace OpenMD {
95      // Charge-Dipole, assuming charges are measured in electrons, and
96      // dipoles are measured in debyes
97      pre12_ = 69.13373;
98 <    // Dipole-Dipole, assuming dipoles are measured in debyes
98 >    // Dipole-Dipole, assuming dipoles are measured in Debye
99      pre22_ = 14.39325;
100      // Charge-Quadrupole, assuming charges are measured in electrons, and
101      // quadrupoles are measured in 10^-26 esu cm^2
102 <    // This unit is also known affectionately as an esu centi-barn.
102 >    // This unit is also known affectionately as an esu centibarn.
103      pre14_ = 69.13373;
104 <    
104 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
105 >    // quadrupoles in esu centibarns:
106 >    pre24_ = 14.39325;
107 >    // Quadrupole-Quadrupole, assuming esu centibarns:
108 >    pre44_ = 14.39325;
109 >
110      // conversions for the simulation box dipole moment
111      chargeToC_ = 1.60217733e-19;
112      angstromToM_ = 1.0e-10;
113      debyeToCm_ = 3.33564095198e-30;
114      
115 <    // number of points for electrostatic splines
115 >    // Default number of points for electrostatic splines
116      np_ = 100;
117      
118      // variables to handle different summation methods for long-range
# Line 108 | Line 120 | namespace OpenMD {
120      summationMethod_ = esm_HARD;    
121      screeningMethod_ = UNDAMPED;
122      dielectric_ = 1.0;
111    one_third_ = 1.0 / 3.0;
123    
124      // check the summation method:
125      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 124 | Line 135 | namespace OpenMD {
135                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
136                   "\t(Input file specified %s .)\n"
137                   "\telectrostaticSummationMethod must be one of: \"hard\",\n"
138 <                 "\t\"shifted_potential\", \"shifted_force\", or \n"
139 <                 "\t\"reaction_field\".\n", myMethod.c_str() );
138 >                 "\t\"shifted_potential\", \"shifted_force\",\n"
139 >                 "\t\"taylor_shifted\", or \"reaction_field\".\n",
140 >                 myMethod.c_str() );
141          painCave.isFatal = 1;
142          simError();
143        }
# Line 184 | Line 196 | namespace OpenMD {
196        simError();
197      }
198            
199 <    if (screeningMethod_ == DAMPED) {      
199 >    if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
200        if (!simParams_->haveDampingAlpha()) {
201          // first set a cutoff dependent alpha value
202          // we assume alpha depends linearly with rcut from 0 to 20.5 ang
203          dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
204 <        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193 <        
204 >        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;        
205          // throw warning
206          sprintf( painCave.errMsg,
207                   "Electrostatic::initialize: dampingAlpha was not specified in the\n"
# Line 206 | Line 217 | namespace OpenMD {
217        haveDampingAlpha_ = true;
218      }
219  
209    // find all of the Electrostatic atom Types:
210    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
211    ForceField::AtomTypeContainer::MapTypeIterator i;
212    AtomType* at;
213    
214    for (at = atomTypes->beginType(i); at != NULL;
215         at = atomTypes->nextType(i)) {
216      
217      if (at->isElectrostatic())
218        addType(at);
219    }
220    
221    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222    rcuti_ = 1.0 / cutoffRadius_;
223    rcuti2_ = rcuti_ * rcuti_;
224    rcuti3_ = rcuti2_ * rcuti_;
225    rcuti4_ = rcuti2_ * rcuti2_;
220  
221 <    if (screeningMethod_ == DAMPED) {
222 <      
223 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
224 <      alpha4_ = alpha2_ * alpha2_;
225 <      alpha6_ = alpha4_ * alpha2_;
226 <      alpha8_ = alpha4_ * alpha4_;
227 <      
228 <      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 <      invRootPi_ = 0.56418958354775628695;
236 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
221 >    Etypes.clear();
222 >    Etids.clear();
223 >    FQtypes.clear();
224 >    FQtids.clear();
225 >    ElectrostaticMap.clear();
226 >    Jij.clear();
227 >    nElectro_ = 0;
228 >    nFlucq_ = 0;
229  
230 <      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
231 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
232 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
233 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
234 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
235 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
236 <    } else {
245 <      c1c_ = rcuti_;
246 <      c2c_ = c1c_ * rcuti_;
247 <      c3c_ = 3.0 * c2c_ * rcuti_;
248 <      c4c_ = 5.0 * c3c_ * rcuti2_;
249 <      c5c_ = 7.0 * c4c_ * rcuti2_;
250 <      c6c_ = 9.0 * c5c_ * rcuti2_;
230 >    Etids.resize( forceField_->getNAtomType(), -1);
231 >    FQtids.resize( forceField_->getNAtomType(), -1);
232 >
233 >    set<AtomType*>::iterator at;
234 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {    
235 >      if ((*at)->isElectrostatic()) nElectro_++;
236 >      if ((*at)->isFluctuatingCharge()) nFlucq_++;
237      }
238 <  
238 >    
239 >    Jij.resize(nFlucq_);
240 >
241 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
242 >      if ((*at)->isElectrostatic()) addType(*at);
243 >    }  
244 >    
245      if (summationMethod_ == esm_REACTION_FIELD) {
246        preRF_ = (dielectric_ - 1.0) /
247 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 <      preRF2_ = 2.0 * preRF_;
247 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
248      }
249      
250 +    RealType b0c, b1c, b2c, b3c, b4c, b5c;
251 +    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
252 +    RealType a2, expTerm, invArootPi;
253 +    
254 +    RealType r = cutoffRadius_;
255 +    RealType r2 = r * r;
256 +    RealType ric = 1.0 / r;
257 +    RealType ric2 = ric * ric;
258 +
259 +    if (screeningMethod_ == DAMPED) {      
260 +      a2 = dampingAlpha_ * dampingAlpha_;
261 +      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
262 +      expTerm = exp(-a2 * r2);
263 +      // values of Smith's B_l functions at the cutoff radius:
264 +      b0c = erfc(dampingAlpha_ * r) / r;
265 +      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
266 +      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
267 +      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
268 +      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
269 +      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
270 +      // Half the Smith self piece:
271 +      selfMult1_ = - a2 * invArootPi;
272 +      selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
273 +      selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
274 +    } else {
275 +      a2 = 0.0;
276 +      b0c = 1.0 / r;
277 +      b1c = (      b0c) / r2;
278 +      b2c = (3.0 * b1c) / r2;
279 +      b3c = (5.0 * b2c) / r2;
280 +      b4c = (7.0 * b3c) / r2;
281 +      b5c = (9.0 * b4c) / r2;
282 +      selfMult1_ = 0.0;
283 +      selfMult2_ = 0.0;
284 +      selfMult4_ = 0.0;
285 +    }
286 +
287 +    // higher derivatives of B_0 at the cutoff radius:
288 +    db0c_1 = -r * b1c;
289 +    db0c_2 =     -b1c + r2 * b2c;
290 +    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
291 +    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
292 +    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;  
293 +
294 +    if (summationMethod_ != esm_EWALD_FULL) {
295 +      selfMult1_ -= b0c;
296 +      selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) /  3.0;
297 +      selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
298 +    }
299 +
300 +    // working variables for the splines:
301 +    RealType ri, ri2;
302 +    RealType b0, b1, b2, b3, b4, b5;
303 +    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
304 +    RealType f, fc, f0;
305 +    RealType g, gc, g0, g1, g2, g3, g4;
306 +    RealType h, hc, h1, h2, h3, h4;
307 +    RealType s, sc, s2, s3, s4;
308 +    RealType t, tc, t3, t4;
309 +    RealType u, uc, u4;
310 +
311 +    // working variables for Taylor expansion:
312 +    RealType rmRc, rmRc2, rmRc3, rmRc4;
313 +
314 +    // Approximate using splines using a maximum of 0.1 Angstroms
315 +    // between points.
316 +    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
317 +    np_ = (np_ > nptest) ? np_ : nptest;
318 +  
319      // Add a 2 angstrom safety window to deal with cutoffGroups that
320      // have charged atoms longer than the cutoffRadius away from each
321 <    // other.  Splining may not be the best choice here.  Direct calls
322 <    // to erfc might be preferrable.
321 >    // other.  Splining is almost certainly the best choice here.
322 >    // Direct calls to erfc would be preferrable if it is a very fast
323 >    // implementation.
324  
325 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
326 <    RealType rval;
327 <    vector<RealType> rvals;
328 <    vector<RealType> yvals;
329 <    for (int i = 0; i < np_; i++) {
330 <      rval = RealType(i) * dx;
331 <      rvals.push_back(rval);
332 <      yvals.push_back(erfc(dampingAlpha_ * rval));
325 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
326 >
327 >    // Storage vectors for the computed functions    
328 >    vector<RealType> rv;
329 >    vector<RealType> v01v;
330 >    vector<RealType> v11v;
331 >    vector<RealType> v21v, v22v;
332 >    vector<RealType> v31v, v32v;
333 >    vector<RealType> v41v, v42v, v43v;
334 >
335 >    for (int i = 1; i < np_ + 1; i++) {
336 >      r = RealType(i) * dx;
337 >      rv.push_back(r);
338 >
339 >      ri = 1.0 / r;
340 >      ri2 = ri * ri;
341 >
342 >      r2 = r * r;
343 >      expTerm = exp(-a2 * r2);
344 >
345 >      // Taylor expansion factors (no need for factorials this way):
346 >      rmRc = r - cutoffRadius_;
347 >      rmRc2 = rmRc  * rmRc / 2.0;
348 >      rmRc3 = rmRc2 * rmRc / 3.0;
349 >      rmRc4 = rmRc3 * rmRc / 4.0;
350 >
351 >      // values of Smith's B_l functions at r:
352 >      if (screeningMethod_ == DAMPED) {            
353 >        b0 = erfc(dampingAlpha_ * r) * ri;
354 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
355 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
356 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
357 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
358 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
359 >      } else {
360 >        b0 = ri;
361 >        b1 = (      b0) * ri2;
362 >        b2 = (3.0 * b1) * ri2;
363 >        b3 = (5.0 * b2) * ri2;
364 >        b4 = (7.0 * b3) * ri2;
365 >        b5 = (9.0 * b4) * ri2;
366 >      }
367 >                
368 >      // higher derivatives of B_0 at r:
369 >      db0_1 = -r * b1;
370 >      db0_2 =     -b1 + r2 * b2;
371 >      db0_3 =          3.0*r*b2   - r2*r*b3;
372 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
373 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
374 >
375 >      f = b0;
376 >      fc = b0c;
377 >      f0 = f - fc - rmRc*db0c_1;
378 >
379 >      g = db0_1;        
380 >      gc = db0c_1;
381 >      g0 = g - gc;
382 >      g1 = g0 - rmRc *db0c_2;
383 >      g2 = g1 - rmRc2*db0c_3;
384 >      g3 = g2 - rmRc3*db0c_4;
385 >      g4 = g3 - rmRc4*db0c_5;
386 >
387 >      h = db0_2;      
388 >      hc = db0c_2;
389 >      h1 = h - hc;
390 >      h2 = h1 - rmRc *db0c_3;
391 >      h3 = h2 - rmRc2*db0c_4;
392 >      h4 = h3 - rmRc3*db0c_5;
393 >
394 >      s = db0_3;      
395 >      sc = db0c_3;
396 >      s2 = s - sc;
397 >      s3 = s2 - rmRc *db0c_4;
398 >      s4 = s3 - rmRc2*db0c_5;
399 >
400 >      t = db0_4;      
401 >      tc = db0c_4;
402 >      t3 = t - tc;
403 >      t4 = t3 - rmRc *db0c_5;
404 >      
405 >      u = db0_5;        
406 >      uc = db0c_5;
407 >      u4 = u - uc;
408 >
409 >      // in what follows below, the various v functions are used for
410 >      // potentials and torques, while the w functions show up in the
411 >      // forces.
412 >
413 >      switch (summationMethod_) {
414 >      case esm_SHIFTED_FORCE:
415 >                
416 >        v01 = f - fc - rmRc*gc;
417 >        v11 = g - gc - rmRc*hc;
418 >        v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
419 >        v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
420 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
421 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
422 >          - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
423 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
424 >          - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
425 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
426 >          - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
427 >        
428 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
429 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
430 >          - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
431 >
432 >        dv01 = g - gc;
433 >        dv11 = h - hc;
434 >        dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
435 >        dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);        
436 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
437 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
438 >          - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
439 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
440 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
441 >          - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
442 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
443 >          - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
444 >        
445 >        break;
446 >
447 >      case esm_TAYLOR_SHIFTED:
448 >        
449 >        v01 = f0;
450 >        v11 = g1;
451 >        v21 = g2 * ri;
452 >        v22 = h2 - v21;
453 >        v31 = (h3 - g3 * ri) * ri;
454 >        v32 = s3 - 3.0*v31;
455 >        v41 = (h4 - g4 * ri) * ri2;
456 >        v42 = s4 * ri - 3.0*v41;
457 >        v43 = t4 - 6.0*v42 - 3.0*v41;
458 >
459 >        dv01 = g0;
460 >        dv11 = h1;
461 >        dv21 = (h2 - g2*ri)*ri;
462 >        dv22 = (s2 - (h2 - g2*ri)*ri);
463 >        dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
464 >        dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
465 >        dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
466 >        dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
467 >        dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
468 >
469 >        break;
470 >
471 >      case esm_SHIFTED_POTENTIAL:
472 >
473 >        v01 = f - fc;
474 >        v11 = g - gc;
475 >        v21 = g*ri - gc*ric;
476 >        v22 = h - g*ri - (hc - gc*ric);
477 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
478 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
479 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
480 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
481 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
482 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
483 >
484 >        dv01 = g;
485 >        dv11 = h;
486 >        dv21 = (h - g*ri)*ri;
487 >        dv22 = (s - (h - g*ri)*ri);
488 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
489 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
490 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
491 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
492 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
493 >
494 >        break;
495 >
496 >      case esm_SWITCHING_FUNCTION:
497 >      case esm_HARD:
498 >      case esm_EWALD_FULL:
499 >
500 >        v01 = f;
501 >        v11 = g;
502 >        v21 = g*ri;
503 >        v22 = h - g*ri;
504 >        v31 = (h-g*ri)*ri;
505 >        v32 = (s - 3.0*(h-g*ri)*ri);
506 >        v41 = (h - g*ri)*ri2;
507 >        v42 = (s-3.0*(h-g*ri)*ri)*ri;        
508 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
509 >
510 >        dv01 = g;
511 >        dv11 = h;
512 >        dv21 = (h - g*ri)*ri;
513 >        dv22 = (s - (h - g*ri)*ri);
514 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
515 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
516 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
517 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
518 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
519 >
520 >        break;
521 >
522 >      case esm_REACTION_FIELD:
523 >        
524 >        // following DL_POLY's lead for shifting the image charge potential:
525 >        f = b0 + preRF_ * r2;
526 >        fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
527 >
528 >        g = db0_1 + preRF_ * 2.0 * r;        
529 >        gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
530 >
531 >        h = db0_2 + preRF_ * 2.0;
532 >        hc = db0c_2 + preRF_ * 2.0;
533 >
534 >        v01 = f - fc;
535 >        v11 = g - gc;
536 >        v21 = g*ri - gc*ric;
537 >        v22 = h - g*ri - (hc - gc*ric);
538 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
539 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
540 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
541 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
542 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
543 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
544 >
545 >        dv01 = g;
546 >        dv11 = h;
547 >        dv21 = (h - g*ri)*ri;
548 >        dv22 = (s - (h - g*ri)*ri);
549 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
550 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
551 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
552 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
553 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
554 >
555 >        break;
556 >                
557 >      case esm_EWALD_PME:
558 >      case esm_EWALD_SPME:
559 >      default :
560 >        map<string, ElectrostaticSummationMethod>::iterator i;
561 >        std::string meth;
562 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
563 >          if ((*i).second == summationMethod_) meth = (*i).first;
564 >        }
565 >        sprintf( painCave.errMsg,
566 >                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
567 >                 "\thas not been implemented yet. Please select one of:\n"
568 >                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
569 >                 meth.c_str() );
570 >        painCave.isFatal = 1;
571 >        simError();
572 >        break;      
573 >      }
574 >
575 >      // Add these computed values to the storage vectors for spline creation:
576 >      v01v.push_back(v01);
577 >      v11v.push_back(v11);
578 >      v21v.push_back(v21);
579 >      v22v.push_back(v22);
580 >      v31v.push_back(v31);
581 >      v32v.push_back(v32);      
582 >      v41v.push_back(v41);
583 >      v42v.push_back(v42);
584 >      v43v.push_back(v43);
585      }
273    erfcSpline_ = new CubicSpline();
274    erfcSpline_->addPoints(rvals, yvals);
275    haveElectroSpline_ = true;
586  
587 +    // construct the spline structures and fill them with the values we've
588 +    // computed:
589 +
590 +    v01s = new CubicSpline();
591 +    v01s->addPoints(rv, v01v);
592 +    v11s = new CubicSpline();
593 +    v11s->addPoints(rv, v11v);
594 +    v21s = new CubicSpline();
595 +    v21s->addPoints(rv, v21v);
596 +    v22s = new CubicSpline();
597 +    v22s->addPoints(rv, v22v);
598 +    v31s = new CubicSpline();
599 +    v31s->addPoints(rv, v31v);
600 +    v32s = new CubicSpline();
601 +    v32s->addPoints(rv, v32v);
602 +    v41s = new CubicSpline();
603 +    v41s->addPoints(rv, v41v);
604 +    v42s = new CubicSpline();
605 +    v42s->addPoints(rv, v42v);
606 +    v43s = new CubicSpline();
607 +    v43s->addPoints(rv, v43v);
608 +
609 +    haveElectroSplines_ = true;
610 +
611      initialized_ = true;
612    }
613        
614    void Electrostatic::addType(AtomType* atomType){
615 <
615 >    
616      ElectrostaticAtomData electrostaticAtomData;
617      electrostaticAtomData.is_Charge = false;
618      electrostaticAtomData.is_Dipole = false;
285    electrostaticAtomData.is_SplitDipole = false;
619      electrostaticAtomData.is_Quadrupole = false;
620      electrostaticAtomData.is_Fluctuating = false;
621  
# Line 297 | Line 630 | namespace OpenMD {
630      if (ma.isMultipole()) {
631        if (ma.isDipole()) {
632          electrostaticAtomData.is_Dipole = true;
633 <        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
633 >        electrostaticAtomData.dipole = ma.getDipole();
634        }
302      if (ma.isSplitDipole()) {
303        electrostaticAtomData.is_SplitDipole = true;
304        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305      }
635        if (ma.isQuadrupole()) {
307        // Quadrupoles in OpenMD are set as the diagonal elements
308        // of the diagonalized traceless quadrupole moment tensor.
309        // The column vectors of the unitary matrix that diagonalizes
310        // the quadrupole moment tensor become the eFrame (or the
311        // electrostatic version of the body-fixed frame.
636          electrostaticAtomData.is_Quadrupole = true;
637 <        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
637 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
638        }
639      }
640      
# Line 324 | Line 648 | namespace OpenMD {
648        electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
649      }
650  
651 <    pair<map<int,AtomType*>::iterator,bool> ret;    
652 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
653 <                                                        atomType) );
651 >    int atid = atomType->getIdent();
652 >    int etid = Etypes.size();
653 >    int fqtid = FQtypes.size();
654 >
655 >    pair<set<int>::iterator,bool> ret;    
656 >    ret = Etypes.insert( atid );
657      if (ret.second == false) {
658        sprintf( painCave.errMsg,
659                 "Electrostatic already had a previous entry with ident %d\n",
660 <               atomType->getIdent() );
660 >               atid);
661        painCave.severity = OPENMD_INFO;
662        painCave.isFatal = 0;
663        simError();        
664      }
665      
666 <    ElectrostaticMap[atomType] = electrostaticAtomData;  
666 >    Etids[ atid ] = etid;
667 >    ElectrostaticMap.push_back(electrostaticAtomData);
668  
669 <    // Now, iterate over all known types and add to the mixing map:
670 <    
671 <    map<AtomType*, ElectrostaticAtomData>::iterator it;
672 <    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
673 <      AtomType* atype2 = (*it).first;
674 <      ElectrostaticAtomData eaData2 = (*it).second;
675 <      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
676 <        
669 >    if (electrostaticAtomData.is_Fluctuating) {
670 >      ret = FQtypes.insert( atid );
671 >      if (ret.second == false) {
672 >        sprintf( painCave.errMsg,
673 >                 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
674 >                 atid );
675 >        painCave.severity = OPENMD_INFO;
676 >        painCave.isFatal = 0;
677 >        simError();        
678 >      }
679 >      FQtids[atid] = fqtid;
680 >      Jij[fqtid].resize(nFlucq_);
681 >
682 >      // Now, iterate over all known fluctuating and add to the
683 >      // coulomb integral map:
684 >      
685 >      std::set<int>::iterator it;
686 >      for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {    
687 >        int etid2 = Etids[ (*it) ];
688 >        int fqtid2 = FQtids[ (*it) ];
689 >        ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
690          RealType a = electrostaticAtomData.slaterZeta;
691          RealType b = eaData2.slaterZeta;
692          int m = electrostaticAtomData.slaterN;
693          int n = eaData2.slaterN;
694 <
694 >        
695          // Create the spline of the coulombic integral for s-type
696          // Slater orbitals.  Add a 2 angstrom safety window to deal
697          // with cutoffGroups that have charged atoms longer than the
698          // cutoffRadius away from each other.
699 <
699 >        
700          RealType rval;
701          RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
702          vector<RealType> rvals;
703 <        vector<RealType> J1vals;
704 <        vector<RealType> J2vals;
705 <        for (int i = 0; i < np_; i++) {
703 >        vector<RealType> Jvals;
704 >        // don't start at i = 0, as rval = 0 is undefined for the
705 >        // slater overlap integrals.
706 >        for (int i = 1; i < np_+1; i++) {
707            rval = RealType(i) * dr;
708            rvals.push_back(rval);
709 <          J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
710 <          // may not be necessary if Slater coulomb integral is symmetric
711 <          J2vals.push_back(eaData2.hardness *  sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
709 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
710 >                                       PhysicalConstants::angstromToBohr ) *
711 >                          PhysicalConstants::hartreeToKcal );
712          }
371
372        CubicSpline* J1 = new CubicSpline();
373        J1->addPoints(rvals, J1vals);
374        CubicSpline* J2 = new CubicSpline();
375        J2->addPoints(rvals, J2vals);
713          
714 <        pair<AtomType*, AtomType*> key1, key2;
715 <        key1 = make_pair(atomType, atype2);
716 <        key2 = make_pair(atype2, atomType);
717 <        
718 <        Jij[key1] = J1;
719 <        Jij[key2] = J2;
720 <      }
384 <    }
385 <
714 >        CubicSpline* J = new CubicSpline();
715 >        J->addPoints(rvals, Jvals);
716 >        Jij[fqtid][fqtid2] = J;
717 >        Jij[fqtid2].resize( nFlucq_ );
718 >        Jij[fqtid2][fqtid] = J;
719 >      }      
720 >    }      
721      return;
722    }
723    
724    void Electrostatic::setCutoffRadius( RealType rCut ) {
725      cutoffRadius_ = rCut;
391    rrf_ = cutoffRadius_;
726      haveCutoffRadius_ = true;
727    }
728  
395  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
396    rt_ = rSwitch;
397  }
729    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
730      summationMethod_ = esm;
731    }
# Line 412 | Line 743 | namespace OpenMD {
743  
744    void Electrostatic::calcForce(InteractionData &idat) {
745  
746 <    // utility variables.  Should clean these up and use the Vector3d and
747 <    // Mat3x3d to replace as many as we can in future versions:
746 >    if (!initialized_) initialize();
747 >    
748 >    data1 = ElectrostaticMap[Etids[idat.atid1]];
749 >    data2 = ElectrostaticMap[Etids[idat.atid2]];
750  
751 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
752 <    RealType qxx_i, qyy_i, qzz_i;
753 <    RealType qxx_j, qyy_j, qzz_j;
754 <    RealType cx_i, cy_i, cz_i;
755 <    RealType cx_j, cy_j, cz_j;
756 <    RealType cx2, cy2, cz2;
757 <    RealType ct_i, ct_j, ct_ij, a1;
758 <    RealType riji, ri, ri2, ri3, ri4;
759 <    RealType pref, vterm, epot, dudr;
760 <    RealType vpair(0.0);
761 <    RealType scale, sc2;
762 <    RealType pot_term, preVal, rfVal;
763 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
764 <    RealType preSw, preSwSc;
432 <    RealType c1, c2, c3, c4;
433 <    RealType erfcVal(1.0), derfcVal(0.0);
434 <    RealType BigR;
435 <    RealType two(2.0), three(3.0);
751 >    U = 0.0;  // Potential
752 >    F.zero();  // Force
753 >    Ta.zero(); // Torque on site a
754 >    Tb.zero(); // Torque on site b
755 >    Ea.zero(); // Electric field at site a
756 >    Eb.zero(); // Electric field at site b
757 >    dUdCa = 0.0; // fluctuating charge force at site a
758 >    dUdCb = 0.0; // fluctuating charge force at site a
759 >    
760 >    // Indirect interactions mediated by the reaction field.
761 >    indirect_Pot = 0.0;   // Potential
762 >    indirect_F.zero();    // Force
763 >    indirect_Ta.zero();   // Torque on site a
764 >    indirect_Tb.zero();   // Torque on site b
765  
766 <    Vector3d Q_i, Q_j;
767 <    Vector3d ux_i, uy_i, uz_i;
439 <    Vector3d ux_j, uy_j, uz_j;
440 <    Vector3d dudux_i, duduy_i, duduz_i;
441 <    Vector3d dudux_j, duduy_j, duduz_j;
442 <    Vector3d rhatdot2, rhatc4;
443 <    Vector3d dVdr;
766 >    // Excluded potential that is still computed for fluctuating charges
767 >    excluded_Pot= 0.0;
768  
445    // variables for indirect (reaction field) interactions for excluded pairs:
446    RealType indirect_Pot(0.0);
447    RealType indirect_vpair(0.0);
448    Vector3d indirect_dVdr(V3Zero);
449    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
769  
451    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452    pair<RealType, RealType> res;
453    
454    // splines for coulomb integrals
455    CubicSpline* J1;
456    CubicSpline* J2;
457    
458    if (!initialized_) initialize();
459    
460    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
461    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
462    
770      // some variables we'll need independent of electrostatic type:
771  
772 <    riji = 1.0 /  *(idat.rij) ;
773 <    Vector3d rhat =  *(idat.d)   * riji;
774 <
772 >    ri = 1.0 /  *(idat.rij);
773 >    rhat =  *(idat.d)  * ri;
774 >      
775      // logicals
776  
777 <    bool i_is_Charge = data1.is_Charge;
778 <    bool i_is_Dipole = data1.is_Dipole;
779 <    bool i_is_SplitDipole = data1.is_SplitDipole;
780 <    bool i_is_Quadrupole = data1.is_Quadrupole;
474 <    bool i_is_Fluctuating = data1.is_Fluctuating;
777 >    a_is_Charge = data1.is_Charge;
778 >    a_is_Dipole = data1.is_Dipole;
779 >    a_is_Quadrupole = data1.is_Quadrupole;
780 >    a_is_Fluctuating = data1.is_Fluctuating;
781  
782 <    bool j_is_Charge = data2.is_Charge;
783 <    bool j_is_Dipole = data2.is_Dipole;
784 <    bool j_is_SplitDipole = data2.is_SplitDipole;
785 <    bool j_is_Quadrupole = data2.is_Quadrupole;
786 <    bool j_is_Fluctuating = data2.is_Fluctuating;
782 >    b_is_Charge = data2.is_Charge;
783 >    b_is_Dipole = data2.is_Dipole;
784 >    b_is_Quadrupole = data2.is_Quadrupole;
785 >    b_is_Fluctuating = data2.is_Fluctuating;
786 >
787 >    // Obtain all of the required radial function values from the
788 >    // spline structures:
789      
790 <    if (i_is_Charge) {
791 <      q_i = data1.fixedCharge;
790 >    // needed for fields (and forces):
791 >    if (a_is_Charge || b_is_Charge) {
792 >      v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
793 >    }
794 >    if (a_is_Dipole || b_is_Dipole) {
795 >      v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
796 >      v11or = ri * v11;
797 >    }
798 >    if (a_is_Quadrupole || b_is_Quadrupole ||  (a_is_Dipole && b_is_Dipole)) {
799 >      v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
800 >      v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
801 >      v22or = ri * v22;
802 >    }      
803  
804 <      if (i_is_Fluctuating) {
805 <        q_i += *(idat.flucQ1);
804 >    // needed for potentials (and forces and torques):
805 >    if ((a_is_Dipole && b_is_Quadrupole) ||
806 >        (b_is_Dipole && a_is_Quadrupole)) {
807 >      v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
808 >      v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
809 >      v31or = v31 * ri;
810 >      v32or = v32 * ri;
811 >    }
812 >    if (a_is_Quadrupole && b_is_Quadrupole) {
813 >      v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
814 >      v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
815 >      v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
816 >      v42or = v42 * ri;
817 >      v43or = v43 * ri;
818 >    }
819 >
820 >    // calculate the single-site contributions (fields, etc).
821 >    
822 >    if (a_is_Charge) {
823 >      C_a = data1.fixedCharge;
824 >      
825 >      if (a_is_Fluctuating) {
826 >        C_a += *(idat.flucQ1);
827        }
828        
829        if (idat.excluded) {
830 <        *(idat.skippedCharge2) += q_i;
830 >        *(idat.skippedCharge2) += C_a;
831 >      } else {
832 >        // only do the field if we're not excluded:
833 >        Eb -= C_a *  pre11_ * dv01 * rhat;
834        }
835      }
836 <
837 <    if (i_is_Dipole) {
838 <      mu_i = data1.dipole_moment;
839 <      uz_i = idat.eFrame1->getColumn(2);
840 <      
841 <      ct_i = dot(uz_i, rhat);
842 <
500 <      if (i_is_SplitDipole)
501 <        d_i = data1.split_dipole_distance;
502 <      
503 <      duduz_i = V3Zero;
836 >    
837 >    if (a_is_Dipole) {
838 >      D_a = *(idat.dipole1);
839 >      rdDa = dot(rhat, D_a);
840 >      rxDa = cross(rhat, D_a);
841 >      if (!idat.excluded)
842 >        Eb -=  pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
843      }
844      
845 <    if (i_is_Quadrupole) {
846 <      Q_i = data1.quadrupole_moments;
847 <      qxx_i = Q_i.x();
848 <      qyy_i = Q_i.y();
849 <      qzz_i = Q_i.z();
850 <      
851 <      ux_i = idat.eFrame1->getColumn(0);
852 <      uy_i = idat.eFrame1->getColumn(1);
853 <      uz_i = idat.eFrame1->getColumn(2);
854 <
516 <      cx_i = dot(ux_i, rhat);
517 <      cy_i = dot(uy_i, rhat);
518 <      cz_i = dot(uz_i, rhat);
519 <
520 <      dudux_i = V3Zero;
521 <      duduy_i = V3Zero;
522 <      duduz_i = V3Zero;
845 >    if (a_is_Quadrupole) {
846 >      Q_a = *(idat.quadrupole1);
847 >      trQa =  Q_a.trace();
848 >      Qar =   Q_a * rhat;
849 >      rQa = rhat * Q_a;
850 >      rdQar = dot(rhat, Qar);
851 >      rxQar = cross(rhat, Qar);
852 >      if (!idat.excluded)
853 >        Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
854 >                        + rdQar * rhat * (dv22 - 2.0*v22or));
855      }
856 <
857 <    if (j_is_Charge) {
858 <      q_j = data2.fixedCharge;
859 <
860 <      if (j_is_Fluctuating)
861 <        q_j += *(idat.flucQ2);
862 <
856 >    
857 >    if (b_is_Charge) {
858 >      C_b = data2.fixedCharge;
859 >      
860 >      if (b_is_Fluctuating)
861 >        C_b += *(idat.flucQ2);
862 >      
863        if (idat.excluded) {
864 <        *(idat.skippedCharge1) += q_j;
864 >        *(idat.skippedCharge1) += C_b;
865 >      } else {
866 >        // only do the field if we're not excluded:
867 >        Ea += C_b *  pre11_ * dv01 * rhat;
868        }
869      }
535
536
537    if (j_is_Dipole) {
538      mu_j = data2.dipole_moment;
539      uz_j = idat.eFrame2->getColumn(2);
540      
541      ct_j = dot(uz_j, rhat);
542
543      if (j_is_SplitDipole)
544        d_j = data2.split_dipole_distance;
545      
546      duduz_j = V3Zero;
547    }
870      
871 <    if (j_is_Quadrupole) {
872 <      Q_j = data2.quadrupole_moments;
873 <      qxx_j = Q_j.x();
874 <      qyy_j = Q_j.y();
875 <      qzz_j = Q_j.z();
876 <      
555 <      ux_j = idat.eFrame2->getColumn(0);
556 <      uy_j = idat.eFrame2->getColumn(1);
557 <      uz_j = idat.eFrame2->getColumn(2);
558 <
559 <      cx_j = dot(ux_j, rhat);
560 <      cy_j = dot(uy_j, rhat);
561 <      cz_j = dot(uz_j, rhat);
562 <
563 <      dudux_j = V3Zero;
564 <      duduy_j = V3Zero;
565 <      duduz_j = V3Zero;
871 >    if (b_is_Dipole) {
872 >      D_b = *(idat.dipole2);
873 >      rdDb = dot(rhat, D_b);
874 >      rxDb = cross(rhat, D_b);
875 >      if (!idat.excluded)
876 >        Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
877      }
878      
879 <    if (i_is_Fluctuating && j_is_Fluctuating) {
880 <      J1 = Jij[idat.atypes];
881 <      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
879 >    if (b_is_Quadrupole) {
880 >      Q_b = *(idat.quadrupole2);
881 >      trQb =  Q_b.trace();
882 >      Qbr =   Q_b * rhat;
883 >      rQb = rhat * Q_b;
884 >      rdQbr = dot(rhat, Qbr);
885 >      rxQbr = cross(rhat, Qbr);
886 >      if (!idat.excluded)
887 >        Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
888 >                        + rdQbr * rhat * (dv22 - 2.0*v22or));
889      }
572
573    epot = 0.0;
574    dVdr = V3Zero;
890      
891 <    if (i_is_Charge) {
891 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
892 >      J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
893 >    }    
894 >    
895 >    if (a_is_Charge) {    
896        
897 <      if (j_is_Charge) {
898 <        if (screeningMethod_ == DAMPED) {
899 <          // assemble the damping variables
900 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
901 <          //erfcVal = res.first;
902 <          //derfcVal = res.second;
897 >      if (b_is_Charge) {
898 >        pref =  pre11_ * *(idat.electroMult);      
899 >        U  += C_a * C_b * pref * v01;
900 >        F  += C_a * C_b * pref * dv01 * rhat;
901 >        
902 >        // If this is an excluded pair, there are still indirect
903 >        // interactions via the reaction field we must worry about:
904  
905 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
906 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
905 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
906 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
907 >          indirect_Pot += rfContrib;
908 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
909 >        }
910 >        
911 >        // Fluctuating charge forces are handled via Coulomb integrals
912 >        // for excluded pairs (i.e. those connected via bonds) and
913 >        // with the standard charge-charge interaction otherwise.
914  
915 <          c1 = erfcVal * riji;
916 <          c2 = (-derfcVal + c1) * riji;
915 >        if (idat.excluded) {          
916 >          if (a_is_Fluctuating || b_is_Fluctuating) {
917 >            coulInt = J->getValueAt( *(idat.rij) );
918 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
919 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
920 >            excluded_Pot += C_a * C_b * coulInt;
921 >          }          
922          } else {
923 <          c1 = riji;
924 <          c2 = c1 * riji;
923 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
924 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
925          }
926 +      }
927  
928 <        preVal =  *(idat.electroMult) * pre11_;
929 <        
930 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
931 <          vterm = preVal * (c1 - c1c_);
932 <          dudr  = - *(idat.sw)  * preVal * c2;
928 >      if (b_is_Dipole) {
929 >        pref =  pre12_ * *(idat.electroMult);        
930 >        U  += C_a * pref * v11 * rdDb;
931 >        F  += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
932 >        Tb += C_a * pref * v11 * rxDb;
933  
934 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
602 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
603 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
934 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
935  
936 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
937 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
936 >        // Even if we excluded this pair from direct interactions, we
937 >        // still have the reaction-field-mediated charge-dipole
938 >        // interaction:
939  
940 <          vterm = preVal * ( riji + rfVal );            
941 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
942 <          
943 <          // if this is an excluded pair, there are still indirect
944 <          // interactions via the reaction field we must worry about:
613 <
614 <          if (idat.excluded) {
615 <            indirect_vpair += preVal * rfVal;
616 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
617 <            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
618 <          }
619 <          
620 <        } else {
621 <
622 <          vterm = preVal * riji * erfcVal;          
623 <          dudr  = -  *(idat.sw)  * preVal * c2;
624 <          
940 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
941 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
942 >          indirect_Pot += rfContrib * rdDb;
943 >          indirect_F   += rfContrib * D_b / (*idat.rij);
944 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
945          }
946 <        
627 <        vpair += vterm * q_i * q_j;
628 <        epot +=  *(idat.sw)  * vterm * q_i * q_j;
629 <        dVdr += dudr * rhat * q_i * q_j;
946 >      }
947  
948 <        if (i_is_Fluctuating) {
949 <          if (idat.excluded) {
950 <            // vFluc1 is the difference between the direct coulomb integral
951 <            // and the normal 1/r-like  interaction between point charges.
952 <            coulInt = J1->getValueAt( *(idat.rij) );
953 <            vFluc1 = coulInt - (*(idat.sw) * vterm);
637 <          } else {
638 <            vFluc1 = 0.0;
639 <          }
640 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641 <        }
948 >      if (b_is_Quadrupole) {
949 >        pref = pre14_ * *(idat.electroMult);
950 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
951 >        F  +=  C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
952 >        F  +=  C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
953 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
954  
955 <        if (j_is_Fluctuating) {
644 <          if (idat.excluded) {
645 <            // vFluc2 is the difference between the direct coulomb integral
646 <            // and the normal 1/r-like  interaction between point charges.
647 <            coulInt = J2->getValueAt( *(idat.rij) );
648 <            vFluc2 = coulInt - (*(idat.sw) * vterm);
649 <          } else {
650 <            vFluc2 = 0.0;
651 <          }
652 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653 <        }
654 <          
655 <
955 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
956        }
957 +    }
958  
959 <      if (j_is_Dipole) {
659 <        // pref is used by all the possible methods
660 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
661 <        preSw =  *(idat.sw)  * pref;
959 >    if (a_is_Dipole) {
960  
961 <        if (summationMethod_ == esm_REACTION_FIELD) {
962 <          ri2 = riji * riji;
665 <          ri3 = ri2 * riji;
666 <    
667 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
668 <          vpair += vterm;
669 <          epot +=  *(idat.sw)  * vterm;
961 >      if (b_is_Charge) {
962 >        pref = pre12_ * *(idat.electroMult);
963  
964 <          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
965 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
964 >        U  -= C_b * pref * v11 * rdDa;
965 >        F  -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
966 >        Ta -= C_b * pref * v11 * rxDa;
967  
968 <          // Even if we excluded this pair from direct interactions,
675 <          // we still have the reaction-field-mediated charge-dipole
676 <          // interaction:
968 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
969  
970 <          if (idat.excluded) {
971 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
972 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
973 <            indirect_dVdr += preSw * preRF2_ * uz_j;
974 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
975 <          }
976 <                      
977 <        } else {
686 <          // determine the inverse r used if we have split dipoles
687 <          if (j_is_SplitDipole) {
688 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
689 <            ri = 1.0 / BigR;
690 <            scale =  *(idat.rij)  * ri;
691 <          } else {
692 <            ri = riji;
693 <            scale = 1.0;
694 <          }
695 <          
696 <          sc2 = scale * scale;
697 <
698 <          if (screeningMethod_ == DAMPED) {
699 <            // assemble the damping variables
700 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 <            //erfcVal = res.first;
702 <            //derfcVal = res.second;
703 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705 <            c1 = erfcVal * ri;
706 <            c2 = (-derfcVal + c1) * ri;
707 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
708 <          } else {
709 <            c1 = ri;
710 <            c2 = c1 * ri;
711 <            c3 = 3.0 * c2 * ri;
712 <          }
713 <            
714 <          c2ri = c2 * ri;
715 <
716 <          // calculate the potential
717 <          pot_term =  scale * c2;
718 <          vterm = -pref * ct_j * pot_term;
719 <          vpair += vterm;
720 <          epot +=  *(idat.sw)  * vterm;
721 <            
722 <          // calculate derivatives for forces and torques
723 <
724 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
725 <          duduz_j += -preSw * pot_term * rhat;
726 <
970 >        // Even if we excluded this pair from direct interactions,
971 >        // we still have the reaction-field-mediated charge-dipole
972 >        // interaction:
973 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
974 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
975 >          indirect_Pot -= rfContrib * rdDa;
976 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
977 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
978          }
728        if (i_is_Fluctuating) {
729          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730        }
979        }
980  
981 <      if (j_is_Quadrupole) {
982 <        // first precalculate some necessary variables
983 <        cx2 = cx_j * cx_j;
984 <        cy2 = cy_j * cy_j;
737 <        cz2 = cz_j * cz_j;
738 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
739 <          
740 <        if (screeningMethod_ == DAMPED) {
741 <          // assemble the damping variables
742 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 <          //erfcVal = res.first;
744 <          //derfcVal = res.second;
745 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747 <          c1 = erfcVal * riji;
748 <          c2 = (-derfcVal + c1) * riji;
749 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
750 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
751 <        } else {
752 <          c1 = riji;
753 <          c2 = c1 * riji;
754 <          c3 = 3.0 * c2 * riji;
755 <          c4 = 5.0 * c3 * riji * riji;
756 <        }
981 >      if (b_is_Dipole) {
982 >        pref = pre22_ * *(idat.electroMult);
983 >        DadDb = dot(D_a, D_b);
984 >        DaxDb = cross(D_a, D_b);
985  
986 <        // precompute variables for convenience
987 <        preSw =  *(idat.sw)  * pref;
988 <        c2ri = c2 * riji;
989 <        c3ri = c3 * riji;
990 <        c4rij = c4 *  *(idat.rij) ;
763 <        rhatdot2 = two * rhat * c3;
764 <        rhatc4 = rhat * c4rij;
986 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
987 >        F  -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
988 >        F  -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
989 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
990 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
991  
992 <        // calculate the potential
993 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
994 <                     qyy_j * (cy2*c3 - c2ri) +
995 <                     qzz_j * (cz2*c3 - c2ri) );
996 <        vterm = pref * pot_term;
997 <        vpair += vterm;
998 <        epot +=  *(idat.sw)  * vterm;
999 <                
774 <        // calculate derivatives for the forces and torques
775 <
776 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 <                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 <                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779 <                          
780 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 <        if (i_is_Fluctuating) {
784 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
992 >        // Even if we excluded this pair from direct interactions, we
993 >        // still have the reaction-field-mediated dipole-dipole
994 >        // interaction:
995 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
996 >          rfContrib = -pref * preRF_ * 2.0;
997 >          indirect_Pot += rfContrib * DadDb;
998 >          indirect_Ta  += rfContrib * DaxDb;
999 >          indirect_Tb  -= rfContrib * DaxDb;
1000          }
1001 +      }
1002  
1003 +      if (b_is_Quadrupole) {
1004 +        pref = pre24_ * *(idat.electroMult);
1005 +        DadQb = D_a * Q_b;
1006 +        DadQbr = dot(D_a, Qbr);
1007 +        DaxQbr = cross(D_a, Qbr);
1008 +
1009 +        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1010 +        F  -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1011 +        F  -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1012 +        F  -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1013 +        F  -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1014 +        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1015 +        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1016 +                      - 2.0*rdDa*rxQbr*v32);
1017        }
1018      }
789    
790    if (i_is_Dipole) {
1019  
1020 <      if (j_is_Charge) {
1021 <        // variables used by all the methods
1022 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1023 <        preSw =  *(idat.sw)  * pref;
1020 >    if (a_is_Quadrupole) {
1021 >      if (b_is_Charge) {
1022 >        pref = pre14_ * *(idat.electroMult);
1023 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
1024 >        F  += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1025 >        F  += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1026 >        Ta += C_b * pref * 2.0 * rxQar * v22;
1027  
1028 <        if (summationMethod_ == esm_REACTION_FIELD) {
1028 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1029 >      }
1030 >      if (b_is_Dipole) {
1031 >        pref = pre24_ * *(idat.electroMult);
1032 >        DbdQa = D_b * Q_a;
1033 >        DbdQar = dot(D_b, Qar);
1034 >        DbxQar = cross(D_b, Qar);
1035  
1036 <          ri2 = riji * riji;
1037 <          ri3 = ri2 * riji;
1036 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1037 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1038 >        F  += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1039 >        F  += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1040 >        F  += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1041 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1042 >                      + 2.0*rdDb*rxQar*v32);
1043 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1044 >      }
1045 >      if (b_is_Quadrupole) {
1046 >        pref = pre44_ * *(idat.electroMult);  // yes
1047 >        QaQb = Q_a * Q_b;
1048 >        trQaQb = QaQb.trace();
1049 >        rQaQb = rhat * QaQb;
1050 >        QaQbr = QaQb * rhat;
1051 >        QaxQb = cross(Q_a, Q_b);
1052 >        rQaQbr = dot(rQa, Qbr);
1053 >        rQaxQbr = cross(rQa, Qbr);
1054 >        
1055 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1056 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1057 >        U  += pref * (rdQar * rdQbr) * v43;
1058  
1059 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1060 <          vpair += vterm;
1061 <          epot +=  *(idat.sw)  * vterm;
805 <          
806 <          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
807 <          
808 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1059 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1060 >        F  += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1061 >        F  += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1062  
1063 <          // Even if we excluded this pair from direct interactions,
1064 <          // we still have the reaction-field-mediated charge-dipole
1065 <          // interaction:
813 <
814 <          if (idat.excluded) {
815 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
816 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
817 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
818 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
819 <          }
820 <            
821 <        } else {
822 <          
823 <          // determine inverse r if we are using split dipoles
824 <          if (i_is_SplitDipole) {
825 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
826 <            ri = 1.0 / BigR;
827 <            scale =  *(idat.rij)  * ri;
828 <          } else {
829 <            ri = riji;
830 <            scale = 1.0;
831 <          }
832 <          
833 <          sc2 = scale * scale;
834 <            
835 <          if (screeningMethod_ == DAMPED) {
836 <            // assemble the damping variables
837 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 <            //erfcVal = res.first;
839 <            //derfcVal = res.second;
840 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842 <            c1 = erfcVal * ri;
843 <            c2 = (-derfcVal + c1) * ri;
844 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
845 <          } else {
846 <            c1 = ri;
847 <            c2 = c1 * ri;
848 <            c3 = 3.0 * c2 * ri;
849 <          }
850 <          
851 <          c2ri = c2 * ri;
852 <              
853 <          // calculate the potential
854 <          pot_term = c2 * scale;
855 <          vterm = pref * ct_i * pot_term;
856 <          vpair += vterm;
857 <          epot +=  *(idat.sw)  * vterm;
1063 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1064 >        F  += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1065 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1066  
1067 <          // calculate derivatives for the forces and torques
1068 <          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
1069 <          duduz_i += preSw * pot_term * rhat;
1070 <        }
1067 >        Ta += pref * (- 4.0 * QaxQb * v41);
1068 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1069 >                      + 4.0 * cross(rhat, QaQbr)
1070 >                      - 4.0 * rQaxQbr) * v42;
1071 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1072  
864        if (j_is_Fluctuating) {
865          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
866        }
1073  
1074 <      }
1074 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1075 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1076 >                      - 4.0 * cross(rQaQb, rhat)
1077 >                      + 4.0 * rQaxQbr) * v42;
1078 >        // Possible replacement for line 2 above:
1079 >        //             + 4.0 * cross(rhat, QbQar)
1080  
1081 <      if (j_is_Dipole) {
871 <        // variables used by all methods
872 <        ct_ij = dot(uz_i, uz_j);
1081 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1082  
874        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
875        preSw =  *(idat.sw)  * pref;
876
877        if (summationMethod_ == esm_REACTION_FIELD) {
878          ri2 = riji * riji;
879          ri3 = ri2 * riji;
880          ri4 = ri2 * ri2;
881
882          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883                           preRF2_ * ct_ij );
884          vpair += vterm;
885          epot +=  *(idat.sw)  * vterm;
886            
887          a1 = 5.0 * ct_i * ct_j - ct_ij;
888            
889          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890
891          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893
894          if (idat.excluded) {
895            indirect_vpair +=  - pref * preRF2_ * ct_ij;
896            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
897            indirect_duduz_i += -preSw * preRF2_ * uz_j;
898            indirect_duduz_j += -preSw * preRF2_ * uz_i;
899          }
900
901        } else {
902          
903          if (i_is_SplitDipole) {
904            if (j_is_SplitDipole) {
905              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906            } else {
907              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
908            }
909            ri = 1.0 / BigR;
910            scale =  *(idat.rij)  * ri;
911          } else {
912            if (j_is_SplitDipole) {
913              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
914              ri = 1.0 / BigR;
915              scale =  *(idat.rij)  * ri;
916            } else {
917              ri = riji;
918              scale = 1.0;
919            }
920          }
921          if (screeningMethod_ == DAMPED) {
922            // assemble damping variables
923            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924            //erfcVal = res.first;
925            //derfcVal = res.second;
926            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928            c1 = erfcVal * ri;
929            c2 = (-derfcVal + c1) * ri;
930            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
931            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
932          } else {
933            c1 = ri;
934            c2 = c1 * ri;
935            c3 = 3.0 * c2 * ri;
936            c4 = 5.0 * c3 * ri * ri;
937          }
938
939          // precompute variables for convenience
940          sc2 = scale * scale;
941          cti3 = ct_i * sc2 * c3;
942          ctj3 = ct_j * sc2 * c3;
943          ctidotj = ct_i * ct_j * sc2;
944          preSwSc = preSw * scale;
945          c2ri = c2 * ri;
946          c3ri = c3 * ri;
947          c4rij = c4 *  *(idat.rij) ;
948
949          // calculate the potential
950          pot_term = (ct_ij * c2ri - ctidotj * c3);
951          vterm = pref * pot_term;
952          vpair += vterm;
953          epot +=  *(idat.sw)  * vterm;
954
955          // calculate derivatives for the forces and torques
956          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
957                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
958          
959          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
960          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
961        }
1083        }
1084      }
1085  
1086 <    if (i_is_Quadrupole) {
1087 <      if (j_is_Charge) {
1088 <        // precompute some necessary variables
968 <        cx2 = cx_i * cx_i;
969 <        cy2 = cy_i * cy_i;
970 <        cz2 = cz_i * cz_i;
971 <
972 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
973 <
974 <        if (screeningMethod_ == DAMPED) {
975 <          // assemble the damping variables
976 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 <          //erfcVal = res.first;
978 <          //derfcVal = res.second;
979 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981 <          c1 = erfcVal * riji;
982 <          c2 = (-derfcVal + c1) * riji;
983 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
984 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
985 <        } else {
986 <          c1 = riji;
987 <          c2 = c1 * riji;
988 <          c3 = 3.0 * c2 * riji;
989 <          c4 = 5.0 * c3 * riji * riji;
990 <        }
991 <          
992 <        // precompute some variables for convenience
993 <        preSw =  *(idat.sw)  * pref;
994 <        c2ri = c2 * riji;
995 <        c3ri = c3 * riji;
996 <        c4rij = c4 *  *(idat.rij) ;
997 <        rhatdot2 = two * rhat * c3;
998 <        rhatc4 = rhat * c4rij;
999 <
1000 <        // calculate the potential
1001 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1002 <                     qyy_i * (cy2 * c3 - c2ri) +
1003 <                     qzz_i * (cz2 * c3 - c2ri) );
1004 <        
1005 <        vterm = pref * pot_term;
1006 <        vpair += vterm;
1007 <        epot +=  *(idat.sw)  * vterm;
1008 <
1009 <        // calculate the derivatives for the forces and torques
1010 <
1011 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 <                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 <                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014 <
1015 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1016 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1017 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1018 <
1019 <        if (j_is_Fluctuating) {
1020 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 <        }
1022 <
1023 <      }
1086 >    if (idat.doElectricField) {
1087 >      *(idat.eField1) += Ea * *(idat.electroMult);
1088 >      *(idat.eField2) += Eb * *(idat.electroMult);
1089      }
1090  
1091 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1092 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1093  
1094      if (!idat.excluded) {
1028      *(idat.vpair) += vpair;
1029      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030      *(idat.f1) += dVdr;
1095        
1096 <      if (i_is_Dipole || i_is_Quadrupole)
1097 <        *(idat.t1) -= cross(uz_i, duduz_i);
1098 <      if (i_is_Quadrupole) {
1035 <        *(idat.t1) -= cross(ux_i, dudux_i);
1036 <        *(idat.t1) -= cross(uy_i, duduy_i);
1037 <      }
1096 >      *(idat.vpair) += U;
1097 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1098 >      *(idat.f1) += F * *(idat.sw);
1099        
1100 <      if (j_is_Dipole || j_is_Quadrupole)
1101 <        *(idat.t2) -= cross(uz_j, duduz_j);
1041 <      if (j_is_Quadrupole) {
1042 <        *(idat.t2) -= cross(uz_j, dudux_j);
1043 <        *(idat.t2) -= cross(uz_j, duduy_j);
1044 <      }
1100 >      if (a_is_Dipole || a_is_Quadrupole)
1101 >        *(idat.t1) += Ta * *(idat.sw);
1102  
1103 +      if (b_is_Dipole || b_is_Quadrupole)
1104 +        *(idat.t2) += Tb * *(idat.sw);
1105 +      
1106      } else {
1107  
1108        // only accumulate the forces and torques resulting from the
1109        // indirect reaction field terms.
1110  
1111 <      *(idat.vpair) += indirect_vpair;
1112 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1113 <      *(idat.f1) += indirect_dVdr;
1111 >      *(idat.vpair) += indirect_Pot;      
1112 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1113 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1114 >      *(idat.f1) += *(idat.sw) * indirect_F;
1115        
1116 <      if (i_is_Dipole)
1117 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1118 <      if (j_is_Dipole)
1119 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1116 >      if (a_is_Dipole || a_is_Quadrupole)
1117 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1118 >            
1119 >      if (b_is_Dipole || b_is_Quadrupole)
1120 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1121      }
1060
1122      return;
1123 <  }  
1123 >  }
1124      
1125    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1126 <    RealType mu1, preVal, self;
1126 >
1127      if (!initialized_) initialize();
1128  
1129 <    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1130 <  
1129 >    ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1130 >    
1131      // logicals
1132      bool i_is_Charge = data.is_Charge;
1133      bool i_is_Dipole = data.is_Dipole;
1134 +    bool i_is_Quadrupole = data.is_Quadrupole;
1135      bool i_is_Fluctuating = data.is_Fluctuating;
1136 <    RealType chg1 = data.fixedCharge;  
1137 <    
1136 >    RealType C_a = data.fixedCharge;  
1137 >    RealType self(0.0), preVal, DdD, trQ, trQQ;
1138 >
1139 >    if (i_is_Dipole) {
1140 >      DdD = data.dipole.lengthSquare();
1141 >    }
1142 >        
1143      if (i_is_Fluctuating) {
1144 <      chg1 += *(sdat.flucQ);
1144 >      C_a += *(sdat.flucQ);
1145        // dVdFQ is really a force, so this is negative the derivative
1146        *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1147 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1148 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1149      }
1150  
1151 <    if (summationMethod_ == esm_REACTION_FIELD) {
1152 <      if (i_is_Dipole) {
1153 <        mu1 = data.dipole_moment;          
1154 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1155 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1156 <        
1157 <        // The self-correction term adds into the reaction field vector
1158 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1159 <        Vector3d ei = preVal * uz_i;
1151 >    switch (summationMethod_) {
1152 >    case esm_REACTION_FIELD:
1153 >      
1154 >      if (i_is_Charge) {
1155 >        // Self potential [see Wang and Hermans, "Reaction Field
1156 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1157 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1158 >        preVal = pre11_ * preRF_ * C_a * C_a;
1159 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1160 >      }
1161  
1162 <        // This looks very wrong.  A vector crossed with itself is zero.
1163 <        *(sdat.t) -= cross(uz_i, ei);
1162 >      if (i_is_Dipole) {
1163 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1164        }
1165 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1166 <      if (i_is_Charge) {        
1167 <        if (screeningMethod_ == DAMPED) {
1168 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1169 <        } else {        
1170 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1171 <        }
1172 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1165 >      
1166 >      break;
1167 >      
1168 >    case esm_SHIFTED_FORCE:
1169 >    case esm_SHIFTED_POTENTIAL:
1170 >    case esm_TAYLOR_SHIFTED:
1171 >    case esm_EWALD_FULL:
1172 >      if (i_is_Charge)
1173 >        self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));      
1174 >      if (i_is_Dipole)
1175 >        self += selfMult2_ * pre22_ * DdD;      
1176 >      if (i_is_Quadrupole) {
1177 >        trQ = data.quadrupole.trace();
1178 >        trQQ = (data.quadrupole * data.quadrupole).trace();
1179 >        self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1180 >        if (i_is_Charge)
1181 >          self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1182        }
1183 +      (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;      
1184 +      break;
1185 +    default:
1186 +      break;
1187      }
1188    }
1189 <
1189 >  
1190    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1191      // This seems to work moderately well as a default.  There's no
1192      // inherent scale for 1/r interactions that we can standardize.
# Line 1111 | Line 1194 | namespace OpenMD {
1194      // cases.
1195      return 12.0;
1196    }
1197 +
1198 +
1199 +  void Electrostatic::ReciprocalSpaceSum(RealType& pot) {
1200 +    
1201 +    RealType kPot = 0.0;
1202 +    RealType kVir = 0.0;
1203 +    
1204 +    const RealType mPoleConverter = 0.20819434; // converts from the
1205 +                                                // internal units of
1206 +                                                // Debye (for dipoles)
1207 +                                                // or Debye-angstroms
1208 +                                                // (for quadrupoles) to
1209 +                                                // electron angstroms or
1210 +                                                // electron-angstroms^2
1211 +    
1212 +    const RealType eConverter = 332.0637778; // convert the
1213 +                                             // Charge-Charge
1214 +                                             // electrostatic
1215 +                                             // interactions into kcal /
1216 +                                             // mol assuming distances
1217 +                                             // are measured in
1218 +                                             // angstroms.
1219 +
1220 +    Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1221 +    Vector3d box = hmat.diagonals();
1222 +    RealType boxMax = box.max();
1223 +    
1224 +    //int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) );
1225 +    int kMax = 7;
1226 +    int kSqMax = kMax*kMax + 2;
1227 +    
1228 +    int kLimit = kMax+1;
1229 +    int kLim2 = 2*kMax+1;
1230 +    int kSqLim = kSqMax;
1231 +    
1232 +    vector<RealType> AK(kSqLim+1, 0.0);
1233 +    RealType xcl = 2.0 * M_PI / box.x();
1234 +    RealType ycl = 2.0 * M_PI / box.y();
1235 +    RealType zcl = 2.0 * M_PI / box.z();
1236 +    RealType rcl = 2.0 * M_PI / boxMax;
1237 +    RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1238 +    
1239 +    if(dampingAlpha_ < 1.0e-12) return;
1240 +    
1241 +    RealType ralph = -0.25/pow(dampingAlpha_,2);
1242 +    
1243 +    // Calculate and store exponential factors  
1244 +    
1245 +    vector<vector<RealType> > elc;
1246 +    vector<vector<RealType> > emc;
1247 +    vector<vector<RealType> > enc;
1248 +    vector<vector<RealType> > els;
1249 +    vector<vector<RealType> > ems;
1250 +    vector<vector<RealType> > ens;
1251 +
1252 +    
1253 +    int nMax = info_->getNAtoms();
1254 +    
1255 +    elc.resize(kLimit+1);
1256 +    emc.resize(kLimit+1);
1257 +    enc.resize(kLimit+1);
1258 +    els.resize(kLimit+1);
1259 +    ems.resize(kLimit+1);
1260 +    ens.resize(kLimit+1);
1261 +
1262 +    for (int j = 0; j < kLimit+1; j++) {
1263 +      elc[j].resize(nMax);
1264 +      emc[j].resize(nMax);
1265 +      enc[j].resize(nMax);
1266 +      els[j].resize(nMax);
1267 +      ems[j].resize(nMax);
1268 +      ens[j].resize(nMax);
1269 +    }
1270 +    
1271 +    Vector3d t( 2.0 * M_PI );
1272 +    t.Vdiv(t, box);
1273 +
1274 +    
1275 +    SimInfo::MoleculeIterator mi;
1276 +    Molecule::AtomIterator ai;
1277 +    int i;
1278 +    Vector3d r;
1279 +    Vector3d tt;
1280 +    
1281 +    for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1282 +         mol = info_->nextMolecule(mi)) {
1283 +      for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1284 +          atom = mol->nextAtom(ai)) {  
1285 +        
1286 +        i = atom->getLocalIndex();
1287 +        r = atom->getPos();
1288 +        info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1289 +        
1290 +        tt.Vmul(t, r);
1291 +
1292 +        elc[1][i] = 1.0;
1293 +        emc[1][i] = 1.0;
1294 +        enc[1][i] = 1.0;
1295 +        els[1][i] = 0.0;
1296 +        ems[1][i] = 0.0;
1297 +        ens[1][i] = 0.0;
1298 +
1299 +        elc[2][i] = cos(tt.x());
1300 +        emc[2][i] = cos(tt.y());
1301 +        enc[2][i] = cos(tt.z());
1302 +        els[2][i] = sin(tt.x());
1303 +        ems[2][i] = sin(tt.y());
1304 +        ens[2][i] = sin(tt.z());
1305 +        
1306 +        for(int l = 3; l <= kLimit; l++) {
1307 +          elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i];
1308 +          emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i];
1309 +          enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i];
1310 +          els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i];
1311 +          ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i];
1312 +          ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i];
1313 +        }
1314 +      }
1315 +    }
1316 +    
1317 +    // Calculate and store AK coefficients:
1318 +    
1319 +    RealType eksq = 1.0;
1320 +    RealType expf = 0.0;
1321 +    if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1322 +    for (i = 1; i <= kSqLim; i++) {
1323 +      RealType rksq = float(i)*rcl*rcl;
1324 +      eksq = expf*eksq;
1325 +      AK[i] = eConverter * eksq/rksq;
1326 +    }
1327 +    
1328 +    /*
1329 +     * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1330 +     * the values of ll, mm and nn are selected so that the symmetry of
1331 +     * reciprocal lattice is taken into account i.e. the following
1332 +     * rules apply.
1333 +     *
1334 +     * ll ranges over the values 0 to kMax only.
1335 +     *
1336 +     * mm ranges over 0 to kMax when ll=0 and over
1337 +     *            -kMax to kMax otherwise.
1338 +     * nn ranges over 1 to kMax when ll=mm=0 and over
1339 +     *            -kMax to kMax otherwise.
1340 +     *
1341 +     * Hence the result of the summation must be doubled at the end.    
1342 +     */
1343 +    
1344 +    std::vector<RealType> clm(nMax, 0.0);
1345 +    std::vector<RealType> slm(nMax, 0.0);
1346 +    std::vector<RealType> ckr(nMax, 0.0);
1347 +    std::vector<RealType> skr(nMax, 0.0);
1348 +    std::vector<RealType> ckc(nMax, 0.0);
1349 +    std::vector<RealType> cks(nMax, 0.0);
1350 +    std::vector<RealType> dkc(nMax, 0.0);
1351 +    std::vector<RealType> dks(nMax, 0.0);
1352 +    std::vector<RealType> qkc(nMax, 0.0);
1353 +    std::vector<RealType> qks(nMax, 0.0);
1354 +    std::vector<Vector3d> dxk(nMax, V3Zero);
1355 +    std::vector<Vector3d> qxk(nMax, V3Zero);
1356 +    RealType rl, rm, rn;
1357 +    Vector3d kVec;
1358 +    Vector3d Qk;
1359 +    Mat3x3d k2;
1360 +    RealType ckcs, ckss, dkcs, dkss, qkcs, qkss;
1361 +    int atid;
1362 +    ElectrostaticAtomData data;
1363 +    RealType C, dk, qk;
1364 +    Vector3d D;
1365 +    Mat3x3d  Q;
1366 +
1367 +    int mMin = kLimit;
1368 +    int nMin = kLimit + 1;
1369 +    for (int l = 1; l <= kLimit; l++) {
1370 +      int ll = l - 1;
1371 +      rl = xcl * float(ll);
1372 +      for (int mmm = mMin; mmm <= kLim2; mmm++) {
1373 +        int mm = mmm - kLimit;
1374 +        int m = abs(mm) + 1;
1375 +        rm = ycl * float(mm);
1376 +        // Set temporary products of exponential terms
1377 +        for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1378 +             mol = info_->nextMolecule(mi)) {
1379 +          for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1380 +              atom = mol->nextAtom(ai)) {
1381 +            
1382 +            i = atom->getLocalIndex();
1383 +            if(mm < 0) {
1384 +              clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i];
1385 +              slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i];
1386 +            } else {
1387 +              clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i];
1388 +              slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i];
1389 +            }
1390 +          }
1391 +        }
1392 +        for (int nnn = nMin; nnn <= kLim2; nnn++) {
1393 +          int nn = nnn - kLimit;          
1394 +          int n = abs(nn) + 1;
1395 +          rn = zcl * float(nn);
1396 +          // Test on magnitude of k vector:
1397 +          int kk=ll*ll + mm*mm + nn*nn;
1398 +          if(kk <= kSqLim) {
1399 +            kVec = Vector3d(rl, rm, rn);
1400 +            k2 = outProduct(kVec, kVec);
1401 +            // Calculate exp(ikr) terms
1402 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1403 +                 mol = info_->nextMolecule(mi)) {
1404 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1405 +                  atom = mol->nextAtom(ai)) {
1406 +                i = atom->getLocalIndex();
1407 +                
1408 +                if (nn < 0) {
1409 +                  ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i];
1410 +                  skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i];
1411 +
1412 +                } else {
1413 +                  ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i];
1414 +                  skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i];
1415 +                }
1416 +              }
1417 +            }
1418 +            
1419 +            // Calculate scalar and vector products for each site:
1420 +            
1421 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1422 +                 mol = info_->nextMolecule(mi)) {
1423 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1424 +                  atom = mol->nextAtom(ai)) {
1425 +                i = atom->getLocalIndex();
1426 +                int atid = atom->getAtomType()->getIdent();
1427 +                data = ElectrostaticMap[Etids[atid]];
1428 +                              
1429 +                if (data.is_Charge) {
1430 +                  C = data.fixedCharge;
1431 +                  if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1432 +                  ckc[i] = C * ckr[i];
1433 +                  cks[i] = C * skr[i];
1434 +                }
1435 +                
1436 +                if (data.is_Dipole) {
1437 +                  D = atom->getDipole() * mPoleConverter;
1438 +                  dk = dot(D, kVec);
1439 +                  dxk[i] = cross(D, kVec);
1440 +                  dkc[i] = dk * ckr[i];
1441 +                  dks[i] = dk * skr[i];
1442 +                }
1443 +                if (data.is_Quadrupole) {
1444 +                  Q = atom->getQuadrupole();
1445 +                  Q *= mPoleConverter;
1446 +                  Qk = Q * kVec;
1447 +                  qk = dot(kVec, Qk);
1448 +                  qxk[i] = cross(kVec, Qk);
1449 +                  qkc[i] = qk * ckr[i];
1450 +                  qks[i] = qk * skr[i];
1451 +                }              
1452 +              }
1453 +            }
1454 +
1455 +            // calculate vector sums
1456 +            
1457 +            ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1458 +            ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1459 +            dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1460 +            dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1461 +            qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1462 +            qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1463 +            
1464 + #ifdef IS_MPI
1465 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE,
1466 +                                      MPI::SUM);
1467 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE,
1468 +                                      MPI::SUM);
1469 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE,
1470 +                                      MPI::SUM);
1471 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE,
1472 +                                      MPI::SUM);
1473 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE,
1474 +                                      MPI::SUM);
1475 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE,
1476 +                                      MPI::SUM);
1477 + #endif        
1478 +            
1479 +            // Accumulate potential energy and virial contribution:
1480 +
1481 +            kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1482 +                                         + (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs));
1483 +
1484 +            kVir += 2.0 * rvol  * AK[kk]*(ckcs*ckcs+ckss*ckss
1485 +                                          +4.0*(ckss*dkcs-ckcs*dkss)
1486 +                                          +3.0*(dkcs*dkcs+dkss*dkss)
1487 +                                          -6.0*(ckss*qkss+ckcs*qkcs)
1488 +                                          +8.0*(dkss*qkcs-dkcs*qkss)
1489 +                                          +5.0*(qkss*qkss+qkcs*qkcs));
1490 +            
1491 +            // Calculate force and torque for each site:
1492 +            
1493 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1494 +                 mol = info_->nextMolecule(mi)) {
1495 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1496 +                  atom = mol->nextAtom(ai)) {
1497 +                
1498 +                i = atom->getLocalIndex();
1499 +                atid = atom->getAtomType()->getIdent();
1500 +                data = ElectrostaticMap[Etids[atid]];
1501 +
1502 +                RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1503 +                                     - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1504 +                RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1505 +                                         -ckr[i]*(ckss+dkcs-qkss));
1506 +                RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)
1507 +                                             +skr[i]*(ckss+dkcs-qkss));
1508 +              
1509 +                atom->addFrc( 4.0 * rvol * qfrc * kVec );
1510 +                
1511 +                if (data.is_Dipole) {
1512 +                  atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1513 +                }
1514 +                if (data.is_Quadrupole) {
1515 +                  atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1516 +                }
1517 +              }
1518 +            }
1519 +          }
1520 +        }
1521 +        nMin = 1;
1522 +      }
1523 +      mMin = 1;
1524 +    }
1525 +    pot += kPot;  
1526 +  }
1527   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines