ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing:
branches/development/src/nonbonded/Electrostatic.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC vs.
trunk/src/nonbonded/Electrostatic.cpp (file contents), Revision 1922 by gezelter, Mon Aug 5 13:41:15 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 44 | Line 44
44   #include <string.h>
45  
46   #include <cmath>
47 + #include <numeric>
48   #include "nonbonded/Electrostatic.hpp"
49   #include "utils/simError.h"
50   #include "types/NonBondedInteractionType.hpp"
# Line 53 | Line 54
54   #include "io/Globals.hpp"
55   #include "nonbonded/SlaterIntegrals.hpp"
56   #include "utils/PhysicalConstants.hpp"
57 + #include "math/erfc.hpp"
58 + #include "math/SquareMatrix.hpp"
59 + #include "primitives/Molecule.hpp"
60  
61  
62   namespace OpenMD {
# Line 62 | Line 66 | namespace OpenMD {
66                                    haveCutoffRadius_(false),
67                                    haveDampingAlpha_(false),
68                                    haveDielectric_(false),
69 <                                  haveElectroSpline_(false)
69 >                                  haveElectroSplines_(false)
70    {}
71    
72    void Electrostatic::initialize() {
# Line 74 | Line 78 | namespace OpenMD {
78      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
79      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
80      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
81 +    summationMap_["TAYLOR_SHIFTED"]     = esm_TAYLOR_SHIFTED;    
82      summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
83      summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
84      summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
# Line 88 | Line 93 | namespace OpenMD {
93      // Charge-Dipole, assuming charges are measured in electrons, and
94      // dipoles are measured in debyes
95      pre12_ = 69.13373;
96 <    // Dipole-Dipole, assuming dipoles are measured in debyes
96 >    // Dipole-Dipole, assuming dipoles are measured in Debye
97      pre22_ = 14.39325;
98      // Charge-Quadrupole, assuming charges are measured in electrons, and
99      // quadrupoles are measured in 10^-26 esu cm^2
100 <    // This unit is also known affectionately as an esu centi-barn.
100 >    // This unit is also known affectionately as an esu centibarn.
101      pre14_ = 69.13373;
102 <    
102 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
103 >    // quadrupoles in esu centibarns:
104 >    pre24_ = 14.39325;
105 >    // Quadrupole-Quadrupole, assuming esu centibarns:
106 >    pre44_ = 14.39325;
107 >
108      // conversions for the simulation box dipole moment
109      chargeToC_ = 1.60217733e-19;
110      angstromToM_ = 1.0e-10;
111      debyeToCm_ = 3.33564095198e-30;
112      
113 <    // number of points for electrostatic splines
113 >    // Default number of points for electrostatic splines
114      np_ = 100;
115      
116      // variables to handle different summation methods for long-range
# Line 108 | Line 118 | namespace OpenMD {
118      summationMethod_ = esm_HARD;    
119      screeningMethod_ = UNDAMPED;
120      dielectric_ = 1.0;
111    one_third_ = 1.0 / 3.0;
121    
122      // check the summation method:
123      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 124 | Line 133 | namespace OpenMD {
133                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
134                   "\t(Input file specified %s .)\n"
135                   "\telectrostaticSummationMethod must be one of: \"hard\",\n"
136 <                 "\t\"shifted_potential\", \"shifted_force\", or \n"
137 <                 "\t\"reaction_field\".\n", myMethod.c_str() );
136 >                 "\t\"shifted_potential\", \"shifted_force\",\n"
137 >                 "\t\"taylor_shifted\", or \"reaction_field\".\n",
138 >                 myMethod.c_str() );
139          painCave.isFatal = 1;
140          simError();
141        }
# Line 184 | Line 194 | namespace OpenMD {
194        simError();
195      }
196            
197 <    if (screeningMethod_ == DAMPED) {      
197 >    if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
198        if (!simParams_->haveDampingAlpha()) {
199          // first set a cutoff dependent alpha value
200          // we assume alpha depends linearly with rcut from 0 to 20.5 ang
201          dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
202 <        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193 <        
202 >        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;        
203          // throw warning
204          sprintf( painCave.errMsg,
205                   "Electrostatic::initialize: dampingAlpha was not specified in the\n"
# Line 206 | Line 215 | namespace OpenMD {
215        haveDampingAlpha_ = true;
216      }
217  
209    // find all of the Electrostatic atom Types:
210    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
211    ForceField::AtomTypeContainer::MapTypeIterator i;
212    AtomType* at;
213    
214    for (at = atomTypes->beginType(i); at != NULL;
215         at = atomTypes->nextType(i)) {
216      
217      if (at->isElectrostatic())
218        addType(at);
219    }
220    
221    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222    rcuti_ = 1.0 / cutoffRadius_;
223    rcuti2_ = rcuti_ * rcuti_;
224    rcuti3_ = rcuti2_ * rcuti_;
225    rcuti4_ = rcuti2_ * rcuti2_;
218  
219 <    if (screeningMethod_ == DAMPED) {
220 <      
221 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
222 <      alpha4_ = alpha2_ * alpha2_;
223 <      alpha6_ = alpha4_ * alpha2_;
224 <      alpha8_ = alpha4_ * alpha4_;
225 <      
226 <      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 <      invRootPi_ = 0.56418958354775628695;
236 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
219 >    Etypes.clear();
220 >    Etids.clear();
221 >    FQtypes.clear();
222 >    FQtids.clear();
223 >    ElectrostaticMap.clear();
224 >    Jij.clear();
225 >    nElectro_ = 0;
226 >    nFlucq_ = 0;
227  
228 <      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
229 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
230 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
231 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
232 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
233 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
234 <    } else {
245 <      c1c_ = rcuti_;
246 <      c2c_ = c1c_ * rcuti_;
247 <      c3c_ = 3.0 * c2c_ * rcuti_;
248 <      c4c_ = 5.0 * c3c_ * rcuti2_;
249 <      c5c_ = 7.0 * c4c_ * rcuti2_;
250 <      c6c_ = 9.0 * c5c_ * rcuti2_;
228 >    Etids.resize( forceField_->getNAtomType(), -1);
229 >    FQtids.resize( forceField_->getNAtomType(), -1);
230 >
231 >    set<AtomType*>::iterator at;
232 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {    
233 >      if ((*at)->isElectrostatic()) nElectro_++;
234 >      if ((*at)->isFluctuatingCharge()) nFlucq_++;
235      }
236 <  
236 >    
237 >    Jij.resize(nFlucq_);
238 >
239 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
240 >      if ((*at)->isElectrostatic()) addType(*at);
241 >    }  
242 >    
243      if (summationMethod_ == esm_REACTION_FIELD) {
244        preRF_ = (dielectric_ - 1.0) /
245 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 <      preRF2_ = 2.0 * preRF_;
245 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
246      }
247      
248 +    RealType b0c, b1c, b2c, b3c, b4c, b5c;
249 +    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
250 +    RealType a2, expTerm, invArootPi;
251 +    
252 +    RealType r = cutoffRadius_;
253 +    RealType r2 = r * r;
254 +    RealType ric = 1.0 / r;
255 +    RealType ric2 = ric * ric;
256 +
257 +    if (screeningMethod_ == DAMPED) {      
258 +      a2 = dampingAlpha_ * dampingAlpha_;
259 +      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
260 +      expTerm = exp(-a2 * r2);
261 +      // values of Smith's B_l functions at the cutoff radius:
262 +      b0c = erfc(dampingAlpha_ * r) / r;
263 +      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
264 +      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
265 +      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
266 +      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
267 +      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
268 +      // Half the Smith self piece:
269 +      selfMult1_ = - a2 * invArootPi;
270 +      selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
271 +      selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
272 +    } else {
273 +      a2 = 0.0;
274 +      b0c = 1.0 / r;
275 +      b1c = (      b0c) / r2;
276 +      b2c = (3.0 * b1c) / r2;
277 +      b3c = (5.0 * b2c) / r2;
278 +      b4c = (7.0 * b3c) / r2;
279 +      b5c = (9.0 * b4c) / r2;
280 +      selfMult1_ = 0.0;
281 +      selfMult2_ = 0.0;
282 +      selfMult4_ = 0.0;
283 +    }
284 +
285 +    // higher derivatives of B_0 at the cutoff radius:
286 +    db0c_1 = -r * b1c;
287 +    db0c_2 =     -b1c + r2 * b2c;
288 +    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
289 +    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
290 +    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;  
291 +
292 +    if (summationMethod_ != esm_EWALD_FULL) {
293 +      selfMult1_ -= b0c;
294 +      selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) /  3.0;
295 +      selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
296 +    }
297 +
298 +    // working variables for the splines:
299 +    RealType ri, ri2;
300 +    RealType b0, b1, b2, b3, b4, b5;
301 +    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
302 +    RealType f, fc, f0;
303 +    RealType g, gc, g0, g1, g2, g3, g4;
304 +    RealType h, hc, h1, h2, h3, h4;
305 +    RealType s, sc, s2, s3, s4;
306 +    RealType t, tc, t3, t4;
307 +    RealType u, uc, u4;
308 +
309 +    // working variables for Taylor expansion:
310 +    RealType rmRc, rmRc2, rmRc3, rmRc4;
311 +
312 +    // Approximate using splines using a maximum of 0.1 Angstroms
313 +    // between points.
314 +    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
315 +    np_ = (np_ > nptest) ? np_ : nptest;
316 +  
317      // Add a 2 angstrom safety window to deal with cutoffGroups that
318      // have charged atoms longer than the cutoffRadius away from each
319 <    // other.  Splining may not be the best choice here.  Direct calls
320 <    // to erfc might be preferrable.
319 >    // other.  Splining is almost certainly the best choice here.
320 >    // Direct calls to erfc would be preferrable if it is a very fast
321 >    // implementation.
322  
323 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
324 <    RealType rval;
325 <    vector<RealType> rvals;
326 <    vector<RealType> yvals;
327 <    for (int i = 0; i < np_; i++) {
328 <      rval = RealType(i) * dx;
329 <      rvals.push_back(rval);
330 <      yvals.push_back(erfc(dampingAlpha_ * rval));
323 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
324 >
325 >    // Storage vectors for the computed functions    
326 >    vector<RealType> rv;
327 >    vector<RealType> v01v;
328 >    vector<RealType> v11v;
329 >    vector<RealType> v21v, v22v;
330 >    vector<RealType> v31v, v32v;
331 >    vector<RealType> v41v, v42v, v43v;
332 >
333 >    for (int i = 1; i < np_ + 1; i++) {
334 >      r = RealType(i) * dx;
335 >      rv.push_back(r);
336 >
337 >      ri = 1.0 / r;
338 >      ri2 = ri * ri;
339 >
340 >      r2 = r * r;
341 >      expTerm = exp(-a2 * r2);
342 >
343 >      // Taylor expansion factors (no need for factorials this way):
344 >      rmRc = r - cutoffRadius_;
345 >      rmRc2 = rmRc  * rmRc / 2.0;
346 >      rmRc3 = rmRc2 * rmRc / 3.0;
347 >      rmRc4 = rmRc3 * rmRc / 4.0;
348 >
349 >      // values of Smith's B_l functions at r:
350 >      if (screeningMethod_ == DAMPED) {            
351 >        b0 = erfc(dampingAlpha_ * r) * ri;
352 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
353 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
354 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
355 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
356 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
357 >      } else {
358 >        b0 = ri;
359 >        b1 = (      b0) * ri2;
360 >        b2 = (3.0 * b1) * ri2;
361 >        b3 = (5.0 * b2) * ri2;
362 >        b4 = (7.0 * b3) * ri2;
363 >        b5 = (9.0 * b4) * ri2;
364 >      }
365 >                
366 >      // higher derivatives of B_0 at r:
367 >      db0_1 = -r * b1;
368 >      db0_2 =     -b1 + r2 * b2;
369 >      db0_3 =          3.0*r*b2   - r2*r*b3;
370 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
371 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
372 >
373 >      f = b0;
374 >      fc = b0c;
375 >      f0 = f - fc - rmRc*db0c_1;
376 >
377 >      g = db0_1;        
378 >      gc = db0c_1;
379 >      g0 = g - gc;
380 >      g1 = g0 - rmRc *db0c_2;
381 >      g2 = g1 - rmRc2*db0c_3;
382 >      g3 = g2 - rmRc3*db0c_4;
383 >      g4 = g3 - rmRc4*db0c_5;
384 >
385 >      h = db0_2;      
386 >      hc = db0c_2;
387 >      h1 = h - hc;
388 >      h2 = h1 - rmRc *db0c_3;
389 >      h3 = h2 - rmRc2*db0c_4;
390 >      h4 = h3 - rmRc3*db0c_5;
391 >
392 >      s = db0_3;      
393 >      sc = db0c_3;
394 >      s2 = s - sc;
395 >      s3 = s2 - rmRc *db0c_4;
396 >      s4 = s3 - rmRc2*db0c_5;
397 >
398 >      t = db0_4;      
399 >      tc = db0c_4;
400 >      t3 = t - tc;
401 >      t4 = t3 - rmRc *db0c_5;
402 >      
403 >      u = db0_5;        
404 >      uc = db0c_5;
405 >      u4 = u - uc;
406 >
407 >      // in what follows below, the various v functions are used for
408 >      // potentials and torques, while the w functions show up in the
409 >      // forces.
410 >
411 >      switch (summationMethod_) {
412 >      case esm_SHIFTED_FORCE:
413 >                
414 >        v01 = f - fc - rmRc*gc;
415 >        v11 = g - gc - rmRc*hc;
416 >        v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
417 >        v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
418 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
419 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
420 >          - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
421 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
422 >          - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
423 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
424 >          - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
425 >        
426 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
427 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
428 >          - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
429 >
430 >        dv01 = g - gc;
431 >        dv11 = h - hc;
432 >        dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
433 >        dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);        
434 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
435 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
436 >          - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
437 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
438 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
439 >          - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
440 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
441 >          - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
442 >        
443 >        break;
444 >
445 >      case esm_TAYLOR_SHIFTED:
446 >        
447 >        v01 = f0;
448 >        v11 = g1;
449 >        v21 = g2 * ri;
450 >        v22 = h2 - v21;
451 >        v31 = (h3 - g3 * ri) * ri;
452 >        v32 = s3 - 3.0*v31;
453 >        v41 = (h4 - g4 * ri) * ri2;
454 >        v42 = s4 * ri - 3.0*v41;
455 >        v43 = t4 - 6.0*v42 - 3.0*v41;
456 >
457 >        dv01 = g0;
458 >        dv11 = h1;
459 >        dv21 = (h2 - g2*ri)*ri;
460 >        dv22 = (s2 - (h2 - g2*ri)*ri);
461 >        dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
462 >        dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
463 >        dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
464 >        dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
465 >        dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
466 >
467 >        break;
468 >
469 >      case esm_SHIFTED_POTENTIAL:
470 >
471 >        v01 = f - fc;
472 >        v11 = g - gc;
473 >        v21 = g*ri - gc*ric;
474 >        v22 = h - g*ri - (hc - gc*ric);
475 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
476 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
477 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
478 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
479 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
480 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
481 >
482 >        dv01 = g;
483 >        dv11 = h;
484 >        dv21 = (h - g*ri)*ri;
485 >        dv22 = (s - (h - g*ri)*ri);
486 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
487 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
488 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
489 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
490 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
491 >
492 >        break;
493 >
494 >      case esm_SWITCHING_FUNCTION:
495 >      case esm_HARD:
496 >      case esm_EWALD_FULL:
497 >
498 >        v01 = f;
499 >        v11 = g;
500 >        v21 = g*ri;
501 >        v22 = h - g*ri;
502 >        v31 = (h-g*ri)*ri;
503 >        v32 = (s - 3.0*(h-g*ri)*ri);
504 >        v41 = (h - g*ri)*ri2;
505 >        v42 = (s-3.0*(h-g*ri)*ri)*ri;        
506 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
507 >
508 >        dv01 = g;
509 >        dv11 = h;
510 >        dv21 = (h - g*ri)*ri;
511 >        dv22 = (s - (h - g*ri)*ri);
512 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
513 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
514 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
515 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
516 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
517 >
518 >        break;
519 >
520 >      case esm_REACTION_FIELD:
521 >        
522 >        // following DL_POLY's lead for shifting the image charge potential:
523 >        f = b0 + preRF_ * r2;
524 >        fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
525 >
526 >        g = db0_1 + preRF_ * 2.0 * r;        
527 >        gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
528 >
529 >        h = db0_2 + preRF_ * 2.0;
530 >        hc = db0c_2 + preRF_ * 2.0;
531 >
532 >        v01 = f - fc;
533 >        v11 = g - gc;
534 >        v21 = g*ri - gc*ric;
535 >        v22 = h - g*ri - (hc - gc*ric);
536 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
537 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
538 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
539 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
540 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
541 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
542 >
543 >        dv01 = g;
544 >        dv11 = h;
545 >        dv21 = (h - g*ri)*ri;
546 >        dv22 = (s - (h - g*ri)*ri);
547 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
548 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
549 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
550 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
551 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
552 >
553 >        break;
554 >                
555 >      case esm_EWALD_PME:
556 >      case esm_EWALD_SPME:
557 >      default :
558 >        map<string, ElectrostaticSummationMethod>::iterator i;
559 >        std::string meth;
560 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
561 >          if ((*i).second == summationMethod_) meth = (*i).first;
562 >        }
563 >        sprintf( painCave.errMsg,
564 >                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
565 >                 "\thas not been implemented yet. Please select one of:\n"
566 >                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
567 >                 meth.c_str() );
568 >        painCave.isFatal = 1;
569 >        simError();
570 >        break;      
571 >      }
572 >
573 >      // Add these computed values to the storage vectors for spline creation:
574 >      v01v.push_back(v01);
575 >      v11v.push_back(v11);
576 >      v21v.push_back(v21);
577 >      v22v.push_back(v22);
578 >      v31v.push_back(v31);
579 >      v32v.push_back(v32);      
580 >      v41v.push_back(v41);
581 >      v42v.push_back(v42);
582 >      v43v.push_back(v43);
583      }
273    erfcSpline_ = new CubicSpline();
274    erfcSpline_->addPoints(rvals, yvals);
275    haveElectroSpline_ = true;
584  
585 +    // construct the spline structures and fill them with the values we've
586 +    // computed:
587 +
588 +    v01s = new CubicSpline();
589 +    v01s->addPoints(rv, v01v);
590 +    v11s = new CubicSpline();
591 +    v11s->addPoints(rv, v11v);
592 +    v21s = new CubicSpline();
593 +    v21s->addPoints(rv, v21v);
594 +    v22s = new CubicSpline();
595 +    v22s->addPoints(rv, v22v);
596 +    v31s = new CubicSpline();
597 +    v31s->addPoints(rv, v31v);
598 +    v32s = new CubicSpline();
599 +    v32s->addPoints(rv, v32v);
600 +    v41s = new CubicSpline();
601 +    v41s->addPoints(rv, v41v);
602 +    v42s = new CubicSpline();
603 +    v42s->addPoints(rv, v42v);
604 +    v43s = new CubicSpline();
605 +    v43s->addPoints(rv, v43v);
606 +
607 +    haveElectroSplines_ = true;
608 +
609      initialized_ = true;
610    }
611        
612    void Electrostatic::addType(AtomType* atomType){
613 <
613 >    
614      ElectrostaticAtomData electrostaticAtomData;
615      electrostaticAtomData.is_Charge = false;
616      electrostaticAtomData.is_Dipole = false;
285    electrostaticAtomData.is_SplitDipole = false;
617      electrostaticAtomData.is_Quadrupole = false;
618      electrostaticAtomData.is_Fluctuating = false;
619  
# Line 297 | Line 628 | namespace OpenMD {
628      if (ma.isMultipole()) {
629        if (ma.isDipole()) {
630          electrostaticAtomData.is_Dipole = true;
631 <        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
631 >        electrostaticAtomData.dipole = ma.getDipole();
632        }
302      if (ma.isSplitDipole()) {
303        electrostaticAtomData.is_SplitDipole = true;
304        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305      }
633        if (ma.isQuadrupole()) {
307        // Quadrupoles in OpenMD are set as the diagonal elements
308        // of the diagonalized traceless quadrupole moment tensor.
309        // The column vectors of the unitary matrix that diagonalizes
310        // the quadrupole moment tensor become the eFrame (or the
311        // electrostatic version of the body-fixed frame.
634          electrostaticAtomData.is_Quadrupole = true;
635 <        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
635 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
636        }
637      }
638      
# Line 324 | Line 646 | namespace OpenMD {
646        electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
647      }
648  
649 <    pair<map<int,AtomType*>::iterator,bool> ret;    
650 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
651 <                                                        atomType) );
649 >    int atid = atomType->getIdent();
650 >    int etid = Etypes.size();
651 >    int fqtid = FQtypes.size();
652 >
653 >    pair<set<int>::iterator,bool> ret;    
654 >    ret = Etypes.insert( atid );
655      if (ret.second == false) {
656        sprintf( painCave.errMsg,
657                 "Electrostatic already had a previous entry with ident %d\n",
658 <               atomType->getIdent() );
658 >               atid);
659        painCave.severity = OPENMD_INFO;
660        painCave.isFatal = 0;
661        simError();        
662      }
663      
664 <    ElectrostaticMap[atomType] = electrostaticAtomData;  
664 >    Etids[ atid ] = etid;
665 >    ElectrostaticMap.push_back(electrostaticAtomData);
666  
667 <    // Now, iterate over all known types and add to the mixing map:
668 <    
669 <    map<AtomType*, ElectrostaticAtomData>::iterator it;
670 <    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
671 <      AtomType* atype2 = (*it).first;
672 <      ElectrostaticAtomData eaData2 = (*it).second;
673 <      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
674 <        
667 >    if (electrostaticAtomData.is_Fluctuating) {
668 >      ret = FQtypes.insert( atid );
669 >      if (ret.second == false) {
670 >        sprintf( painCave.errMsg,
671 >                 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
672 >                 atid );
673 >        painCave.severity = OPENMD_INFO;
674 >        painCave.isFatal = 0;
675 >        simError();        
676 >      }
677 >      FQtids[atid] = fqtid;
678 >      Jij[fqtid].resize(nFlucq_);
679 >
680 >      // Now, iterate over all known fluctuating and add to the
681 >      // coulomb integral map:
682 >      
683 >      std::set<int>::iterator it;
684 >      for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {    
685 >        int etid2 = Etids[ (*it) ];
686 >        int fqtid2 = FQtids[ (*it) ];
687 >        ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
688          RealType a = electrostaticAtomData.slaterZeta;
689          RealType b = eaData2.slaterZeta;
690          int m = electrostaticAtomData.slaterN;
691          int n = eaData2.slaterN;
692 <
692 >        
693          // Create the spline of the coulombic integral for s-type
694          // Slater orbitals.  Add a 2 angstrom safety window to deal
695          // with cutoffGroups that have charged atoms longer than the
696          // cutoffRadius away from each other.
697 <
697 >        
698          RealType rval;
699          RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
700          vector<RealType> rvals;
701 <        vector<RealType> J1vals;
702 <        vector<RealType> J2vals;
703 <        for (int i = 0; i < np_; i++) {
701 >        vector<RealType> Jvals;
702 >        // don't start at i = 0, as rval = 0 is undefined for the
703 >        // slater overlap integrals.
704 >        for (int i = 1; i < np_+1; i++) {
705            rval = RealType(i) * dr;
706            rvals.push_back(rval);
707 <          J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
708 <          // may not be necessary if Slater coulomb integral is symmetric
709 <          J2vals.push_back(eaData2.hardness *  sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
707 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
708 >                                       PhysicalConstants::angstromToBohr ) *
709 >                          PhysicalConstants::hartreeToKcal );
710          }
371
372        CubicSpline* J1 = new CubicSpline();
373        J1->addPoints(rvals, J1vals);
374        CubicSpline* J2 = new CubicSpline();
375        J2->addPoints(rvals, J2vals);
711          
712 <        pair<AtomType*, AtomType*> key1, key2;
713 <        key1 = make_pair(atomType, atype2);
714 <        key2 = make_pair(atype2, atomType);
715 <        
716 <        Jij[key1] = J1;
717 <        Jij[key2] = J2;
718 <      }
384 <    }
385 <
712 >        CubicSpline* J = new CubicSpline();
713 >        J->addPoints(rvals, Jvals);
714 >        Jij[fqtid][fqtid2] = J;
715 >        Jij[fqtid2].resize( nFlucq_ );
716 >        Jij[fqtid2][fqtid] = J;
717 >      }      
718 >    }      
719      return;
720    }
721    
722    void Electrostatic::setCutoffRadius( RealType rCut ) {
723      cutoffRadius_ = rCut;
391    rrf_ = cutoffRadius_;
724      haveCutoffRadius_ = true;
725    }
726  
395  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
396    rt_ = rSwitch;
397  }
727    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
728      summationMethod_ = esm;
729    }
# Line 412 | Line 741 | namespace OpenMD {
741  
742    void Electrostatic::calcForce(InteractionData &idat) {
743  
744 <    // utility variables.  Should clean these up and use the Vector3d and
745 <    // Mat3x3d to replace as many as we can in future versions:
744 >    if (!initialized_) initialize();
745 >    
746 >    data1 = ElectrostaticMap[Etids[idat.atid1]];
747 >    data2 = ElectrostaticMap[Etids[idat.atid2]];
748  
749 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
750 <    RealType qxx_i, qyy_i, qzz_i;
751 <    RealType qxx_j, qyy_j, qzz_j;
752 <    RealType cx_i, cy_i, cz_i;
753 <    RealType cx_j, cy_j, cz_j;
754 <    RealType cx2, cy2, cz2;
755 <    RealType ct_i, ct_j, ct_ij, a1;
756 <    RealType riji, ri, ri2, ri3, ri4;
757 <    RealType pref, vterm, epot, dudr;
758 <    RealType vpair(0.0);
759 <    RealType scale, sc2;
760 <    RealType pot_term, preVal, rfVal;
761 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
762 <    RealType preSw, preSwSc;
432 <    RealType c1, c2, c3, c4;
433 <    RealType erfcVal(1.0), derfcVal(0.0);
434 <    RealType BigR;
435 <    RealType two(2.0), three(3.0);
749 >    U = 0.0;  // Potential
750 >    F.zero();  // Force
751 >    Ta.zero(); // Torque on site a
752 >    Tb.zero(); // Torque on site b
753 >    Ea.zero(); // Electric field at site a
754 >    Eb.zero(); // Electric field at site b
755 >    dUdCa = 0.0; // fluctuating charge force at site a
756 >    dUdCb = 0.0; // fluctuating charge force at site a
757 >    
758 >    // Indirect interactions mediated by the reaction field.
759 >    indirect_Pot = 0.0;   // Potential
760 >    indirect_F.zero();    // Force
761 >    indirect_Ta.zero();   // Torque on site a
762 >    indirect_Tb.zero();   // Torque on site b
763  
764 <    Vector3d Q_i, Q_j;
765 <    Vector3d ux_i, uy_i, uz_i;
439 <    Vector3d ux_j, uy_j, uz_j;
440 <    Vector3d dudux_i, duduy_i, duduz_i;
441 <    Vector3d dudux_j, duduy_j, duduz_j;
442 <    Vector3d rhatdot2, rhatc4;
443 <    Vector3d dVdr;
764 >    // Excluded potential that is still computed for fluctuating charges
765 >    excluded_Pot= 0.0;
766  
445    // variables for indirect (reaction field) interactions for excluded pairs:
446    RealType indirect_Pot(0.0);
447    RealType indirect_vpair(0.0);
448    Vector3d indirect_dVdr(V3Zero);
449    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
767  
451    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452    pair<RealType, RealType> res;
453    
454    // splines for coulomb integrals
455    CubicSpline* J1;
456    CubicSpline* J2;
457    
458    if (!initialized_) initialize();
459    
460    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
461    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
462    
768      // some variables we'll need independent of electrostatic type:
769  
770 <    riji = 1.0 /  *(idat.rij) ;
771 <    Vector3d rhat =  *(idat.d)   * riji;
772 <
770 >    ri = 1.0 /  *(idat.rij);
771 >    rhat =  *(idat.d)  * ri;
772 >      
773      // logicals
774  
775 <    bool i_is_Charge = data1.is_Charge;
776 <    bool i_is_Dipole = data1.is_Dipole;
777 <    bool i_is_SplitDipole = data1.is_SplitDipole;
778 <    bool i_is_Quadrupole = data1.is_Quadrupole;
474 <    bool i_is_Fluctuating = data1.is_Fluctuating;
775 >    a_is_Charge = data1.is_Charge;
776 >    a_is_Dipole = data1.is_Dipole;
777 >    a_is_Quadrupole = data1.is_Quadrupole;
778 >    a_is_Fluctuating = data1.is_Fluctuating;
779  
780 <    bool j_is_Charge = data2.is_Charge;
781 <    bool j_is_Dipole = data2.is_Dipole;
782 <    bool j_is_SplitDipole = data2.is_SplitDipole;
783 <    bool j_is_Quadrupole = data2.is_Quadrupole;
784 <    bool j_is_Fluctuating = data2.is_Fluctuating;
780 >    b_is_Charge = data2.is_Charge;
781 >    b_is_Dipole = data2.is_Dipole;
782 >    b_is_Quadrupole = data2.is_Quadrupole;
783 >    b_is_Fluctuating = data2.is_Fluctuating;
784 >
785 >    // Obtain all of the required radial function values from the
786 >    // spline structures:
787      
788 <    if (i_is_Charge) {
789 <      q_i = data1.fixedCharge;
788 >    // needed for fields (and forces):
789 >    if (a_is_Charge || b_is_Charge) {
790 >      v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
791 >    }
792 >    if (a_is_Dipole || b_is_Dipole) {
793 >      v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
794 >      v11or = ri * v11;
795 >    }
796 >    if (a_is_Quadrupole || b_is_Quadrupole ||  (a_is_Dipole && b_is_Dipole)) {
797 >      v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
798 >      v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
799 >      v22or = ri * v22;
800 >    }      
801  
802 <      if (i_is_Fluctuating) {
803 <        q_i += *(idat.flucQ1);
802 >    // needed for potentials (and forces and torques):
803 >    if ((a_is_Dipole && b_is_Quadrupole) ||
804 >        (b_is_Dipole && a_is_Quadrupole)) {
805 >      v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
806 >      v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
807 >      v31or = v31 * ri;
808 >      v32or = v32 * ri;
809 >    }
810 >    if (a_is_Quadrupole && b_is_Quadrupole) {
811 >      v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
812 >      v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
813 >      v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
814 >      v42or = v42 * ri;
815 >      v43or = v43 * ri;
816 >    }
817 >
818 >    // calculate the single-site contributions (fields, etc).
819 >    
820 >    if (a_is_Charge) {
821 >      C_a = data1.fixedCharge;
822 >      
823 >      if (a_is_Fluctuating) {
824 >        C_a += *(idat.flucQ1);
825        }
826        
827        if (idat.excluded) {
828 <        *(idat.skippedCharge2) += q_i;
828 >        *(idat.skippedCharge2) += C_a;
829 >      } else {
830 >        // only do the field if we're not excluded:
831 >        Eb -= C_a *  pre11_ * dv01 * rhat;
832        }
833      }
834 <
835 <    if (i_is_Dipole) {
836 <      mu_i = data1.dipole_moment;
837 <      uz_i = idat.eFrame1->getColumn(2);
838 <      
839 <      ct_i = dot(uz_i, rhat);
840 <
500 <      if (i_is_SplitDipole)
501 <        d_i = data1.split_dipole_distance;
502 <      
503 <      duduz_i = V3Zero;
834 >    
835 >    if (a_is_Dipole) {
836 >      D_a = *(idat.dipole1);
837 >      rdDa = dot(rhat, D_a);
838 >      rxDa = cross(rhat, D_a);
839 >      if (!idat.excluded)
840 >        Eb -=  pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
841      }
842      
843 <    if (i_is_Quadrupole) {
844 <      Q_i = data1.quadrupole_moments;
845 <      qxx_i = Q_i.x();
846 <      qyy_i = Q_i.y();
847 <      qzz_i = Q_i.z();
848 <      
849 <      ux_i = idat.eFrame1->getColumn(0);
850 <      uy_i = idat.eFrame1->getColumn(1);
851 <      uz_i = idat.eFrame1->getColumn(2);
852 <
516 <      cx_i = dot(ux_i, rhat);
517 <      cy_i = dot(uy_i, rhat);
518 <      cz_i = dot(uz_i, rhat);
519 <
520 <      dudux_i = V3Zero;
521 <      duduy_i = V3Zero;
522 <      duduz_i = V3Zero;
843 >    if (a_is_Quadrupole) {
844 >      Q_a = *(idat.quadrupole1);
845 >      trQa =  Q_a.trace();
846 >      Qar =   Q_a * rhat;
847 >      rQa = rhat * Q_a;
848 >      rdQar = dot(rhat, Qar);
849 >      rxQar = cross(rhat, Qar);
850 >      if (!idat.excluded)
851 >        Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
852 >                        + rdQar * rhat * (dv22 - 2.0*v22or));
853      }
854 <
855 <    if (j_is_Charge) {
856 <      q_j = data2.fixedCharge;
857 <
858 <      if (j_is_Fluctuating)
859 <        q_j += *(idat.flucQ2);
860 <
854 >    
855 >    if (b_is_Charge) {
856 >      C_b = data2.fixedCharge;
857 >      
858 >      if (b_is_Fluctuating)
859 >        C_b += *(idat.flucQ2);
860 >      
861        if (idat.excluded) {
862 <        *(idat.skippedCharge1) += q_j;
862 >        *(idat.skippedCharge1) += C_b;
863 >      } else {
864 >        // only do the field if we're not excluded:
865 >        Ea += C_b *  pre11_ * dv01 * rhat;
866        }
867      }
535
536
537    if (j_is_Dipole) {
538      mu_j = data2.dipole_moment;
539      uz_j = idat.eFrame2->getColumn(2);
540      
541      ct_j = dot(uz_j, rhat);
542
543      if (j_is_SplitDipole)
544        d_j = data2.split_dipole_distance;
545      
546      duduz_j = V3Zero;
547    }
868      
869 <    if (j_is_Quadrupole) {
870 <      Q_j = data2.quadrupole_moments;
871 <      qxx_j = Q_j.x();
872 <      qyy_j = Q_j.y();
873 <      qzz_j = Q_j.z();
874 <      
555 <      ux_j = idat.eFrame2->getColumn(0);
556 <      uy_j = idat.eFrame2->getColumn(1);
557 <      uz_j = idat.eFrame2->getColumn(2);
558 <
559 <      cx_j = dot(ux_j, rhat);
560 <      cy_j = dot(uy_j, rhat);
561 <      cz_j = dot(uz_j, rhat);
562 <
563 <      dudux_j = V3Zero;
564 <      duduy_j = V3Zero;
565 <      duduz_j = V3Zero;
869 >    if (b_is_Dipole) {
870 >      D_b = *(idat.dipole2);
871 >      rdDb = dot(rhat, D_b);
872 >      rxDb = cross(rhat, D_b);
873 >      if (!idat.excluded)
874 >        Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
875      }
876      
877 <    if (i_is_Fluctuating && j_is_Fluctuating) {
878 <      J1 = Jij[idat.atypes];
879 <      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
877 >    if (b_is_Quadrupole) {
878 >      Q_b = *(idat.quadrupole2);
879 >      trQb =  Q_b.trace();
880 >      Qbr =   Q_b * rhat;
881 >      rQb = rhat * Q_b;
882 >      rdQbr = dot(rhat, Qbr);
883 >      rxQbr = cross(rhat, Qbr);
884 >      if (!idat.excluded)
885 >        Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
886 >                        + rdQbr * rhat * (dv22 - 2.0*v22or));
887      }
572
573    epot = 0.0;
574    dVdr = V3Zero;
888      
889 <    if (i_is_Charge) {
889 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
890 >      J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
891 >    }    
892 >    
893 >    if (a_is_Charge) {    
894        
895 <      if (j_is_Charge) {
896 <        if (screeningMethod_ == DAMPED) {
897 <          // assemble the damping variables
898 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
899 <          //erfcVal = res.first;
900 <          //derfcVal = res.second;
895 >      if (b_is_Charge) {
896 >        pref =  pre11_ * *(idat.electroMult);      
897 >        U  += C_a * C_b * pref * v01;
898 >        F  += C_a * C_b * pref * dv01 * rhat;
899 >        
900 >        // If this is an excluded pair, there are still indirect
901 >        // interactions via the reaction field we must worry about:
902  
903 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
904 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
903 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
904 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
905 >          indirect_Pot += rfContrib;
906 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
907 >        }
908 >        
909 >        // Fluctuating charge forces are handled via Coulomb integrals
910 >        // for excluded pairs (i.e. those connected via bonds) and
911 >        // with the standard charge-charge interaction otherwise.
912  
913 <          c1 = erfcVal * riji;
914 <          c2 = (-derfcVal + c1) * riji;
913 >        if (idat.excluded) {          
914 >          if (a_is_Fluctuating || b_is_Fluctuating) {
915 >            coulInt = J->getValueAt( *(idat.rij) );
916 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
917 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
918 >            excluded_Pot += C_a * C_b * coulInt;
919 >          }          
920          } else {
921 <          c1 = riji;
922 <          c2 = c1 * riji;
921 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
922 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
923          }
924 +      }
925  
926 <        preVal =  *(idat.electroMult) * pre11_;
927 <        
928 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
929 <          vterm = preVal * (c1 - c1c_);
930 <          dudr  = - *(idat.sw)  * preVal * c2;
926 >      if (b_is_Dipole) {
927 >        pref =  pre12_ * *(idat.electroMult);        
928 >        U  += C_a * pref * v11 * rdDb;
929 >        F  += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
930 >        Tb += C_a * pref * v11 * rxDb;
931  
932 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
602 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
603 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
932 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
933  
934 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
935 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
934 >        // Even if we excluded this pair from direct interactions, we
935 >        // still have the reaction-field-mediated charge-dipole
936 >        // interaction:
937  
938 <          vterm = preVal * ( riji + rfVal );            
939 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
940 <          
941 <          // if this is an excluded pair, there are still indirect
942 <          // interactions via the reaction field we must worry about:
613 <
614 <          if (idat.excluded) {
615 <            indirect_vpair += preVal * rfVal;
616 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
617 <            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
618 <          }
619 <          
620 <        } else {
621 <
622 <          vterm = preVal * riji * erfcVal;          
623 <          dudr  = -  *(idat.sw)  * preVal * c2;
624 <          
938 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
939 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
940 >          indirect_Pot += rfContrib * rdDb;
941 >          indirect_F   += rfContrib * D_b / (*idat.rij);
942 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
943          }
944 <        
627 <        vpair += vterm * q_i * q_j;
628 <        epot +=  *(idat.sw)  * vterm * q_i * q_j;
629 <        dVdr += dudr * rhat * q_i * q_j;
944 >      }
945  
946 <        if (i_is_Fluctuating) {
947 <          if (idat.excluded) {
948 <            // vFluc1 is the difference between the direct coulomb integral
949 <            // and the normal 1/r-like  interaction between point charges.
950 <            coulInt = J1->getValueAt( *(idat.rij) );
951 <            vFluc1 = coulInt - (*(idat.sw) * vterm);
637 <          } else {
638 <            vFluc1 = 0.0;
639 <          }
640 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641 <        }
946 >      if (b_is_Quadrupole) {
947 >        pref = pre14_ * *(idat.electroMult);
948 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
949 >        F  +=  C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
950 >        F  +=  C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
951 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
952  
953 <        if (j_is_Fluctuating) {
644 <          if (idat.excluded) {
645 <            // vFluc2 is the difference between the direct coulomb integral
646 <            // and the normal 1/r-like  interaction between point charges.
647 <            coulInt = J2->getValueAt( *(idat.rij) );
648 <            vFluc2 = coulInt - (*(idat.sw) * vterm);
649 <          } else {
650 <            vFluc2 = 0.0;
651 <          }
652 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653 <        }
654 <          
655 <
953 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
954        }
955 +    }
956  
957 <      if (j_is_Dipole) {
659 <        // pref is used by all the possible methods
660 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
661 <        preSw =  *(idat.sw)  * pref;
957 >    if (a_is_Dipole) {
958  
959 <        if (summationMethod_ == esm_REACTION_FIELD) {
960 <          ri2 = riji * riji;
665 <          ri3 = ri2 * riji;
666 <    
667 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
668 <          vpair += vterm;
669 <          epot +=  *(idat.sw)  * vterm;
959 >      if (b_is_Charge) {
960 >        pref = pre12_ * *(idat.electroMult);
961  
962 <          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
963 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
962 >        U  -= C_b * pref * v11 * rdDa;
963 >        F  -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
964 >        Ta -= C_b * pref * v11 * rxDa;
965  
966 <          // Even if we excluded this pair from direct interactions,
675 <          // we still have the reaction-field-mediated charge-dipole
676 <          // interaction:
966 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
967  
968 <          if (idat.excluded) {
969 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
970 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
971 <            indirect_dVdr += preSw * preRF2_ * uz_j;
972 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
973 <          }
974 <                      
975 <        } else {
686 <          // determine the inverse r used if we have split dipoles
687 <          if (j_is_SplitDipole) {
688 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
689 <            ri = 1.0 / BigR;
690 <            scale =  *(idat.rij)  * ri;
691 <          } else {
692 <            ri = riji;
693 <            scale = 1.0;
694 <          }
695 <          
696 <          sc2 = scale * scale;
697 <
698 <          if (screeningMethod_ == DAMPED) {
699 <            // assemble the damping variables
700 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 <            //erfcVal = res.first;
702 <            //derfcVal = res.second;
703 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705 <            c1 = erfcVal * ri;
706 <            c2 = (-derfcVal + c1) * ri;
707 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
708 <          } else {
709 <            c1 = ri;
710 <            c2 = c1 * ri;
711 <            c3 = 3.0 * c2 * ri;
712 <          }
713 <            
714 <          c2ri = c2 * ri;
715 <
716 <          // calculate the potential
717 <          pot_term =  scale * c2;
718 <          vterm = -pref * ct_j * pot_term;
719 <          vpair += vterm;
720 <          epot +=  *(idat.sw)  * vterm;
721 <            
722 <          // calculate derivatives for forces and torques
723 <
724 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
725 <          duduz_j += -preSw * pot_term * rhat;
726 <
968 >        // Even if we excluded this pair from direct interactions,
969 >        // we still have the reaction-field-mediated charge-dipole
970 >        // interaction:
971 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
972 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
973 >          indirect_Pot -= rfContrib * rdDa;
974 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
975 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
976          }
728        if (i_is_Fluctuating) {
729          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730        }
977        }
978  
979 <      if (j_is_Quadrupole) {
980 <        // first precalculate some necessary variables
981 <        cx2 = cx_j * cx_j;
982 <        cy2 = cy_j * cy_j;
737 <        cz2 = cz_j * cz_j;
738 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
739 <          
740 <        if (screeningMethod_ == DAMPED) {
741 <          // assemble the damping variables
742 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 <          //erfcVal = res.first;
744 <          //derfcVal = res.second;
745 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747 <          c1 = erfcVal * riji;
748 <          c2 = (-derfcVal + c1) * riji;
749 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
750 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
751 <        } else {
752 <          c1 = riji;
753 <          c2 = c1 * riji;
754 <          c3 = 3.0 * c2 * riji;
755 <          c4 = 5.0 * c3 * riji * riji;
756 <        }
979 >      if (b_is_Dipole) {
980 >        pref = pre22_ * *(idat.electroMult);
981 >        DadDb = dot(D_a, D_b);
982 >        DaxDb = cross(D_a, D_b);
983  
984 <        // precompute variables for convenience
985 <        preSw =  *(idat.sw)  * pref;
986 <        c2ri = c2 * riji;
987 <        c3ri = c3 * riji;
988 <        c4rij = c4 *  *(idat.rij) ;
763 <        rhatdot2 = two * rhat * c3;
764 <        rhatc4 = rhat * c4rij;
984 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
985 >        F  -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
986 >        F  -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
987 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
988 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
989  
990 <        // calculate the potential
991 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
992 <                     qyy_j * (cy2*c3 - c2ri) +
993 <                     qzz_j * (cz2*c3 - c2ri) );
994 <        vterm = pref * pot_term;
995 <        vpair += vterm;
996 <        epot +=  *(idat.sw)  * vterm;
997 <                
774 <        // calculate derivatives for the forces and torques
775 <
776 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 <                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 <                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779 <                          
780 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 <        if (i_is_Fluctuating) {
784 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
990 >        // Even if we excluded this pair from direct interactions, we
991 >        // still have the reaction-field-mediated dipole-dipole
992 >        // interaction:
993 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
994 >          rfContrib = -pref * preRF_ * 2.0;
995 >          indirect_Pot += rfContrib * DadDb;
996 >          indirect_Ta  += rfContrib * DaxDb;
997 >          indirect_Tb  -= rfContrib * DaxDb;
998          }
999 +      }
1000  
1001 +      if (b_is_Quadrupole) {
1002 +        pref = pre24_ * *(idat.electroMult);
1003 +        DadQb = D_a * Q_b;
1004 +        DadQbr = dot(D_a, Qbr);
1005 +        DaxQbr = cross(D_a, Qbr);
1006 +
1007 +        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1008 +        F  -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1009 +        F  -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1010 +        F  -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1011 +        F  -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1012 +        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1013 +        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1014 +                      - 2.0*rdDa*rxQbr*v32);
1015        }
1016      }
789    
790    if (i_is_Dipole) {
1017  
1018 <      if (j_is_Charge) {
1019 <        // variables used by all the methods
1020 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1021 <        preSw =  *(idat.sw)  * pref;
1018 >    if (a_is_Quadrupole) {
1019 >      if (b_is_Charge) {
1020 >        pref = pre14_ * *(idat.electroMult);
1021 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
1022 >        F  += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1023 >        F  += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1024 >        Ta += C_b * pref * 2.0 * rxQar * v22;
1025  
1026 <        if (summationMethod_ == esm_REACTION_FIELD) {
1026 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1027 >      }
1028 >      if (b_is_Dipole) {
1029 >        pref = pre24_ * *(idat.electroMult);
1030 >        DbdQa = D_b * Q_a;
1031 >        DbdQar = dot(D_b, Qar);
1032 >        DbxQar = cross(D_b, Qar);
1033  
1034 <          ri2 = riji * riji;
1035 <          ri3 = ri2 * riji;
1034 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1035 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1036 >        F  += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1037 >        F  += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1038 >        F  += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1039 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1040 >                      + 2.0*rdDb*rxQar*v32);
1041 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1042 >      }
1043 >      if (b_is_Quadrupole) {
1044 >        pref = pre44_ * *(idat.electroMult);  // yes
1045 >        QaQb = Q_a * Q_b;
1046 >        trQaQb = QaQb.trace();
1047 >        rQaQb = rhat * QaQb;
1048 >        QaQbr = QaQb * rhat;
1049 >        QaxQb = cross(Q_a, Q_b);
1050 >        rQaQbr = dot(rQa, Qbr);
1051 >        rQaxQbr = cross(rQa, Qbr);
1052 >        
1053 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1054 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1055 >        U  += pref * (rdQar * rdQbr) * v43;
1056  
1057 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1058 <          vpair += vterm;
1059 <          epot +=  *(idat.sw)  * vterm;
805 <          
806 <          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
807 <          
808 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
809 <
810 <          // Even if we excluded this pair from direct interactions,
811 <          // we still have the reaction-field-mediated charge-dipole
812 <          // interaction:
813 <
814 <          if (idat.excluded) {
815 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
816 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
817 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
818 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
819 <          }
820 <            
821 <        } else {
822 <          
823 <          // determine inverse r if we are using split dipoles
824 <          if (i_is_SplitDipole) {
825 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
826 <            ri = 1.0 / BigR;
827 <            scale =  *(idat.rij)  * ri;
828 <          } else {
829 <            ri = riji;
830 <            scale = 1.0;
831 <          }
832 <          
833 <          sc2 = scale * scale;
834 <            
835 <          if (screeningMethod_ == DAMPED) {
836 <            // assemble the damping variables
837 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 <            //erfcVal = res.first;
839 <            //derfcVal = res.second;
840 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842 <            c1 = erfcVal * ri;
843 <            c2 = (-derfcVal + c1) * ri;
844 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
845 <          } else {
846 <            c1 = ri;
847 <            c2 = c1 * ri;
848 <            c3 = 3.0 * c2 * ri;
849 <          }
850 <          
851 <          c2ri = c2 * ri;
852 <              
853 <          // calculate the potential
854 <          pot_term = c2 * scale;
855 <          vterm = pref * ct_i * pot_term;
856 <          vpair += vterm;
857 <          epot +=  *(idat.sw)  * vterm;
1057 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1058 >        F  += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1059 >        F  += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1060  
1061 <          // calculate derivatives for the forces and torques
1062 <          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
1063 <          duduz_i += preSw * pot_term * rhat;
862 <        }
1061 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1062 >        F  += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1063 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1064  
1065 <        if (j_is_Fluctuating) {
1066 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1067 <        }
1065 >        Ta += pref * (- 4.0 * QaxQb * v41);
1066 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1067 >                      + 4.0 * cross(rhat, QaQbr)
1068 >                      - 4.0 * rQaxQbr) * v42;
1069 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1070  
868      }
1071  
1072 <      if (j_is_Dipole) {
1073 <        // variables used by all methods
1074 <        ct_ij = dot(uz_i, uz_j);
1072 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1073 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1074 >                      - 4.0 * cross(rQaQb, rhat)
1075 >                      + 4.0 * rQaxQbr) * v42;
1076 >        // Possible replacement for line 2 above:
1077 >        //             + 4.0 * cross(rhat, QbQar)
1078  
1079 <        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
875 <        preSw =  *(idat.sw)  * pref;
1079 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1080  
877        if (summationMethod_ == esm_REACTION_FIELD) {
878          ri2 = riji * riji;
879          ri3 = ri2 * riji;
880          ri4 = ri2 * ri2;
881
882          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883                           preRF2_ * ct_ij );
884          vpair += vterm;
885          epot +=  *(idat.sw)  * vterm;
886            
887          a1 = 5.0 * ct_i * ct_j - ct_ij;
888            
889          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890
891          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893
894          if (idat.excluded) {
895            indirect_vpair +=  - pref * preRF2_ * ct_ij;
896            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
897            indirect_duduz_i += -preSw * preRF2_ * uz_j;
898            indirect_duduz_j += -preSw * preRF2_ * uz_i;
899          }
900
901        } else {
902          
903          if (i_is_SplitDipole) {
904            if (j_is_SplitDipole) {
905              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906            } else {
907              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
908            }
909            ri = 1.0 / BigR;
910            scale =  *(idat.rij)  * ri;
911          } else {
912            if (j_is_SplitDipole) {
913              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
914              ri = 1.0 / BigR;
915              scale =  *(idat.rij)  * ri;
916            } else {
917              ri = riji;
918              scale = 1.0;
919            }
920          }
921          if (screeningMethod_ == DAMPED) {
922            // assemble damping variables
923            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924            //erfcVal = res.first;
925            //derfcVal = res.second;
926            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928            c1 = erfcVal * ri;
929            c2 = (-derfcVal + c1) * ri;
930            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
931            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
932          } else {
933            c1 = ri;
934            c2 = c1 * ri;
935            c3 = 3.0 * c2 * ri;
936            c4 = 5.0 * c3 * ri * ri;
937          }
938
939          // precompute variables for convenience
940          sc2 = scale * scale;
941          cti3 = ct_i * sc2 * c3;
942          ctj3 = ct_j * sc2 * c3;
943          ctidotj = ct_i * ct_j * sc2;
944          preSwSc = preSw * scale;
945          c2ri = c2 * ri;
946          c3ri = c3 * ri;
947          c4rij = c4 *  *(idat.rij) ;
948
949          // calculate the potential
950          pot_term = (ct_ij * c2ri - ctidotj * c3);
951          vterm = pref * pot_term;
952          vpair += vterm;
953          epot +=  *(idat.sw)  * vterm;
954
955          // calculate derivatives for the forces and torques
956          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
957                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
958          
959          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
960          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
961        }
1081        }
1082      }
1083  
1084 <    if (i_is_Quadrupole) {
1085 <      if (j_is_Charge) {
1086 <        // precompute some necessary variables
968 <        cx2 = cx_i * cx_i;
969 <        cy2 = cy_i * cy_i;
970 <        cz2 = cz_i * cz_i;
971 <
972 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
973 <
974 <        if (screeningMethod_ == DAMPED) {
975 <          // assemble the damping variables
976 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 <          //erfcVal = res.first;
978 <          //derfcVal = res.second;
979 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981 <          c1 = erfcVal * riji;
982 <          c2 = (-derfcVal + c1) * riji;
983 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
984 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
985 <        } else {
986 <          c1 = riji;
987 <          c2 = c1 * riji;
988 <          c3 = 3.0 * c2 * riji;
989 <          c4 = 5.0 * c3 * riji * riji;
990 <        }
991 <          
992 <        // precompute some variables for convenience
993 <        preSw =  *(idat.sw)  * pref;
994 <        c2ri = c2 * riji;
995 <        c3ri = c3 * riji;
996 <        c4rij = c4 *  *(idat.rij) ;
997 <        rhatdot2 = two * rhat * c3;
998 <        rhatc4 = rhat * c4rij;
999 <
1000 <        // calculate the potential
1001 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1002 <                     qyy_i * (cy2 * c3 - c2ri) +
1003 <                     qzz_i * (cz2 * c3 - c2ri) );
1004 <        
1005 <        vterm = pref * pot_term;
1006 <        vpair += vterm;
1007 <        epot +=  *(idat.sw)  * vterm;
1008 <
1009 <        // calculate the derivatives for the forces and torques
1010 <
1011 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 <                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 <                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014 <
1015 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1016 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1017 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1018 <
1019 <        if (j_is_Fluctuating) {
1020 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 <        }
1022 <
1023 <      }
1084 >    if (idat.doElectricField) {
1085 >      *(idat.eField1) += Ea * *(idat.electroMult);
1086 >      *(idat.eField2) += Eb * *(idat.electroMult);
1087      }
1088  
1089 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1090 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1091  
1092      if (!idat.excluded) {
1028      *(idat.vpair) += vpair;
1029      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030      *(idat.f1) += dVdr;
1093        
1094 <      if (i_is_Dipole || i_is_Quadrupole)
1095 <        *(idat.t1) -= cross(uz_i, duduz_i);
1096 <      if (i_is_Quadrupole) {
1035 <        *(idat.t1) -= cross(ux_i, dudux_i);
1036 <        *(idat.t1) -= cross(uy_i, duduy_i);
1037 <      }
1094 >      *(idat.vpair) += U;
1095 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1096 >      *(idat.f1) += F * *(idat.sw);
1097        
1098 <      if (j_is_Dipole || j_is_Quadrupole)
1099 <        *(idat.t2) -= cross(uz_j, duduz_j);
1041 <      if (j_is_Quadrupole) {
1042 <        *(idat.t2) -= cross(uz_j, dudux_j);
1043 <        *(idat.t2) -= cross(uz_j, duduy_j);
1044 <      }
1098 >      if (a_is_Dipole || a_is_Quadrupole)
1099 >        *(idat.t1) += Ta * *(idat.sw);
1100  
1101 +      if (b_is_Dipole || b_is_Quadrupole)
1102 +        *(idat.t2) += Tb * *(idat.sw);
1103 +      
1104      } else {
1105  
1106        // only accumulate the forces and torques resulting from the
1107        // indirect reaction field terms.
1108  
1109 <      *(idat.vpair) += indirect_vpair;
1110 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1111 <      *(idat.f1) += indirect_dVdr;
1109 >      *(idat.vpair) += indirect_Pot;      
1110 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1111 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1112 >      *(idat.f1) += *(idat.sw) * indirect_F;
1113        
1114 <      if (i_is_Dipole)
1115 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1116 <      if (j_is_Dipole)
1117 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1114 >      if (a_is_Dipole || a_is_Quadrupole)
1115 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1116 >            
1117 >      if (b_is_Dipole || b_is_Quadrupole)
1118 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1119      }
1060
1120      return;
1121 <  }  
1121 >  }
1122      
1123    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1124 <    RealType mu1, preVal, self;
1124 >
1125      if (!initialized_) initialize();
1126  
1127 <    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1128 <  
1127 >    ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1128 >    
1129      // logicals
1130      bool i_is_Charge = data.is_Charge;
1131      bool i_is_Dipole = data.is_Dipole;
1132 +    bool i_is_Quadrupole = data.is_Quadrupole;
1133      bool i_is_Fluctuating = data.is_Fluctuating;
1134 <    RealType chg1 = data.fixedCharge;  
1135 <    
1134 >    RealType C_a = data.fixedCharge;  
1135 >    RealType self(0.0), preVal, DdD, trQ, trQQ;
1136 >
1137 >    if (i_is_Dipole) {
1138 >      DdD = data.dipole.lengthSquare();
1139 >    }
1140 >        
1141      if (i_is_Fluctuating) {
1142 <      chg1 += *(sdat.flucQ);
1142 >      C_a += *(sdat.flucQ);
1143        // dVdFQ is really a force, so this is negative the derivative
1144        *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1145 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1146 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1147      }
1148  
1149 <    if (summationMethod_ == esm_REACTION_FIELD) {
1150 <      if (i_is_Dipole) {
1151 <        mu1 = data.dipole_moment;          
1152 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1153 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1154 <        
1155 <        // The self-correction term adds into the reaction field vector
1156 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1157 <        Vector3d ei = preVal * uz_i;
1149 >    switch (summationMethod_) {
1150 >    case esm_REACTION_FIELD:
1151 >      
1152 >      if (i_is_Charge) {
1153 >        // Self potential [see Wang and Hermans, "Reaction Field
1154 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1155 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1156 >        preVal = pre11_ * preRF_ * C_a * C_a;
1157 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1158 >      }
1159  
1160 <        // This looks very wrong.  A vector crossed with itself is zero.
1161 <        *(sdat.t) -= cross(uz_i, ei);
1160 >      if (i_is_Dipole) {
1161 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1162        }
1163 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1164 <      if (i_is_Charge) {        
1165 <        if (screeningMethod_ == DAMPED) {
1166 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1167 <        } else {        
1168 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1169 <        }
1170 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1163 >      
1164 >      break;
1165 >      
1166 >    case esm_SHIFTED_FORCE:
1167 >    case esm_SHIFTED_POTENTIAL:
1168 >    case esm_TAYLOR_SHIFTED:
1169 >    case esm_EWALD_FULL:
1170 >      if (i_is_Charge)
1171 >        self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));      
1172 >      if (i_is_Dipole)
1173 >        self += selfMult2_ * pre22_ * DdD;      
1174 >      if (i_is_Quadrupole) {
1175 >        trQ = data.quadrupole.trace();
1176 >        trQQ = (data.quadrupole * data.quadrupole).trace();
1177 >        self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1178 >        if (i_is_Charge)
1179 >          self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1180        }
1181 +      (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;      
1182 +      break;
1183 +    default:
1184 +      break;
1185      }
1186    }
1187 <
1187 >  
1188    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1189      // This seems to work moderately well as a default.  There's no
1190      // inherent scale for 1/r interactions that we can standardize.
# Line 1111 | Line 1192 | namespace OpenMD {
1192      // cases.
1193      return 12.0;
1194    }
1195 +
1196 +
1197 +  void Electrostatic::ReciprocalSpaceSum(potVec& pot) {
1198 +    
1199 +    RealType kPot = 0.0;
1200 +    RealType kVir = 0.0;
1201 +    
1202 +    const RealType mPoleConverter = 0.20819434; // converts from the
1203 +                                                // internal units of
1204 +                                                // Debye (for dipoles)
1205 +                                                // or Debye-angstroms
1206 +                                                // (for quadrupoles) to
1207 +                                                // electron angstroms or
1208 +                                                // electron-angstroms^2
1209 +    
1210 +    const RealType eConverter = 332.0637778; // convert the
1211 +                                             // Charge-Charge
1212 +                                             // electrostatic
1213 +                                             // interactions into kcal /
1214 +                                             // mol assuming distances
1215 +                                             // are measured in
1216 +                                             // angstroms.
1217 +
1218 +    Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1219 +    Vector3d box = hmat.diagonals();
1220 +    RealType boxMax = box.max();
1221 +    
1222 +    //int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) );
1223 +    int kMax = 7;
1224 +    int kSqMax = kMax*kMax + 2;
1225 +    
1226 +    int kLimit = kMax+1;
1227 +    int kLim2 = 2*kMax+1;
1228 +    int kSqLim = kSqMax;
1229 +    
1230 +    vector<RealType> AK(kSqLim+1, 0.0);
1231 +    RealType xcl = 2.0 * M_PI / box.x();
1232 +    RealType ycl = 2.0 * M_PI / box.y();
1233 +    RealType zcl = 2.0 * M_PI / box.z();
1234 +    RealType rcl = 2.0 * M_PI / boxMax;
1235 +    RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1236 +    
1237 +    if(dampingAlpha_ < 1.0e-12) return;
1238 +    
1239 +    RealType ralph = -0.25/pow(dampingAlpha_,2);
1240 +    
1241 +    // Calculate and store exponential factors  
1242 +    
1243 +    vector<vector<Vector3d> > eCos;
1244 +    vector<vector<Vector3d> > eSin;
1245 +    
1246 +    int nMax = info_->getNAtoms();
1247 +    
1248 +    eCos.resize(kLimit+1);
1249 +    eSin.resize(kLimit+1);
1250 +    for (int j = 0; j < kLimit+1; j++) {
1251 +      eCos[j].resize(nMax);
1252 +      eSin[j].resize(nMax);
1253 +    }
1254 +    
1255 +    Vector3d t( 2.0 * M_PI );
1256 +    t.Vdiv(t, box);
1257 +
1258 +    
1259 +    SimInfo::MoleculeIterator mi;
1260 +    Molecule::AtomIterator ai;
1261 +    int i;
1262 +    Vector3d r;
1263 +    Vector3d tt;
1264 +    Vector3d w;
1265 +    Vector3d u;
1266 +    Vector3d a;
1267 +    Vector3d b;
1268 +    
1269 +    for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1270 +         mol = info_->nextMolecule(mi)) {
1271 +      for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1272 +          atom = mol->nextAtom(ai)) {  
1273 +        
1274 +        i = atom->getLocalIndex();
1275 +        r = atom->getPos();
1276 +        info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1277 +        
1278 +        tt.Vmul(t, r);
1279 +
1280 +        
1281 +        eCos[1][i] = Vector3d(1.0, 1.0, 1.0);
1282 +        eSin[1][i] = Vector3d(0.0, 0.0, 0.0);
1283 +        eCos[2][i] = Vector3d(cos(tt.x()), cos(tt.y()), cos(tt.z()));
1284 +        eSin[2][i] = Vector3d(sin(tt.x()), sin(tt.y()), sin(tt.z()));
1285 +
1286 +        u = eCos[2][i];
1287 +        w = eSin[2][i];
1288 +        
1289 +        for(int l = 3; l <= kLimit; l++) {
1290 +          eCos[l][i].x() = eCos[l-1][i].x()*eCos[2][i].x() - eSin[l-1][i].x()*eSin[2][i].x();
1291 +          eCos[l][i].y() = eCos[l-1][i].y()*eCos[2][i].y() - eSin[l-1][i].y()*eSin[2][i].y();
1292 +          eCos[l][i].z() = eCos[l-1][i].z()*eCos[2][i].z() - eSin[l-1][i].z()*eSin[2][i].z();
1293 +          
1294 +          eSin[l][i].x() = eSin[l-1][i].x()*eCos[2][i].x() + eCos[l-1][i].x()*eSin[2][i].x();
1295 +          eSin[l][i].y() = eSin[l-1][i].y()*eCos[2][i].y() + eCos[l-1][i].y()*eSin[2][i].z();
1296 +          eSin[l][i].z() = eSin[l-1][i].z()*eCos[2][i].z() + eCos[l-1][i].z()*eSin[2][i].y();
1297 +
1298 +
1299 +          // a.Vmul(eCos[l-1][i], u);
1300 +          // b.Vmul(eSin[l-1][i], w);
1301 +          // eCos[l][i] = a - b;
1302 +          // a.Vmul(eSin[l-1][i], u);
1303 +          // b.Vmul(eCos[l-1][i], w);
1304 +          // eSin[l][i] = a + b;
1305 +        
1306 +        }
1307 +      }
1308 +    }
1309 +    
1310 +    // Calculate and store AK coefficients:
1311 +    
1312 +    RealType eksq = 1.0;
1313 +    RealType expf = 0.0;
1314 +    if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1315 +    for (i = 1; i <= kSqLim; i++) {
1316 +      RealType rksq = float(i)*rcl*rcl;
1317 +      eksq = expf*eksq;
1318 +      AK[i] = eConverter * eksq/rksq;
1319 +    }
1320 +    
1321 +    /*
1322 +     * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1323 +     * the values of ll, mm and nn are selected so that the symmetry of
1324 +     * reciprocal lattice is taken into account i.e. the following
1325 +     * rules apply.
1326 +     *
1327 +     * ll ranges over the values 0 to kMax only.
1328 +     *
1329 +     * mm ranges over 0 to kMax when ll=0 and over
1330 +     *            -kMax to kMax otherwise.
1331 +     * nn ranges over 1 to kMax when ll=mm=0 and over
1332 +     *            -kMax to kMax otherwise.
1333 +     *
1334 +     * Hence the result of the summation must be doubled at the end.    
1335 +     */
1336 +    
1337 +    std::vector<RealType> clm(nMax, 0.0);
1338 +    std::vector<RealType> slm(nMax, 0.0);
1339 +    std::vector<RealType> ckr(nMax, 0.0);
1340 +    std::vector<RealType> skr(nMax, 0.0);
1341 +    std::vector<RealType> ckc(nMax, 0.0);
1342 +    std::vector<RealType> cks(nMax, 0.0);
1343 +    std::vector<RealType> dkc(nMax, 0.0);
1344 +    std::vector<RealType> dks(nMax, 0.0);
1345 +    std::vector<RealType> qkc(nMax, 0.0);
1346 +    std::vector<RealType> qks(nMax, 0.0);
1347 +    std::vector<Vector3d> dxk(nMax, V3Zero);
1348 +    std::vector<Vector3d> qxk(nMax, V3Zero);
1349 +    
1350 +    int mMin = kLimit;
1351 +    int nMin = kLimit + 1;
1352 +    for (int l = 1; l <= kLimit; l++) {
1353 +      int ll = l - 1;
1354 +      RealType rl = xcl * float(ll);
1355 +      for (int mmm = mMin; mmm <= kLim2; mmm++) {
1356 +        int mm = mmm - kLimit;
1357 +        int m = abs(mm) + 1;
1358 +        RealType rm = ycl * float(mm);
1359 +        // Set temporary products of exponential terms
1360 +        for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1361 +             mol = info_->nextMolecule(mi)) {
1362 +          for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1363 +              atom = mol->nextAtom(ai)) {
1364 +            
1365 +            i = atom->getLocalIndex();
1366 +            if(mm < 0) {
1367 +              clm[i] = eCos[l][i].x()*eCos[m][i].y()
1368 +                     + eSin[l][i].x()*eSin[m][i].y();
1369 +              slm[i] = eSin[l][i].x()*eCos[m][i].y()
1370 +                     - eSin[m][i].y()*eCos[l][i].x();
1371 +            } else {
1372 +              clm[i] = eCos[l][i].x()*eCos[m][i].y()
1373 +                     - eSin[l][i].x()*eSin[m][i].y();
1374 +              slm[i] = eSin[l][i].x()*eCos[m][i].y()
1375 +                     + eSin[m][i].y()*eCos[l][i].x();              
1376 +            }
1377 +          }
1378 +        }
1379 +        for (int nnn = nMin; nnn <= kLim2; nnn++) {
1380 +          int nn = nnn - kLimit;          
1381 +          int n = abs(nn) + 1;
1382 +          RealType rn = zcl * float(nn);
1383 +          // Test on magnitude of k vector:
1384 +          int kk=ll*ll + mm*mm + nn*nn;
1385 +          if(kk <= kSqLim) {
1386 +            Vector3d kVec = Vector3d(rl, rm, rn);
1387 +            Mat3x3d  k2 = outProduct(kVec, kVec);
1388 +            // Calculate exp(ikr) terms
1389 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1390 +                 mol = info_->nextMolecule(mi)) {
1391 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1392 +                  atom = mol->nextAtom(ai)) {
1393 +                i = atom->getLocalIndex();
1394 +                
1395 +                if (nn < 0) {
1396 +                  ckr[i]=clm[i]*eCos[n][i].z()+slm[i]*eSin[n][i].z();
1397 +                  skr[i]=slm[i]*eCos[n][i].z()-clm[i]*eSin[n][i].z();
1398 +                } else {
1399 +                  ckr[i]=clm[i]*eCos[n][i].z()-slm[i]*eSin[n][i].z();
1400 +                  skr[i]=slm[i]*eCos[n][i].z()+clm[i]*eSin[n][i].z();
1401 +                }
1402 +              }
1403 +            }
1404 +            
1405 +            // Calculate scalar and vector products for each site:
1406 +            
1407 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1408 +                 mol = info_->nextMolecule(mi)) {
1409 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1410 +                  atom = mol->nextAtom(ai)) {
1411 +                i = atom->getLocalIndex();
1412 +                int atid = atom->getAtomType()->getIdent();
1413 +                ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]];
1414 +                              
1415 +                if (data.is_Charge) {
1416 +                  RealType C = data.fixedCharge;
1417 +                  if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1418 +                  ckc[i] = C * ckr[i];
1419 +                  cks[i] = C * skr[i];
1420 +                }
1421 +                
1422 +                if (data.is_Dipole) {
1423 +                  Vector3d D = atom->getDipole() * mPoleConverter;
1424 +                  RealType dk = dot(kVec, D);
1425 +                  dxk[i] = cross(kVec, D);
1426 +                  dkc[i] = dk * ckr[i];
1427 +                  dks[i] = dk * skr[i];
1428 +                }
1429 +                if (data.is_Quadrupole) {
1430 +                  Mat3x3d Q = atom->getQuadrupole();
1431 +                  Q *= mPoleConverter;
1432 +                  RealType qk = -( Q * k2 ).trace();
1433 +                  qxk[i] = -2.0 * cross(k2, Q);
1434 +                  qkc[i] = qk * ckr[i];
1435 +                  qks[i] = qk * skr[i];
1436 +                }              
1437 +              }
1438 +            }
1439 +
1440 +            // calculate vector sums
1441 +            
1442 +            RealType ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1443 +            RealType ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1444 +            RealType dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1445 +            RealType dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1446 +            RealType qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1447 +            RealType qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1448 +
1449 +            
1450 + #ifdef IS_MPI
1451 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE,
1452 +                                      MPI::SUM);
1453 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE,
1454 +                                      MPI::SUM);
1455 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE,
1456 +                                      MPI::SUM);
1457 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE,
1458 +                                      MPI::SUM);
1459 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE,
1460 +                                      MPI::SUM);
1461 +            MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE,
1462 +                                      MPI::SUM);
1463 + #endif        
1464 +            
1465 +            // Accumulate potential energy and virial contribution:          
1466 +
1467 +            kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1468 +                                         + (ckcs-dkss-qkcs)*(ckcs-dkss-qkss));
1469 +
1470 +            kVir -= 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss
1471 +                                         +4.0*(ckss*dkcs-ckcs*dkss)
1472 +                                         +3.0*(dkcs*dkcs+dkss*dkss)
1473 +                                         -6.0*(ckss*qkss+ckcs*qkcs)
1474 +                                         +8.0*(dkss*qkcs-dkcs*qkss)
1475 +                                         +5.0*(qkss*qkss+qkcs*qkcs));
1476 +            
1477 +            // Calculate force and torque for each site:
1478 +            
1479 +            for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1480 +                 mol = info_->nextMolecule(mi)) {
1481 +              for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1482 +                  atom = mol->nextAtom(ai)) {
1483 +                
1484 +                i = atom->getLocalIndex();
1485 +                int atid = atom->getAtomType()->getIdent();
1486 +                ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]];
1487 +                
1488 +                RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1489 +                                     - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1490 +                RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1491 +                                         -ckr[i]*(ckss+dkcs-qkss));
1492 +                RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)+
1493 +                                             skr[i]*(ckss+dkcs-qkss));
1494 +                
1495 +                atom->addFrc( 4.0 * rvol * qfrc * kVec );
1496 +                
1497 +                if (data.is_Dipole) {
1498 +                  atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1499 +                }
1500 +                if (data.is_Quadrupole) {
1501 +                  atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1502 +                }
1503 +              }
1504 +            }
1505 +          }
1506 +        }
1507 +        nMin = 1;
1508 +      }
1509 +      mMin = 1;
1510 +    }
1511 +    cerr << "kPot = " << kPot << "\n";
1512 +    pot[ELECTROSTATIC_FAMILY] += kPot;  
1513 +  }
1514   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines