ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing:
branches/development/src/nonbonded/Electrostatic.cpp (file contents), Revision 1750 by gezelter, Thu Jun 7 12:53:46 2012 UTC vs.
trunk/src/nonbonded/Electrostatic.cpp (file contents), Revision 1907 by gezelter, Fri Jul 19 18:18:27 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40   * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
# Line 53 | Line 53
53   #include "io/Globals.hpp"
54   #include "nonbonded/SlaterIntegrals.hpp"
55   #include "utils/PhysicalConstants.hpp"
56 + #include "math/erfc.hpp"
57 + #include "math/SquareMatrix.hpp"
58  
57
59   namespace OpenMD {
60    
61    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
# Line 62 | Line 63 | namespace OpenMD {
63                                    haveCutoffRadius_(false),
64                                    haveDampingAlpha_(false),
65                                    haveDielectric_(false),
66 <                                  haveElectroSpline_(false)
66 >                                  haveElectroSplines_(false)
67    {}
68    
69    void Electrostatic::initialize() {
# Line 74 | Line 75 | namespace OpenMD {
75      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
76      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
77      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
78 +    summationMap_["TAYLOR_SHIFTED"]     = esm_TAYLOR_SHIFTED;    
79      summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
80      summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
81      summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
# Line 88 | Line 90 | namespace OpenMD {
90      // Charge-Dipole, assuming charges are measured in electrons, and
91      // dipoles are measured in debyes
92      pre12_ = 69.13373;
93 <    // Dipole-Dipole, assuming dipoles are measured in debyes
93 >    // Dipole-Dipole, assuming dipoles are measured in Debye
94      pre22_ = 14.39325;
95      // Charge-Quadrupole, assuming charges are measured in electrons, and
96      // quadrupoles are measured in 10^-26 esu cm^2
97 <    // This unit is also known affectionately as an esu centi-barn.
97 >    // This unit is also known affectionately as an esu centibarn.
98      pre14_ = 69.13373;
99 <    
99 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
100 >    // quadrupoles in esu centibarns:
101 >    pre24_ = 14.39325;
102 >    // Quadrupole-Quadrupole, assuming esu centibarns:
103 >    pre44_ = 14.39325;
104 >
105      // conversions for the simulation box dipole moment
106      chargeToC_ = 1.60217733e-19;
107      angstromToM_ = 1.0e-10;
108      debyeToCm_ = 3.33564095198e-30;
109      
110 <    // number of points for electrostatic splines
110 >    // Default number of points for electrostatic splines
111      np_ = 100;
112      
113      // variables to handle different summation methods for long-range
# Line 108 | Line 115 | namespace OpenMD {
115      summationMethod_ = esm_HARD;    
116      screeningMethod_ = UNDAMPED;
117      dielectric_ = 1.0;
111    one_third_ = 1.0 / 3.0;
118    
119      // check the summation method:
120      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 124 | Line 130 | namespace OpenMD {
130                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
131                   "\t(Input file specified %s .)\n"
132                   "\telectrostaticSummationMethod must be one of: \"hard\",\n"
133 <                 "\t\"shifted_potential\", \"shifted_force\", or \n"
134 <                 "\t\"reaction_field\".\n", myMethod.c_str() );
133 >                 "\t\"shifted_potential\", \"shifted_force\",\n"
134 >                 "\t\"taylor_shifted\", or \"reaction_field\".\n",
135 >                 myMethod.c_str() );
136          painCave.isFatal = 1;
137          simError();
138        }
# Line 206 | Line 213 | namespace OpenMD {
213        haveDampingAlpha_ = true;
214      }
215  
216 <    // find all of the Electrostatic atom Types:
217 <    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
218 <    ForceField::AtomTypeContainer::MapTypeIterator i;
219 <    AtomType* at;
216 >    Etypes.clear();
217 >    Etids.clear();
218 >    FQtypes.clear();
219 >    FQtids.clear();
220 >    ElectrostaticMap.clear();
221 >    Jij.clear();
222 >    nElectro_ = 0;
223 >    nFlucq_ = 0;
224 >
225 >    Etids.resize( forceField_->getNAtomType(), -1);
226 >    FQtids.resize( forceField_->getNAtomType(), -1);
227 >
228 >    set<AtomType*>::iterator at;
229 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {    
230 >      if ((*at)->isElectrostatic()) nElectro_++;
231 >      if ((*at)->isFluctuatingCharge()) nFlucq_++;
232 >    }
233      
234 <    for (at = atomTypes->beginType(i); at != NULL;
235 <         at = atomTypes->nextType(i)) {
236 <      
237 <      if (at->isElectrostatic())
238 <        addType(at);
219 <    }
234 >    Jij.resize(nFlucq_);
235 >
236 >    for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
237 >      if ((*at)->isElectrostatic()) addType(*at);
238 >    }  
239      
221    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222    rcuti_ = 1.0 / cutoffRadius_;
223    rcuti2_ = rcuti_ * rcuti_;
224    rcuti3_ = rcuti2_ * rcuti_;
225    rcuti4_ = rcuti2_ * rcuti2_;
226
227    if (screeningMethod_ == DAMPED) {
228      
229      alpha2_ = dampingAlpha_ * dampingAlpha_;
230      alpha4_ = alpha2_ * alpha2_;
231      alpha6_ = alpha4_ * alpha2_;
232      alpha8_ = alpha4_ * alpha4_;
233      
234      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235      invRootPi_ = 0.56418958354775628695;
236      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237
238      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
244    } else {
245      c1c_ = rcuti_;
246      c2c_ = c1c_ * rcuti_;
247      c3c_ = 3.0 * c2c_ * rcuti_;
248      c4c_ = 5.0 * c3c_ * rcuti2_;
249      c5c_ = 7.0 * c4c_ * rcuti2_;
250      c6c_ = 9.0 * c5c_ * rcuti2_;
251    }
252  
240      if (summationMethod_ == esm_REACTION_FIELD) {
241        preRF_ = (dielectric_ - 1.0) /
242 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
243 <      preRF2_ = 2.0 * preRF_;
242 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
243 >    }
244 >    
245 >    RealType b0c, b1c, b2c, b3c, b4c, b5c;
246 >    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
247 >    RealType a2, expTerm, invArootPi;
248 >    
249 >    RealType r = cutoffRadius_;
250 >    RealType r2 = r * r;
251 >    RealType ric = 1.0 / r;
252 >    RealType ric2 = ric * ric;
253 >
254 >    if (screeningMethod_ == DAMPED) {      
255 >      a2 = dampingAlpha_ * dampingAlpha_;
256 >      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
257 >      expTerm = exp(-a2 * r2);
258 >      // values of Smith's B_l functions at the cutoff radius:
259 >      b0c = erfc(dampingAlpha_ * r) / r;
260 >      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
261 >      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
262 >      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
263 >      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
264 >      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
265 >      //selfMult1_ = - 2.0 * a2 * invArootPi;
266 >      //selfMult2_ = - 4.0 * a2 * a2 * invArootPi / 3.0;
267 >      //selfMult4_ = - 8.0 * a2 * a2 * a2 * invArootPi / 5.0;
268 >      // Half the Smith self piece:
269 >      selfMult1_ = - a2 * invArootPi;
270 >      selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
271 >      selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
272 >    } else {
273 >      a2 = 0.0;
274 >      b0c = 1.0 / r;
275 >      b1c = (      b0c) / r2;
276 >      b2c = (3.0 * b1c) / r2;
277 >      b3c = (5.0 * b2c) / r2;
278 >      b4c = (7.0 * b3c) / r2;
279 >      b5c = (9.0 * b4c) / r2;
280 >      selfMult1_ = 0.0;
281 >      selfMult2_ = 0.0;
282 >      selfMult4_ = 0.0;
283      }
284 +
285 +    // higher derivatives of B_0 at the cutoff radius:
286 +    db0c_1 = -r * b1c;
287 +    db0c_2 =     -b1c + r2 * b2c;
288 +    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
289 +    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
290 +    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;  
291      
292 +    selfMult1_ -= b0c;
293 +    selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) /  3.0;
294 +    selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
295 +
296 +    // working variables for the splines:
297 +    RealType ri, ri2;
298 +    RealType b0, b1, b2, b3, b4, b5;
299 +    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
300 +    RealType f, fc, f0;
301 +    RealType g, gc, g0, g1, g2, g3, g4;
302 +    RealType h, hc, h1, h2, h3, h4;
303 +    RealType s, sc, s2, s3, s4;
304 +    RealType t, tc, t3, t4;
305 +    RealType u, uc, u4;
306 +
307 +    // working variables for Taylor expansion:
308 +    RealType rmRc, rmRc2, rmRc3, rmRc4;
309 +
310 +    // Approximate using splines using a maximum of 0.1 Angstroms
311 +    // between points.
312 +    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
313 +    np_ = (np_ > nptest) ? np_ : nptest;
314 +  
315      // Add a 2 angstrom safety window to deal with cutoffGroups that
316      // have charged atoms longer than the cutoffRadius away from each
317 <    // other.  Splining may not be the best choice here.  Direct calls
318 <    // to erfc might be preferrable.
317 >    // other.  Splining is almost certainly the best choice here.
318 >    // Direct calls to erfc would be preferrable if it is a very fast
319 >    // implementation.
320  
321 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
322 <    RealType rval;
323 <    vector<RealType> rvals;
324 <    vector<RealType> yvals;
325 <    for (int i = 0; i < np_; i++) {
326 <      rval = RealType(i) * dx;
327 <      rvals.push_back(rval);
328 <      yvals.push_back(erfc(dampingAlpha_ * rval));
321 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
322 >
323 >    // Storage vectors for the computed functions    
324 >    vector<RealType> rv;
325 >    vector<RealType> v01v;
326 >    vector<RealType> v11v;
327 >    vector<RealType> v21v, v22v;
328 >    vector<RealType> v31v, v32v;
329 >    vector<RealType> v41v, v42v, v43v;
330 >
331 >    /*
332 >    vector<RealType> dv01v;
333 >    vector<RealType> dv11v;
334 >    vector<RealType> dv21v, dv22v;
335 >    vector<RealType> dv31v, dv32v;
336 >    vector<RealType> dv41v, dv42v, dv43v;
337 >    */
338 >
339 >    for (int i = 1; i < np_ + 1; i++) {
340 >      r = RealType(i) * dx;
341 >      rv.push_back(r);
342 >
343 >      ri = 1.0 / r;
344 >      ri2 = ri * ri;
345 >
346 >      r2 = r * r;
347 >      expTerm = exp(-a2 * r2);
348 >
349 >      // Taylor expansion factors (no need for factorials this way):
350 >      rmRc = r - cutoffRadius_;
351 >      rmRc2 = rmRc  * rmRc / 2.0;
352 >      rmRc3 = rmRc2 * rmRc / 3.0;
353 >      rmRc4 = rmRc3 * rmRc / 4.0;
354 >
355 >      // values of Smith's B_l functions at r:
356 >      if (screeningMethod_ == DAMPED) {            
357 >        b0 = erfc(dampingAlpha_ * r) * ri;
358 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
359 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
360 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
361 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
362 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
363 >      } else {
364 >        b0 = ri;
365 >        b1 = (      b0) * ri2;
366 >        b2 = (3.0 * b1) * ri2;
367 >        b3 = (5.0 * b2) * ri2;
368 >        b4 = (7.0 * b3) * ri2;
369 >        b5 = (9.0 * b4) * ri2;
370 >      }
371 >                
372 >      // higher derivatives of B_0 at r:
373 >      db0_1 = -r * b1;
374 >      db0_2 =     -b1 + r2 * b2;
375 >      db0_3 =          3.0*r*b2   - r2*r*b3;
376 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
377 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
378 >
379 >      f = b0;
380 >      fc = b0c;
381 >      f0 = f - fc - rmRc*db0c_1;
382 >
383 >      g = db0_1;        
384 >      gc = db0c_1;
385 >      g0 = g - gc;
386 >      g1 = g0 - rmRc *db0c_2;
387 >      g2 = g1 - rmRc2*db0c_3;
388 >      g3 = g2 - rmRc3*db0c_4;
389 >      g4 = g3 - rmRc4*db0c_5;
390 >
391 >      h = db0_2;      
392 >      hc = db0c_2;
393 >      h1 = h - hc;
394 >      h2 = h1 - rmRc *db0c_3;
395 >      h3 = h2 - rmRc2*db0c_4;
396 >      h4 = h3 - rmRc3*db0c_5;
397 >
398 >      s = db0_3;      
399 >      sc = db0c_3;
400 >      s2 = s - sc;
401 >      s3 = s2 - rmRc *db0c_4;
402 >      s4 = s3 - rmRc2*db0c_5;
403 >
404 >      t = db0_4;      
405 >      tc = db0c_4;
406 >      t3 = t - tc;
407 >      t4 = t3 - rmRc *db0c_5;
408 >      
409 >      u = db0_5;        
410 >      uc = db0c_5;
411 >      u4 = u - uc;
412 >
413 >      // in what follows below, the various v functions are used for
414 >      // potentials and torques, while the w functions show up in the
415 >      // forces.
416 >
417 >      switch (summationMethod_) {
418 >      case esm_SHIFTED_FORCE:
419 >                
420 >        v01 = f - fc - rmRc*gc;
421 >        v11 = g - gc - rmRc*hc;
422 >        v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
423 >        v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
424 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
425 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
426 >          - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
427 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
428 >          - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
429 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
430 >          - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
431 >        
432 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
433 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
434 >          - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
435 >
436 >        dv01 = g - gc;
437 >        dv11 = h - hc;
438 >        dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
439 >        dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);        
440 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
441 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
442 >          - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
443 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
444 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
445 >          - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
446 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
447 >          - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
448 >        
449 >        break;
450 >
451 >      case esm_TAYLOR_SHIFTED:
452 >        
453 >        v01 = f0;
454 >        v11 = g1;
455 >        v21 = g2 * ri;
456 >        v22 = h2 - v21;
457 >        v31 = (h3 - g3 * ri) * ri;
458 >        v32 = s3 - 3.0*v31;
459 >        v41 = (h4 - g4 * ri) * ri2;
460 >        v42 = s4 * ri - 3.0*v41;
461 >        v43 = t4 - 6.0*v42 - 3.0*v41;
462 >
463 >        dv01 = g0;
464 >        dv11 = h1;
465 >        dv21 = (h2 - g2*ri)*ri;
466 >        dv22 = (s2 - (h2 - g2*ri)*ri);
467 >        dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
468 >        dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
469 >        dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
470 >        dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
471 >        dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
472 >
473 >        break;
474 >
475 >      case esm_SHIFTED_POTENTIAL:
476 >
477 >        v01 = f - fc;
478 >        v11 = g - gc;
479 >        v21 = g*ri - gc*ric;
480 >        v22 = h - g*ri - (hc - gc*ric);
481 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
482 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
483 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
484 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
485 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
486 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
487 >
488 >        dv01 = g;
489 >        dv11 = h;
490 >        dv21 = (h - g*ri)*ri;
491 >        dv22 = (s - (h - g*ri)*ri);
492 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
493 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
494 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
495 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
496 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
497 >
498 >        break;
499 >
500 >      case esm_SWITCHING_FUNCTION:
501 >      case esm_HARD:
502 >
503 >        v01 = f;
504 >        v11 = g;
505 >        v21 = g*ri;
506 >        v22 = h - g*ri;
507 >        v31 = (h-g*ri)*ri;
508 >        v32 = (s - 3.0*(h-g*ri)*ri);
509 >        v41 = (h - g*ri)*ri2;
510 >        v42 = (s-3.0*(h-g*ri)*ri)*ri;        
511 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
512 >
513 >        dv01 = g;
514 >        dv11 = h;
515 >        dv21 = (h - g*ri)*ri;
516 >        dv22 = (s - (h - g*ri)*ri);
517 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
518 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
519 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
520 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
521 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
522 >
523 >        break;
524 >
525 >      case esm_REACTION_FIELD:
526 >        
527 >        // following DL_POLY's lead for shifting the image charge potential:
528 >        f = b0 + preRF_ * r2;
529 >        fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
530 >
531 >        g = db0_1 + preRF_ * 2.0 * r;        
532 >        gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
533 >
534 >        h = db0_2 + preRF_ * 2.0;
535 >        hc = db0c_2 + preRF_ * 2.0;
536 >
537 >        v01 = f - fc;
538 >        v11 = g - gc;
539 >        v21 = g*ri - gc*ric;
540 >        v22 = h - g*ri - (hc - gc*ric);
541 >        v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
542 >        v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
543 >        v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
544 >        v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;        
545 >        v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
546 >          - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
547 >
548 >        dv01 = g;
549 >        dv11 = h;
550 >        dv21 = (h - g*ri)*ri;
551 >        dv22 = (s - (h - g*ri)*ri);
552 >        dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
553 >        dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
554 >        dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
555 >        dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
556 >        dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
557 >
558 >        break;
559 >                
560 >      case esm_EWALD_FULL:
561 >      case esm_EWALD_PME:
562 >      case esm_EWALD_SPME:
563 >      default :
564 >        map<string, ElectrostaticSummationMethod>::iterator i;
565 >        std::string meth;
566 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
567 >          if ((*i).second == summationMethod_) meth = (*i).first;
568 >        }
569 >        sprintf( painCave.errMsg,
570 >                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
571 >                 "\thas not been implemented yet. Please select one of:\n"
572 >                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
573 >                 meth.c_str() );
574 >        painCave.isFatal = 1;
575 >        simError();
576 >        break;      
577 >      }
578 >
579 >      // Add these computed values to the storage vectors for spline creation:
580 >      v01v.push_back(v01);
581 >      v11v.push_back(v11);
582 >      v21v.push_back(v21);
583 >      v22v.push_back(v22);
584 >      v31v.push_back(v31);
585 >      v32v.push_back(v32);      
586 >      v41v.push_back(v41);
587 >      v42v.push_back(v42);
588 >      v43v.push_back(v43);
589 >      /*
590 >      dv01v.push_back(dv01);
591 >      dv11v.push_back(dv11);
592 >      dv21v.push_back(dv21);
593 >      dv22v.push_back(dv22);
594 >      dv31v.push_back(dv31);
595 >      dv32v.push_back(dv32);      
596 >      dv41v.push_back(dv41);
597 >      dv42v.push_back(dv42);
598 >      dv43v.push_back(dv43);
599 >      */
600      }
273    erfcSpline_ = new CubicSpline();
274    erfcSpline_->addPoints(rvals, yvals);
275    haveElectroSpline_ = true;
601  
602 +    // construct the spline structures and fill them with the values we've
603 +    // computed:
604 +
605 +    v01s = new CubicSpline();
606 +    v01s->addPoints(rv, v01v);
607 +    v11s = new CubicSpline();
608 +    v11s->addPoints(rv, v11v);
609 +    v21s = new CubicSpline();
610 +    v21s->addPoints(rv, v21v);
611 +    v22s = new CubicSpline();
612 +    v22s->addPoints(rv, v22v);
613 +    v31s = new CubicSpline();
614 +    v31s->addPoints(rv, v31v);
615 +    v32s = new CubicSpline();
616 +    v32s->addPoints(rv, v32v);
617 +    v41s = new CubicSpline();
618 +    v41s->addPoints(rv, v41v);
619 +    v42s = new CubicSpline();
620 +    v42s->addPoints(rv, v42v);
621 +    v43s = new CubicSpline();
622 +    v43s->addPoints(rv, v43v);
623 +
624 +    /*
625 +    dv01s = new CubicSpline();
626 +    dv01s->addPoints(rv, dv01v);
627 +    dv11s = new CubicSpline();
628 +    dv11s->addPoints(rv, dv11v);
629 +    dv21s = new CubicSpline();
630 +    dv21s->addPoints(rv, dv21v);
631 +    dv22s = new CubicSpline();
632 +    dv22s->addPoints(rv, dv22v);
633 +    dv31s = new CubicSpline();
634 +    dv31s->addPoints(rv, dv31v);
635 +    dv32s = new CubicSpline();
636 +    dv32s->addPoints(rv, dv32v);
637 +    dv41s = new CubicSpline();
638 +    dv41s->addPoints(rv, dv41v);
639 +    dv42s = new CubicSpline();
640 +    dv42s->addPoints(rv, dv42v);
641 +    dv43s = new CubicSpline();
642 +    dv43s->addPoints(rv, dv43v);
643 +    */
644 +
645 +    haveElectroSplines_ = true;
646 +
647      initialized_ = true;
648    }
649        
650    void Electrostatic::addType(AtomType* atomType){
651 <
651 >    
652      ElectrostaticAtomData electrostaticAtomData;
653      electrostaticAtomData.is_Charge = false;
654      electrostaticAtomData.is_Dipole = false;
285    electrostaticAtomData.is_SplitDipole = false;
655      electrostaticAtomData.is_Quadrupole = false;
656      electrostaticAtomData.is_Fluctuating = false;
657  
# Line 297 | Line 666 | namespace OpenMD {
666      if (ma.isMultipole()) {
667        if (ma.isDipole()) {
668          electrostaticAtomData.is_Dipole = true;
669 <        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
669 >        electrostaticAtomData.dipole = ma.getDipole();
670        }
302      if (ma.isSplitDipole()) {
303        electrostaticAtomData.is_SplitDipole = true;
304        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305      }
671        if (ma.isQuadrupole()) {
307        // Quadrupoles in OpenMD are set as the diagonal elements
308        // of the diagonalized traceless quadrupole moment tensor.
309        // The column vectors of the unitary matrix that diagonalizes
310        // the quadrupole moment tensor become the eFrame (or the
311        // electrostatic version of the body-fixed frame.
672          electrostaticAtomData.is_Quadrupole = true;
673 <        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
673 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
674        }
675      }
676      
# Line 324 | Line 684 | namespace OpenMD {
684        electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
685      }
686  
687 <    pair<map<int,AtomType*>::iterator,bool> ret;    
688 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
689 <                                                        atomType) );
687 >    int atid = atomType->getIdent();
688 >    int etid = Etypes.size();
689 >    int fqtid = FQtypes.size();
690 >
691 >    pair<set<int>::iterator,bool> ret;    
692 >    ret = Etypes.insert( atid );
693      if (ret.second == false) {
694        sprintf( painCave.errMsg,
695                 "Electrostatic already had a previous entry with ident %d\n",
696 <               atomType->getIdent() );
696 >               atid);
697        painCave.severity = OPENMD_INFO;
698        painCave.isFatal = 0;
699        simError();        
700      }
701      
702 <    ElectrostaticMap[atomType] = electrostaticAtomData;  
702 >    Etids[ atid ] = etid;
703 >    ElectrostaticMap.push_back(electrostaticAtomData);
704  
705 <    // Now, iterate over all known types and add to the mixing map:
706 <    
707 <    map<AtomType*, ElectrostaticAtomData>::iterator it;
708 <    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
709 <      AtomType* atype2 = (*it).first;
710 <      ElectrostaticAtomData eaData2 = (*it).second;
711 <      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
712 <        
705 >    if (electrostaticAtomData.is_Fluctuating) {
706 >      ret = FQtypes.insert( atid );
707 >      if (ret.second == false) {
708 >        sprintf( painCave.errMsg,
709 >                 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
710 >                 atid );
711 >        painCave.severity = OPENMD_INFO;
712 >        painCave.isFatal = 0;
713 >        simError();        
714 >      }
715 >      FQtids[atid] = fqtid;
716 >      Jij[fqtid].resize(nFlucq_);
717 >
718 >      // Now, iterate over all known fluctuating and add to the coulomb integral map:
719 >      
720 >      std::set<int>::iterator it;
721 >      for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {    
722 >        int etid2 = Etids[ (*it) ];
723 >        int fqtid2 = FQtids[ (*it) ];
724 >        ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
725          RealType a = electrostaticAtomData.slaterZeta;
726          RealType b = eaData2.slaterZeta;
727          int m = electrostaticAtomData.slaterN;
728          int n = eaData2.slaterN;
729 <
729 >        
730          // Create the spline of the coulombic integral for s-type
731          // Slater orbitals.  Add a 2 angstrom safety window to deal
732          // with cutoffGroups that have charged atoms longer than the
733          // cutoffRadius away from each other.
734 <
734 >        
735          RealType rval;
736          RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
737          vector<RealType> rvals;
738 <        vector<RealType> J1vals;
739 <        vector<RealType> J2vals;
740 <        for (int i = 0; i < np_; i++) {
738 >        vector<RealType> Jvals;
739 >        // don't start at i = 0, as rval = 0 is undefined for the
740 >        // slater overlap integrals.
741 >        for (int i = 1; i < np_+1; i++) {
742            rval = RealType(i) * dr;
743            rvals.push_back(rval);
744 <          J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
745 <          // may not be necessary if Slater coulomb integral is symmetric
746 <          J2vals.push_back(eaData2.hardness *  sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
744 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
745 >                                       PhysicalConstants::angstromToBohr ) *
746 >                          PhysicalConstants::hartreeToKcal );
747          }
371
372        CubicSpline* J1 = new CubicSpline();
373        J1->addPoints(rvals, J1vals);
374        CubicSpline* J2 = new CubicSpline();
375        J2->addPoints(rvals, J2vals);
748          
749 <        pair<AtomType*, AtomType*> key1, key2;
750 <        key1 = make_pair(atomType, atype2);
751 <        key2 = make_pair(atype2, atomType);
752 <        
753 <        Jij[key1] = J1;
754 <        Jij[key2] = J2;
755 <      }
384 <    }
385 <
749 >        CubicSpline* J = new CubicSpline();
750 >        J->addPoints(rvals, Jvals);
751 >        Jij[fqtid][fqtid2] = J;
752 >        Jij[fqtid2].resize( nFlucq_ );
753 >        Jij[fqtid2][fqtid] = J;
754 >      }      
755 >    }      
756      return;
757    }
758    
759    void Electrostatic::setCutoffRadius( RealType rCut ) {
760      cutoffRadius_ = rCut;
391    rrf_ = cutoffRadius_;
761      haveCutoffRadius_ = true;
762    }
763  
395  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
396    rt_ = rSwitch;
397  }
764    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
765      summationMethod_ = esm;
766    }
# Line 412 | Line 778 | namespace OpenMD {
778  
779    void Electrostatic::calcForce(InteractionData &idat) {
780  
781 <    // utility variables.  Should clean these up and use the Vector3d and
782 <    // Mat3x3d to replace as many as we can in future versions:
783 <
784 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
419 <    RealType qxx_i, qyy_i, qzz_i;
420 <    RealType qxx_j, qyy_j, qzz_j;
421 <    RealType cx_i, cy_i, cz_i;
422 <    RealType cx_j, cy_j, cz_j;
423 <    RealType cx2, cy2, cz2;
424 <    RealType ct_i, ct_j, ct_ij, a1;
425 <    RealType riji, ri, ri2, ri3, ri4;
426 <    RealType pref, vterm, epot, dudr;
427 <    RealType vpair(0.0);
428 <    RealType scale, sc2;
429 <    RealType pot_term, preVal, rfVal;
430 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
431 <    RealType preSw, preSwSc;
432 <    RealType c1, c2, c3, c4;
433 <    RealType erfcVal(1.0), derfcVal(0.0);
434 <    RealType BigR;
435 <    RealType two(2.0), three(3.0);
781 >    if (!initialized_) initialize();
782 >    
783 >    data1 = ElectrostaticMap[Etids[idat.atid1]];
784 >    data2 = ElectrostaticMap[Etids[idat.atid2]];
785  
786 <    Vector3d Q_i, Q_j;
787 <    Vector3d ux_i, uy_i, uz_i;
788 <    Vector3d ux_j, uy_j, uz_j;
789 <    Vector3d dudux_i, duduy_i, duduz_i;
790 <    Vector3d dudux_j, duduy_j, duduz_j;
791 <    Vector3d rhatdot2, rhatc4;
792 <    Vector3d dVdr;
786 >    U = 0.0;  // Potential
787 >    F.zero();  // Force
788 >    Ta.zero(); // Torque on site a
789 >    Tb.zero(); // Torque on site b
790 >    Ea.zero(); // Electric field at site a
791 >    Eb.zero(); // Electric field at site b
792 >    dUdCa = 0.0; // fluctuating charge force at site a
793 >    dUdCb = 0.0; // fluctuating charge force at site a
794 >    
795 >    // Indirect interactions mediated by the reaction field.
796 >    indirect_Pot = 0.0;   // Potential
797 >    indirect_F.zero();    // Force
798 >    indirect_Ta.zero();   // Torque on site a
799 >    indirect_Tb.zero();   // Torque on site b
800  
801 <    // variables for indirect (reaction field) interactions for excluded pairs:
802 <    RealType indirect_Pot(0.0);
447 <    RealType indirect_vpair(0.0);
448 <    Vector3d indirect_dVdr(V3Zero);
449 <    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
801 >    // Excluded potential that is still computed for fluctuating charges
802 >    excluded_Pot= 0.0;
803  
804 <    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452 <    pair<RealType, RealType> res;
453 <    
454 <    // splines for coulomb integrals
455 <    CubicSpline* J1;
456 <    CubicSpline* J2;
457 <    
458 <    if (!initialized_) initialize();
459 <    
460 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
461 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
462 <    
804 >
805      // some variables we'll need independent of electrostatic type:
806  
807 <    riji = 1.0 /  *(idat.rij) ;
808 <    Vector3d rhat =  *(idat.d)   * riji;
809 <
807 >    ri = 1.0 /  *(idat.rij);
808 >    rhat =  *(idat.d)  * ri;
809 >      
810      // logicals
811  
812 <    bool i_is_Charge = data1.is_Charge;
813 <    bool i_is_Dipole = data1.is_Dipole;
814 <    bool i_is_SplitDipole = data1.is_SplitDipole;
815 <    bool i_is_Quadrupole = data1.is_Quadrupole;
474 <    bool i_is_Fluctuating = data1.is_Fluctuating;
812 >    a_is_Charge = data1.is_Charge;
813 >    a_is_Dipole = data1.is_Dipole;
814 >    a_is_Quadrupole = data1.is_Quadrupole;
815 >    a_is_Fluctuating = data1.is_Fluctuating;
816  
817 <    bool j_is_Charge = data2.is_Charge;
818 <    bool j_is_Dipole = data2.is_Dipole;
819 <    bool j_is_SplitDipole = data2.is_SplitDipole;
820 <    bool j_is_Quadrupole = data2.is_Quadrupole;
821 <    bool j_is_Fluctuating = data2.is_Fluctuating;
817 >    b_is_Charge = data2.is_Charge;
818 >    b_is_Dipole = data2.is_Dipole;
819 >    b_is_Quadrupole = data2.is_Quadrupole;
820 >    b_is_Fluctuating = data2.is_Fluctuating;
821 >
822 >    // Obtain all of the required radial function values from the
823 >    // spline structures:
824      
825 <    if (i_is_Charge) {
826 <      q_i = data1.fixedCharge;
825 >    // needed for fields (and forces):
826 >    if (a_is_Charge || b_is_Charge) {
827 >      v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
828 >    }
829 >    if (a_is_Dipole || b_is_Dipole) {
830 >      v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
831 >      v11or = ri * v11;
832 >    }
833 >    if (a_is_Quadrupole || b_is_Quadrupole ||  (a_is_Dipole && b_is_Dipole)) {
834 >      v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
835 >      v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
836 >      v22or = ri * v22;
837 >    }      
838  
839 <      if (i_is_Fluctuating) {
840 <        q_i += *(idat.flucQ1);
839 >    // needed for potentials (and forces and torques):
840 >    if ((a_is_Dipole && b_is_Quadrupole) ||
841 >        (b_is_Dipole && a_is_Quadrupole)) {
842 >      v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
843 >      v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
844 >      v31or = v31 * ri;
845 >      v32or = v32 * ri;
846 >    }
847 >    if (a_is_Quadrupole && b_is_Quadrupole) {
848 >      v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
849 >      v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
850 >      v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
851 >      v42or = v42 * ri;
852 >      v43or = v43 * ri;
853 >    }
854 >
855 >    // calculate the single-site contributions (fields, etc).
856 >    
857 >    if (a_is_Charge) {
858 >      C_a = data1.fixedCharge;
859 >      
860 >      if (a_is_Fluctuating) {
861 >        C_a += *(idat.flucQ1);
862        }
863        
864        if (idat.excluded) {
865 <        *(idat.skippedCharge2) += q_i;
865 >        *(idat.skippedCharge2) += C_a;
866 >      } else {
867 >        // only do the field if we're not excluded:
868 >        Eb -= C_a *  pre11_ * dv01 * rhat;
869        }
870      }
871 <
872 <    if (i_is_Dipole) {
873 <      mu_i = data1.dipole_moment;
874 <      uz_i = idat.eFrame1->getColumn(2);
875 <      
876 <      ct_i = dot(uz_i, rhat);
877 <
500 <      if (i_is_SplitDipole)
501 <        d_i = data1.split_dipole_distance;
502 <      
503 <      duduz_i = V3Zero;
871 >    
872 >    if (a_is_Dipole) {
873 >      D_a = *(idat.dipole1);
874 >      rdDa = dot(rhat, D_a);
875 >      rxDa = cross(rhat, D_a);
876 >      if (!idat.excluded)
877 >        Eb -=  pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
878      }
879      
880 <    if (i_is_Quadrupole) {
881 <      Q_i = data1.quadrupole_moments;
882 <      qxx_i = Q_i.x();
883 <      qyy_i = Q_i.y();
884 <      qzz_i = Q_i.z();
885 <      
886 <      ux_i = idat.eFrame1->getColumn(0);
887 <      uy_i = idat.eFrame1->getColumn(1);
888 <      uz_i = idat.eFrame1->getColumn(2);
889 <
516 <      cx_i = dot(ux_i, rhat);
517 <      cy_i = dot(uy_i, rhat);
518 <      cz_i = dot(uz_i, rhat);
519 <
520 <      dudux_i = V3Zero;
521 <      duduy_i = V3Zero;
522 <      duduz_i = V3Zero;
880 >    if (a_is_Quadrupole) {
881 >      Q_a = *(idat.quadrupole1);
882 >      trQa =  Q_a.trace();
883 >      Qar =   Q_a * rhat;
884 >      rQa = rhat * Q_a;
885 >      rdQar = dot(rhat, Qar);
886 >      rxQar = cross(rhat, Qar);
887 >      if (!idat.excluded)
888 >        Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
889 >                        + rdQar * rhat * (dv22 - 2.0*v22or));
890      }
891 <
892 <    if (j_is_Charge) {
893 <      q_j = data2.fixedCharge;
894 <
895 <      if (j_is_Fluctuating)
896 <        q_j += *(idat.flucQ2);
897 <
891 >    
892 >    if (b_is_Charge) {
893 >      C_b = data2.fixedCharge;
894 >      
895 >      if (b_is_Fluctuating)
896 >        C_b += *(idat.flucQ2);
897 >      
898        if (idat.excluded) {
899 <        *(idat.skippedCharge1) += q_j;
899 >        *(idat.skippedCharge1) += C_b;
900 >      } else {
901 >        // only do the field if we're not excluded:
902 >        Ea += C_b *  pre11_ * dv01 * rhat;
903        }
904      }
535
536
537    if (j_is_Dipole) {
538      mu_j = data2.dipole_moment;
539      uz_j = idat.eFrame2->getColumn(2);
540      
541      ct_j = dot(uz_j, rhat);
542
543      if (j_is_SplitDipole)
544        d_j = data2.split_dipole_distance;
545      
546      duduz_j = V3Zero;
547    }
905      
906 <    if (j_is_Quadrupole) {
907 <      Q_j = data2.quadrupole_moments;
908 <      qxx_j = Q_j.x();
909 <      qyy_j = Q_j.y();
910 <      qzz_j = Q_j.z();
911 <      
555 <      ux_j = idat.eFrame2->getColumn(0);
556 <      uy_j = idat.eFrame2->getColumn(1);
557 <      uz_j = idat.eFrame2->getColumn(2);
558 <
559 <      cx_j = dot(ux_j, rhat);
560 <      cy_j = dot(uy_j, rhat);
561 <      cz_j = dot(uz_j, rhat);
562 <
563 <      dudux_j = V3Zero;
564 <      duduy_j = V3Zero;
565 <      duduz_j = V3Zero;
906 >    if (b_is_Dipole) {
907 >      D_b = *(idat.dipole2);
908 >      rdDb = dot(rhat, D_b);
909 >      rxDb = cross(rhat, D_b);
910 >      if (!idat.excluded)
911 >        Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
912      }
913      
914 <    if (i_is_Fluctuating && j_is_Fluctuating) {
915 <      J1 = Jij[idat.atypes];
916 <      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
914 >    if (b_is_Quadrupole) {
915 >      Q_b = *(idat.quadrupole2);
916 >      trQb =  Q_b.trace();
917 >      Qbr =   Q_b * rhat;
918 >      rQb = rhat * Q_b;
919 >      rdQbr = dot(rhat, Qbr);
920 >      rxQbr = cross(rhat, Qbr);
921 >      if (!idat.excluded)
922 >        Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
923 >                        + rdQbr * rhat * (dv22 - 2.0*v22or));
924      }
572
573    epot = 0.0;
574    dVdr = V3Zero;
925      
926 <    if (i_is_Charge) {
926 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
927 >      J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
928 >    }    
929 >    
930 >    if (a_is_Charge) {    
931        
932 <      if (j_is_Charge) {
933 <        if (screeningMethod_ == DAMPED) {
934 <          // assemble the damping variables
935 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
936 <          //erfcVal = res.first;
937 <          //derfcVal = res.second;
932 >      if (b_is_Charge) {
933 >        pref =  pre11_ * *(idat.electroMult);      
934 >        U  += C_a * C_b * pref * v01;
935 >        F  += C_a * C_b * pref * dv01 * rhat;
936 >        
937 >        // If this is an excluded pair, there are still indirect
938 >        // interactions via the reaction field we must worry about:
939  
940 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
941 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
940 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
941 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
942 >          indirect_Pot += rfContrib;
943 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
944 >        }
945 >        
946 >        // Fluctuating charge forces are handled via Coulomb integrals
947 >        // for excluded pairs (i.e. those connected via bonds) and
948 >        // with the standard charge-charge interaction otherwise.
949  
950 <          c1 = erfcVal * riji;
951 <          c2 = (-derfcVal + c1) * riji;
950 >        if (idat.excluded) {          
951 >          if (a_is_Fluctuating || b_is_Fluctuating) {
952 >            coulInt = J->getValueAt( *(idat.rij) );
953 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
954 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
955 >            excluded_Pot += C_a * C_b * coulInt;
956 >          }          
957          } else {
958 <          c1 = riji;
959 <          c2 = c1 * riji;
958 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
959 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
960          }
961 +      }
962  
963 <        preVal =  *(idat.electroMult) * pre11_;
964 <        
965 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
966 <          vterm = preVal * (c1 - c1c_);
967 <          dudr  = - *(idat.sw)  * preVal * c2;
963 >      if (b_is_Dipole) {
964 >        pref =  pre12_ * *(idat.electroMult);        
965 >        U  += C_a * pref * v11 * rdDb;
966 >        F  += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
967 >        Tb += C_a * pref * v11 * rxDb;
968  
969 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
602 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
603 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
969 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
970  
971 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
972 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
971 >        // Even if we excluded this pair from direct interactions, we
972 >        // still have the reaction-field-mediated charge-dipole
973 >        // interaction:
974  
975 <          vterm = preVal * ( riji + rfVal );            
976 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
977 <          
978 <          // if this is an excluded pair, there are still indirect
979 <          // interactions via the reaction field we must worry about:
613 <
614 <          if (idat.excluded) {
615 <            indirect_vpair += preVal * rfVal;
616 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
617 <            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
618 <          }
619 <          
620 <        } else {
621 <
622 <          vterm = preVal * riji * erfcVal;          
623 <          dudr  = -  *(idat.sw)  * preVal * c2;
624 <          
975 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
976 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
977 >          indirect_Pot += rfContrib * rdDb;
978 >          indirect_F   += rfContrib * D_b / (*idat.rij);
979 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
980          }
981 <        
627 <        vpair += vterm * q_i * q_j;
628 <        epot +=  *(idat.sw)  * vterm * q_i * q_j;
629 <        dVdr += dudr * rhat * q_i * q_j;
981 >      }
982  
983 <        if (i_is_Fluctuating) {
984 <          if (idat.excluded) {
985 <            // vFluc1 is the difference between the direct coulomb integral
986 <            // and the normal 1/r-like  interaction between point charges.
987 <            coulInt = J1->getValueAt( *(idat.rij) );
988 <            vFluc1 = coulInt - (*(idat.sw) * vterm);
637 <          } else {
638 <            vFluc1 = 0.0;
639 <          }
640 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641 <        }
983 >      if (b_is_Quadrupole) {
984 >        pref = pre14_ * *(idat.electroMult);
985 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
986 >        F  +=  C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
987 >        F  +=  C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
988 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
989  
990 <        if (j_is_Fluctuating) {
644 <          if (idat.excluded) {
645 <            // vFluc2 is the difference between the direct coulomb integral
646 <            // and the normal 1/r-like  interaction between point charges.
647 <            coulInt = J2->getValueAt( *(idat.rij) );
648 <            vFluc2 = coulInt - (*(idat.sw) * vterm);
649 <          } else {
650 <            vFluc2 = 0.0;
651 <          }
652 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653 <        }
654 <          
655 <
990 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
991        }
992 +    }
993  
994 <      if (j_is_Dipole) {
659 <        // pref is used by all the possible methods
660 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
661 <        preSw =  *(idat.sw)  * pref;
994 >    if (a_is_Dipole) {
995  
996 <        if (summationMethod_ == esm_REACTION_FIELD) {
997 <          ri2 = riji * riji;
665 <          ri3 = ri2 * riji;
666 <    
667 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
668 <          vpair += vterm;
669 <          epot +=  *(idat.sw)  * vterm;
996 >      if (b_is_Charge) {
997 >        pref = pre12_ * *(idat.electroMult);
998  
999 <          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
1000 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
999 >        U  -= C_b * pref * v11 * rdDa;
1000 >        F  -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
1001 >        Ta -= C_b * pref * v11 * rxDa;
1002  
1003 <          // Even if we excluded this pair from direct interactions,
675 <          // we still have the reaction-field-mediated charge-dipole
676 <          // interaction:
1003 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
1004  
1005 <          if (idat.excluded) {
1006 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
1007 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
1008 <            indirect_dVdr += preSw * preRF2_ * uz_j;
1009 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
1010 <          }
1011 <                      
1012 <        } else {
686 <          // determine the inverse r used if we have split dipoles
687 <          if (j_is_SplitDipole) {
688 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
689 <            ri = 1.0 / BigR;
690 <            scale =  *(idat.rij)  * ri;
691 <          } else {
692 <            ri = riji;
693 <            scale = 1.0;
694 <          }
695 <          
696 <          sc2 = scale * scale;
697 <
698 <          if (screeningMethod_ == DAMPED) {
699 <            // assemble the damping variables
700 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 <            //erfcVal = res.first;
702 <            //derfcVal = res.second;
703 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705 <            c1 = erfcVal * ri;
706 <            c2 = (-derfcVal + c1) * ri;
707 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
708 <          } else {
709 <            c1 = ri;
710 <            c2 = c1 * ri;
711 <            c3 = 3.0 * c2 * ri;
712 <          }
713 <            
714 <          c2ri = c2 * ri;
715 <
716 <          // calculate the potential
717 <          pot_term =  scale * c2;
718 <          vterm = -pref * ct_j * pot_term;
719 <          vpair += vterm;
720 <          epot +=  *(idat.sw)  * vterm;
721 <            
722 <          // calculate derivatives for forces and torques
723 <
724 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
725 <          duduz_j += -preSw * pot_term * rhat;
726 <
1005 >        // Even if we excluded this pair from direct interactions,
1006 >        // we still have the reaction-field-mediated charge-dipole
1007 >        // interaction:
1008 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1009 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
1010 >          indirect_Pot -= rfContrib * rdDa;
1011 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
1012 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
1013          }
728        if (i_is_Fluctuating) {
729          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730        }
1014        }
1015  
1016 <      if (j_is_Quadrupole) {
1017 <        // first precalculate some necessary variables
1018 <        cx2 = cx_j * cx_j;
1019 <        cy2 = cy_j * cy_j;
737 <        cz2 = cz_j * cz_j;
738 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
739 <          
740 <        if (screeningMethod_ == DAMPED) {
741 <          // assemble the damping variables
742 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 <          //erfcVal = res.first;
744 <          //derfcVal = res.second;
745 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747 <          c1 = erfcVal * riji;
748 <          c2 = (-derfcVal + c1) * riji;
749 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
750 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
751 <        } else {
752 <          c1 = riji;
753 <          c2 = c1 * riji;
754 <          c3 = 3.0 * c2 * riji;
755 <          c4 = 5.0 * c3 * riji * riji;
756 <        }
1016 >      if (b_is_Dipole) {
1017 >        pref = pre22_ * *(idat.electroMult);
1018 >        DadDb = dot(D_a, D_b);
1019 >        DaxDb = cross(D_a, D_b);
1020  
1021 <        // precompute variables for convenience
1022 <        preSw =  *(idat.sw)  * pref;
1023 <        c2ri = c2 * riji;
1024 <        c3ri = c3 * riji;
1025 <        c4rij = c4 *  *(idat.rij) ;
763 <        rhatdot2 = two * rhat * c3;
764 <        rhatc4 = rhat * c4rij;
1021 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
1022 >        F  -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
1023 >        F  -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
1024 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
1025 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
1026  
1027 <        // calculate the potential
1028 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
1029 <                     qyy_j * (cy2*c3 - c2ri) +
1030 <                     qzz_j * (cz2*c3 - c2ri) );
1031 <        vterm = pref * pot_term;
1032 <        vpair += vterm;
1033 <        epot +=  *(idat.sw)  * vterm;
1034 <                
774 <        // calculate derivatives for the forces and torques
775 <
776 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 <                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 <                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779 <                          
780 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 <        if (i_is_Fluctuating) {
784 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
1027 >        // Even if we excluded this pair from direct interactions, we
1028 >        // still have the reaction-field-mediated dipole-dipole
1029 >        // interaction:
1030 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1031 >          rfContrib = -pref * preRF_ * 2.0;
1032 >          indirect_Pot += rfContrib * DadDb;
1033 >          indirect_Ta  += rfContrib * DaxDb;
1034 >          indirect_Tb  -= rfContrib * DaxDb;
1035          }
1036 +      }
1037  
1038 +      if (b_is_Quadrupole) {
1039 +        pref = pre24_ * *(idat.electroMult);
1040 +        DadQb = D_a * Q_b;
1041 +        DadQbr = dot(D_a, Qbr);
1042 +        DaxQbr = cross(D_a, Qbr);
1043 +
1044 +        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1045 +        F  -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1046 +        F  -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1047 +        F  -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1048 +        F  -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1049 +        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1050 +        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1051 +                      - 2.0*rdDa*rxQbr*v32);
1052        }
1053      }
789    
790    if (i_is_Dipole) {
1054  
1055 <      if (j_is_Charge) {
1056 <        // variables used by all the methods
1057 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1058 <        preSw =  *(idat.sw)  * pref;
1055 >    if (a_is_Quadrupole) {
1056 >      if (b_is_Charge) {
1057 >        pref = pre14_ * *(idat.electroMult);
1058 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
1059 >        F  += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1060 >        F  += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1061 >        Ta += C_b * pref * 2.0 * rxQar * v22;
1062  
1063 <        if (summationMethod_ == esm_REACTION_FIELD) {
1063 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1064 >      }
1065 >      if (b_is_Dipole) {
1066 >        pref = pre24_ * *(idat.electroMult);
1067 >        DbdQa = D_b * Q_a;
1068 >        DbdQar = dot(D_b, Qar);
1069 >        DbxQar = cross(D_b, Qar);
1070  
1071 <          ri2 = riji * riji;
1072 <          ri3 = ri2 * riji;
1073 <
1074 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1075 <          vpair += vterm;
1076 <          epot +=  *(idat.sw)  * vterm;
1077 <          
1078 <          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
1079 <          
1080 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1081 <
1082 <          // Even if we excluded this pair from direct interactions,
1083 <          // we still have the reaction-field-mediated charge-dipole
1084 <          // interaction:
1071 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1072 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1073 >        F  += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1074 >        F  += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1075 >        F  += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1076 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1077 >                      + 2.0*rdDb*rxQar*v32);
1078 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1079 >      }
1080 >      if (b_is_Quadrupole) {
1081 >        pref = pre44_ * *(idat.electroMult);  // yes
1082 >        QaQb = Q_a * Q_b;
1083 >        trQaQb = QaQb.trace();
1084 >        rQaQb = rhat * QaQb;
1085 >        QaQbr = QaQb * rhat;
1086 >        QaxQb = cross(Q_a, Q_b);
1087 >        rQaQbr = dot(rQa, Qbr);
1088 >        rQaxQbr = cross(rQa, Qbr);
1089 >        
1090 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1091 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1092 >        U  += pref * (rdQar * rdQbr) * v43;
1093  
1094 <          if (idat.excluded) {
1095 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
1096 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
817 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
818 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
819 <          }
820 <            
821 <        } else {
822 <          
823 <          // determine inverse r if we are using split dipoles
824 <          if (i_is_SplitDipole) {
825 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
826 <            ri = 1.0 / BigR;
827 <            scale =  *(idat.rij)  * ri;
828 <          } else {
829 <            ri = riji;
830 <            scale = 1.0;
831 <          }
832 <          
833 <          sc2 = scale * scale;
834 <            
835 <          if (screeningMethod_ == DAMPED) {
836 <            // assemble the damping variables
837 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 <            //erfcVal = res.first;
839 <            //derfcVal = res.second;
840 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842 <            c1 = erfcVal * ri;
843 <            c2 = (-derfcVal + c1) * ri;
844 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
845 <          } else {
846 <            c1 = ri;
847 <            c2 = c1 * ri;
848 <            c3 = 3.0 * c2 * ri;
849 <          }
850 <          
851 <          c2ri = c2 * ri;
852 <              
853 <          // calculate the potential
854 <          pot_term = c2 * scale;
855 <          vterm = pref * ct_i * pot_term;
856 <          vpair += vterm;
857 <          epot +=  *(idat.sw)  * vterm;
1094 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1095 >        F  += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1096 >        F  += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1097  
1098 <          // calculate derivatives for the forces and torques
1099 <          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
1100 <          duduz_i += preSw * pot_term * rhat;
862 <        }
1098 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1099 >        F  += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1100 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1101  
1102 <        if (j_is_Fluctuating) {
1103 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1104 <        }
1102 >        Ta += pref * (- 4.0 * QaxQb * v41);
1103 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1104 >                      + 4.0 * cross(rhat, QaQbr)
1105 >                      - 4.0 * rQaxQbr) * v42;
1106 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1107  
868      }
1108  
1109 <      if (j_is_Dipole) {
1110 <        // variables used by all methods
1111 <        ct_ij = dot(uz_i, uz_j);
1109 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1110 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1111 >                      - 4.0 * cross(rQaQb, rhat)
1112 >                      + 4.0 * rQaxQbr) * v42;
1113 >        // Possible replacement for line 2 above:
1114 >        //             + 4.0 * cross(rhat, QbQar)
1115  
1116 <        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
875 <        preSw =  *(idat.sw)  * pref;
1116 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1117  
877        if (summationMethod_ == esm_REACTION_FIELD) {
878          ri2 = riji * riji;
879          ri3 = ri2 * riji;
880          ri4 = ri2 * ri2;
881
882          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883                           preRF2_ * ct_ij );
884          vpair += vterm;
885          epot +=  *(idat.sw)  * vterm;
886            
887          a1 = 5.0 * ct_i * ct_j - ct_ij;
888            
889          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890
891          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893
894          if (idat.excluded) {
895            indirect_vpair +=  - pref * preRF2_ * ct_ij;
896            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
897            indirect_duduz_i += -preSw * preRF2_ * uz_j;
898            indirect_duduz_j += -preSw * preRF2_ * uz_i;
899          }
900
901        } else {
902          
903          if (i_is_SplitDipole) {
904            if (j_is_SplitDipole) {
905              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906            } else {
907              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
908            }
909            ri = 1.0 / BigR;
910            scale =  *(idat.rij)  * ri;
911          } else {
912            if (j_is_SplitDipole) {
913              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
914              ri = 1.0 / BigR;
915              scale =  *(idat.rij)  * ri;
916            } else {
917              ri = riji;
918              scale = 1.0;
919            }
920          }
921          if (screeningMethod_ == DAMPED) {
922            // assemble damping variables
923            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924            //erfcVal = res.first;
925            //derfcVal = res.second;
926            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928            c1 = erfcVal * ri;
929            c2 = (-derfcVal + c1) * ri;
930            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
931            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
932          } else {
933            c1 = ri;
934            c2 = c1 * ri;
935            c3 = 3.0 * c2 * ri;
936            c4 = 5.0 * c3 * ri * ri;
937          }
938
939          // precompute variables for convenience
940          sc2 = scale * scale;
941          cti3 = ct_i * sc2 * c3;
942          ctj3 = ct_j * sc2 * c3;
943          ctidotj = ct_i * ct_j * sc2;
944          preSwSc = preSw * scale;
945          c2ri = c2 * ri;
946          c3ri = c3 * ri;
947          c4rij = c4 *  *(idat.rij) ;
948
949          // calculate the potential
950          pot_term = (ct_ij * c2ri - ctidotj * c3);
951          vterm = pref * pot_term;
952          vpair += vterm;
953          epot +=  *(idat.sw)  * vterm;
954
955          // calculate derivatives for the forces and torques
956          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
957                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
958          
959          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
960          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
961        }
1118        }
1119      }
1120  
1121 <    if (i_is_Quadrupole) {
1122 <      if (j_is_Charge) {
1123 <        // precompute some necessary variables
968 <        cx2 = cx_i * cx_i;
969 <        cy2 = cy_i * cy_i;
970 <        cz2 = cz_i * cz_i;
971 <
972 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
973 <
974 <        if (screeningMethod_ == DAMPED) {
975 <          // assemble the damping variables
976 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 <          //erfcVal = res.first;
978 <          //derfcVal = res.second;
979 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981 <          c1 = erfcVal * riji;
982 <          c2 = (-derfcVal + c1) * riji;
983 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
984 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
985 <        } else {
986 <          c1 = riji;
987 <          c2 = c1 * riji;
988 <          c3 = 3.0 * c2 * riji;
989 <          c4 = 5.0 * c3 * riji * riji;
990 <        }
991 <          
992 <        // precompute some variables for convenience
993 <        preSw =  *(idat.sw)  * pref;
994 <        c2ri = c2 * riji;
995 <        c3ri = c3 * riji;
996 <        c4rij = c4 *  *(idat.rij) ;
997 <        rhatdot2 = two * rhat * c3;
998 <        rhatc4 = rhat * c4rij;
999 <
1000 <        // calculate the potential
1001 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1002 <                     qyy_i * (cy2 * c3 - c2ri) +
1003 <                     qzz_i * (cz2 * c3 - c2ri) );
1004 <        
1005 <        vterm = pref * pot_term;
1006 <        vpair += vterm;
1007 <        epot +=  *(idat.sw)  * vterm;
1008 <
1009 <        // calculate the derivatives for the forces and torques
1010 <
1011 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 <                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 <                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014 <
1015 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1016 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1017 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1018 <
1019 <        if (j_is_Fluctuating) {
1020 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 <        }
1022 <
1023 <      }
1121 >    if (idat.doElectricField) {
1122 >      *(idat.eField1) += Ea * *(idat.electroMult);
1123 >      *(idat.eField2) += Eb * *(idat.electroMult);
1124      }
1125  
1126 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1127 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1128  
1129      if (!idat.excluded) {
1028      *(idat.vpair) += vpair;
1029      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030      *(idat.f1) += dVdr;
1130        
1131 <      if (i_is_Dipole || i_is_Quadrupole)
1132 <        *(idat.t1) -= cross(uz_i, duduz_i);
1133 <      if (i_is_Quadrupole) {
1035 <        *(idat.t1) -= cross(ux_i, dudux_i);
1036 <        *(idat.t1) -= cross(uy_i, duduy_i);
1037 <      }
1131 >      *(idat.vpair) += U;
1132 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1133 >      *(idat.f1) += F * *(idat.sw);
1134        
1135 <      if (j_is_Dipole || j_is_Quadrupole)
1136 <        *(idat.t2) -= cross(uz_j, duduz_j);
1041 <      if (j_is_Quadrupole) {
1042 <        *(idat.t2) -= cross(uz_j, dudux_j);
1043 <        *(idat.t2) -= cross(uz_j, duduy_j);
1044 <      }
1135 >      if (a_is_Dipole || a_is_Quadrupole)
1136 >        *(idat.t1) += Ta * *(idat.sw);
1137  
1138 +      if (b_is_Dipole || b_is_Quadrupole)
1139 +        *(idat.t2) += Tb * *(idat.sw);
1140 +      
1141      } else {
1142  
1143        // only accumulate the forces and torques resulting from the
1144        // indirect reaction field terms.
1145  
1146 <      *(idat.vpair) += indirect_vpair;
1147 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1148 <      *(idat.f1) += indirect_dVdr;
1146 >      *(idat.vpair) += indirect_Pot;      
1147 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1148 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1149 >      *(idat.f1) += *(idat.sw) * indirect_F;
1150        
1151 <      if (i_is_Dipole)
1152 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1153 <      if (j_is_Dipole)
1154 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1151 >      if (a_is_Dipole || a_is_Quadrupole)
1152 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1153 >            
1154 >      if (b_is_Dipole || b_is_Quadrupole)
1155 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1156      }
1060
1157      return;
1158 <  }  
1158 >  }
1159      
1160    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1161 <    RealType mu1, preVal, self;
1161 >
1162      if (!initialized_) initialize();
1163  
1164 <    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1165 <  
1164 >    ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1165 >    
1166      // logicals
1167      bool i_is_Charge = data.is_Charge;
1168      bool i_is_Dipole = data.is_Dipole;
1169 +    bool i_is_Quadrupole = data.is_Quadrupole;
1170      bool i_is_Fluctuating = data.is_Fluctuating;
1171 <    RealType chg1 = data.fixedCharge;  
1172 <    
1171 >    RealType C_a = data.fixedCharge;  
1172 >    RealType self(0.0), preVal, DdD, trQ, trQQ;
1173 >
1174 >    if (i_is_Dipole) {
1175 >      DdD = data.dipole.lengthSquare();
1176 >    }
1177 >        
1178      if (i_is_Fluctuating) {
1179 <      chg1 += *(sdat.flucQ);
1179 >      C_a += *(sdat.flucQ);
1180        // dVdFQ is really a force, so this is negative the derivative
1181        *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1182 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1183 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1184      }
1185  
1186 <    if (summationMethod_ == esm_REACTION_FIELD) {
1187 <      if (i_is_Dipole) {
1188 <        mu1 = data.dipole_moment;          
1189 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1190 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1191 <        
1192 <        // The self-correction term adds into the reaction field vector
1193 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1194 <        Vector3d ei = preVal * uz_i;
1186 >    switch (summationMethod_) {
1187 >    case esm_REACTION_FIELD:
1188 >      
1189 >      if (i_is_Charge) {
1190 >        // Self potential [see Wang and Hermans, "Reaction Field
1191 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1192 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1193 >        preVal = pre11_ * preRF_ * C_a * C_a;
1194 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1195 >      }
1196  
1197 <        // This looks very wrong.  A vector crossed with itself is zero.
1198 <        *(sdat.t) -= cross(uz_i, ei);
1197 >      if (i_is_Dipole) {
1198 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1199        }
1200 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1201 <      if (i_is_Charge) {        
1202 <        if (screeningMethod_ == DAMPED) {
1203 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1204 <        } else {        
1205 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1206 <        }
1207 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1200 >      
1201 >      break;
1202 >      
1203 >    case esm_SHIFTED_FORCE:
1204 >    case esm_SHIFTED_POTENTIAL:
1205 >    case esm_TAYLOR_SHIFTED:
1206 >      if (i_is_Charge)
1207 >        self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));      
1208 >      if (i_is_Dipole)
1209 >        self += selfMult2_ * pre22_ * DdD;      
1210 >      if (i_is_Quadrupole) {
1211 >        trQ = data.quadrupole.trace();
1212 >        trQQ = (data.quadrupole * data.quadrupole).trace();
1213 >        self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1214 >        if (i_is_Charge)
1215 >          self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1216        }
1217 +      (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;      
1218 +      break;
1219 +    default:
1220 +      break;
1221      }
1222    }
1223 <
1223 >  
1224    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1225      // This seems to work moderately well as a default.  There's no
1226      // inherent scale for 1/r interactions that we can standardize.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines