| 34 |
|
* work. Good starting points are: |
| 35 |
|
* |
| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
< |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
| 38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
|
#include <stdio.h> |
| 44 |
|
#include <string.h> |
| 45 |
|
|
| 46 |
|
#include <cmath> |
| 47 |
+ |
#include <numeric> |
| 48 |
|
#include "nonbonded/Electrostatic.hpp" |
| 49 |
|
#include "utils/simError.h" |
| 50 |
|
#include "types/NonBondedInteractionType.hpp" |
| 51 |
< |
#include "types/DirectionalAtomType.hpp" |
| 51 |
> |
#include "types/FixedChargeAdapter.hpp" |
| 52 |
> |
#include "types/FluctuatingChargeAdapter.hpp" |
| 53 |
> |
#include "types/MultipoleAdapter.hpp" |
| 54 |
> |
#include "io/Globals.hpp" |
| 55 |
> |
#include "nonbonded/SlaterIntegrals.hpp" |
| 56 |
> |
#include "utils/PhysicalConstants.hpp" |
| 57 |
> |
#include "math/erfc.hpp" |
| 58 |
> |
#include "math/SquareMatrix.hpp" |
| 59 |
> |
#include "primitives/Molecule.hpp" |
| 60 |
|
|
| 61 |
|
|
| 62 |
|
namespace OpenMD { |
| 63 |
|
|
| 64 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
| 65 |
< |
forceField_(NULL) {} |
| 65 |
> |
forceField_(NULL), info_(NULL), |
| 66 |
> |
haveCutoffRadius_(false), |
| 67 |
> |
haveDampingAlpha_(false), |
| 68 |
> |
haveDielectric_(false), |
| 69 |
> |
haveElectroSplines_(false) |
| 70 |
> |
{} |
| 71 |
|
|
| 72 |
|
void Electrostatic::initialize() { |
| 73 |
+ |
|
| 74 |
+ |
Globals* simParams_ = info_->getSimParams(); |
| 75 |
+ |
|
| 76 |
+ |
summationMap_["HARD"] = esm_HARD; |
| 77 |
+ |
summationMap_["NONE"] = esm_HARD; |
| 78 |
+ |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
| 79 |
+ |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
| 80 |
+ |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
| 81 |
+ |
summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED; |
| 82 |
+ |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
| 83 |
+ |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
| 84 |
+ |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
| 85 |
+ |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
| 86 |
+ |
screeningMap_["DAMPED"] = DAMPED; |
| 87 |
+ |
screeningMap_["UNDAMPED"] = UNDAMPED; |
| 88 |
+ |
|
| 89 |
|
// these prefactors convert the multipole interactions into kcal / mol |
| 90 |
|
// all were computed assuming distances are measured in angstroms |
| 91 |
|
// Charge-Charge, assuming charges are measured in electrons |
| 93 |
|
// Charge-Dipole, assuming charges are measured in electrons, and |
| 94 |
|
// dipoles are measured in debyes |
| 95 |
|
pre12_ = 69.13373; |
| 96 |
< |
// Dipole-Dipole, assuming dipoles are measured in debyes |
| 96 |
> |
// Dipole-Dipole, assuming dipoles are measured in Debye |
| 97 |
|
pre22_ = 14.39325; |
| 98 |
|
// Charge-Quadrupole, assuming charges are measured in electrons, and |
| 99 |
|
// quadrupoles are measured in 10^-26 esu cm^2 |
| 100 |
< |
// This unit is also known affectionately as an esu centi-barn. |
| 100 |
> |
// This unit is also known affectionately as an esu centibarn. |
| 101 |
|
pre14_ = 69.13373; |
| 102 |
< |
|
| 102 |
> |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
| 103 |
> |
// quadrupoles in esu centibarns: |
| 104 |
> |
pre24_ = 14.39325; |
| 105 |
> |
// Quadrupole-Quadrupole, assuming esu centibarns: |
| 106 |
> |
pre44_ = 14.39325; |
| 107 |
> |
|
| 108 |
|
// conversions for the simulation box dipole moment |
| 109 |
|
chargeToC_ = 1.60217733e-19; |
| 110 |
|
angstromToM_ = 1.0e-10; |
| 111 |
|
debyeToCm_ = 3.33564095198e-30; |
| 112 |
|
|
| 113 |
< |
// number of points for electrostatic splines |
| 113 |
> |
// Default number of points for electrostatic splines |
| 114 |
|
np_ = 100; |
| 115 |
|
|
| 116 |
|
// variables to handle different summation methods for long-range |
| 117 |
|
// electrostatics: |
| 118 |
< |
summationMethod_ = NONE; |
| 118 |
> |
summationMethod_ = esm_HARD; |
| 119 |
|
screeningMethod_ = UNDAMPED; |
| 120 |
|
dielectric_ = 1.0; |
| 85 |
– |
one_third_ = 1.0 / 3.0; |
| 86 |
– |
haveDefaultCutoff_ = false; |
| 87 |
– |
haveDampingAlpha_ = false; |
| 88 |
– |
haveDielectric_ = false; |
| 89 |
– |
haveElectroSpline_ = false; |
| 121 |
|
|
| 122 |
< |
// find all of the Electrostatic atom Types: |
| 123 |
< |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
| 124 |
< |
ForceField::AtomTypeContainer::MapTypeIterator i; |
| 125 |
< |
AtomType* at; |
| 126 |
< |
|
| 127 |
< |
for (at = atomTypes->beginType(i); at != NULL; |
| 128 |
< |
at = atomTypes->nextType(i)) { |
| 129 |
< |
|
| 130 |
< |
if (at->isElectrostatic()) |
| 131 |
< |
addType(at); |
| 122 |
> |
// check the summation method: |
| 123 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
| 124 |
> |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
| 125 |
> |
toUpper(myMethod); |
| 126 |
> |
map<string, ElectrostaticSummationMethod>::iterator i; |
| 127 |
> |
i = summationMap_.find(myMethod); |
| 128 |
> |
if ( i != summationMap_.end() ) { |
| 129 |
> |
summationMethod_ = (*i).second; |
| 130 |
> |
} else { |
| 131 |
> |
// throw error |
| 132 |
> |
sprintf( painCave.errMsg, |
| 133 |
> |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
| 134 |
> |
"\t(Input file specified %s .)\n" |
| 135 |
> |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
| 136 |
> |
"\t\"shifted_potential\", \"shifted_force\",\n" |
| 137 |
> |
"\t\"taylor_shifted\", or \"reaction_field\".\n", |
| 138 |
> |
myMethod.c_str() ); |
| 139 |
> |
painCave.isFatal = 1; |
| 140 |
> |
simError(); |
| 141 |
> |
} |
| 142 |
> |
} else { |
| 143 |
> |
// set ElectrostaticSummationMethod to the cutoffMethod: |
| 144 |
> |
if (simParams_->haveCutoffMethod()){ |
| 145 |
> |
string myMethod = simParams_->getCutoffMethod(); |
| 146 |
> |
toUpper(myMethod); |
| 147 |
> |
map<string, ElectrostaticSummationMethod>::iterator i; |
| 148 |
> |
i = summationMap_.find(myMethod); |
| 149 |
> |
if ( i != summationMap_.end() ) { |
| 150 |
> |
summationMethod_ = (*i).second; |
| 151 |
> |
} |
| 152 |
> |
} |
| 153 |
|
} |
| 154 |
|
|
| 155 |
+ |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 156 |
+ |
if (!simParams_->haveDielectric()) { |
| 157 |
+ |
// throw warning |
| 158 |
+ |
sprintf( painCave.errMsg, |
| 159 |
+ |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
| 160 |
+ |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
| 161 |
+ |
painCave.isFatal = 0; |
| 162 |
+ |
painCave.severity = OPENMD_INFO; |
| 163 |
+ |
simError(); |
| 164 |
+ |
} else { |
| 165 |
+ |
dielectric_ = simParams_->getDielectric(); |
| 166 |
+ |
} |
| 167 |
+ |
haveDielectric_ = true; |
| 168 |
+ |
} |
| 169 |
+ |
|
| 170 |
+ |
if (simParams_->haveElectrostaticScreeningMethod()) { |
| 171 |
+ |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
| 172 |
+ |
toUpper(myScreen); |
| 173 |
+ |
map<string, ElectrostaticScreeningMethod>::iterator i; |
| 174 |
+ |
i = screeningMap_.find(myScreen); |
| 175 |
+ |
if ( i != screeningMap_.end()) { |
| 176 |
+ |
screeningMethod_ = (*i).second; |
| 177 |
+ |
} else { |
| 178 |
+ |
sprintf( painCave.errMsg, |
| 179 |
+ |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
| 180 |
+ |
"\t(Input file specified %s .)\n" |
| 181 |
+ |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
| 182 |
+ |
"or \"damped\".\n", myScreen.c_str() ); |
| 183 |
+ |
painCave.isFatal = 1; |
| 184 |
+ |
simError(); |
| 185 |
+ |
} |
| 186 |
+ |
} |
| 187 |
+ |
|
| 188 |
|
// check to make sure a cutoff value has been set: |
| 189 |
< |
if (!haveDefaultCutoff_) { |
| 189 |
> |
if (!haveCutoffRadius_) { |
| 190 |
|
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
| 191 |
|
"Cutoff value!\n"); |
| 192 |
|
painCave.severity = OPENMD_ERROR; |
| 193 |
|
painCave.isFatal = 1; |
| 194 |
|
simError(); |
| 195 |
|
} |
| 196 |
< |
|
| 197 |
< |
defaultCutoff2_ = defaultCutoff_ * defaultCutoff_; |
| 198 |
< |
rcuti_ = 1.0 / defaultCutoff_; |
| 199 |
< |
rcuti2_ = rcuti_ * rcuti_; |
| 200 |
< |
rcuti3_ = rcuti2_ * rcuti_; |
| 201 |
< |
rcuti4_ = rcuti2_ * rcuti2_; |
| 202 |
< |
|
| 203 |
< |
if (screeningMethod_ == DAMPED) { |
| 204 |
< |
if (!haveDampingAlpha_) { |
| 205 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no " |
| 206 |
< |
"DampingAlpha value!\n"); |
| 207 |
< |
painCave.severity = OPENMD_ERROR; |
| 208 |
< |
painCave.isFatal = 1; |
| 196 |
> |
|
| 197 |
> |
if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) { |
| 198 |
> |
if (!simParams_->haveDampingAlpha()) { |
| 199 |
> |
// first set a cutoff dependent alpha value |
| 200 |
> |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
| 201 |
> |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
| 202 |
> |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
| 203 |
> |
// throw warning |
| 204 |
> |
sprintf( painCave.errMsg, |
| 205 |
> |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
| 206 |
> |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
| 207 |
> |
"\tcutoff of %f (ang).\n", |
| 208 |
> |
dampingAlpha_, cutoffRadius_); |
| 209 |
> |
painCave.severity = OPENMD_INFO; |
| 210 |
> |
painCave.isFatal = 0; |
| 211 |
|
simError(); |
| 212 |
+ |
} else { |
| 213 |
+ |
dampingAlpha_ = simParams_->getDampingAlpha(); |
| 214 |
|
} |
| 215 |
+ |
haveDampingAlpha_ = true; |
| 216 |
+ |
} |
| 217 |
|
|
| 127 |
– |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
| 128 |
– |
alpha4_ = alpha2_ * alpha2_; |
| 129 |
– |
alpha6_ = alpha4_ * alpha2_; |
| 130 |
– |
alpha8_ = alpha4_ * alpha4_; |
| 131 |
– |
|
| 132 |
– |
constEXP_ = exp(-alpha2_ * defaultCutoff2_); |
| 133 |
– |
invRootPi_ = 0.56418958354775628695; |
| 134 |
– |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
| 218 |
|
|
| 219 |
< |
c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_; |
| 220 |
< |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
| 221 |
< |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
| 222 |
< |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
| 223 |
< |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
| 224 |
< |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
| 219 |
> |
Etypes.clear(); |
| 220 |
> |
Etids.clear(); |
| 221 |
> |
FQtypes.clear(); |
| 222 |
> |
FQtids.clear(); |
| 223 |
> |
ElectrostaticMap.clear(); |
| 224 |
> |
Jij.clear(); |
| 225 |
> |
nElectro_ = 0; |
| 226 |
> |
nFlucq_ = 0; |
| 227 |
> |
|
| 228 |
> |
Etids.resize( forceField_->getNAtomType(), -1); |
| 229 |
> |
FQtids.resize( forceField_->getNAtomType(), -1); |
| 230 |
> |
|
| 231 |
> |
set<AtomType*>::iterator at; |
| 232 |
> |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
| 233 |
> |
if ((*at)->isElectrostatic()) nElectro_++; |
| 234 |
> |
if ((*at)->isFluctuatingCharge()) nFlucq_++; |
| 235 |
> |
} |
| 236 |
> |
|
| 237 |
> |
Jij.resize(nFlucq_); |
| 238 |
> |
|
| 239 |
> |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
| 240 |
> |
if ((*at)->isElectrostatic()) addType(*at); |
| 241 |
> |
} |
| 242 |
> |
|
| 243 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 244 |
> |
preRF_ = (dielectric_ - 1.0) / |
| 245 |
> |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
| 246 |
> |
} |
| 247 |
> |
|
| 248 |
> |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
| 249 |
> |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
| 250 |
> |
RealType a2, expTerm, invArootPi; |
| 251 |
> |
|
| 252 |
> |
RealType r = cutoffRadius_; |
| 253 |
> |
RealType r2 = r * r; |
| 254 |
> |
RealType ric = 1.0 / r; |
| 255 |
> |
RealType ric2 = ric * ric; |
| 256 |
> |
|
| 257 |
> |
if (screeningMethod_ == DAMPED) { |
| 258 |
> |
a2 = dampingAlpha_ * dampingAlpha_; |
| 259 |
> |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
| 260 |
> |
expTerm = exp(-a2 * r2); |
| 261 |
> |
// values of Smith's B_l functions at the cutoff radius: |
| 262 |
> |
b0c = erfc(dampingAlpha_ * r) / r; |
| 263 |
> |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
| 264 |
> |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
| 265 |
> |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
| 266 |
> |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
| 267 |
> |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
| 268 |
> |
// Half the Smith self piece: |
| 269 |
> |
selfMult1_ = - a2 * invArootPi; |
| 270 |
> |
selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0; |
| 271 |
> |
selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0; |
| 272 |
|
} else { |
| 273 |
< |
c1c_ = rcuti_; |
| 274 |
< |
c2c_ = c1c_ * rcuti_; |
| 275 |
< |
c3c_ = 3.0 * c2c_ * rcuti_; |
| 276 |
< |
c4c_ = 5.0 * c3c_ * rcuti2_; |
| 277 |
< |
c5c_ = 7.0 * c4c_ * rcuti2_; |
| 278 |
< |
c6c_ = 9.0 * c5c_ * rcuti2_; |
| 273 |
> |
a2 = 0.0; |
| 274 |
> |
b0c = 1.0 / r; |
| 275 |
> |
b1c = ( b0c) / r2; |
| 276 |
> |
b2c = (3.0 * b1c) / r2; |
| 277 |
> |
b3c = (5.0 * b2c) / r2; |
| 278 |
> |
b4c = (7.0 * b3c) / r2; |
| 279 |
> |
b5c = (9.0 * b4c) / r2; |
| 280 |
> |
selfMult1_ = 0.0; |
| 281 |
> |
selfMult2_ = 0.0; |
| 282 |
> |
selfMult4_ = 0.0; |
| 283 |
|
} |
| 284 |
< |
|
| 285 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 286 |
< |
if (haveDielectric_) { |
| 287 |
< |
preRF_ = (dielectric_ - 1.0) / |
| 288 |
< |
((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_); |
| 289 |
< |
preRF2_ = 2.0 * preRF_; |
| 284 |
> |
|
| 285 |
> |
// higher derivatives of B_0 at the cutoff radius: |
| 286 |
> |
db0c_1 = -r * b1c; |
| 287 |
> |
db0c_2 = -b1c + r2 * b2c; |
| 288 |
> |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
| 289 |
> |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
| 290 |
> |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
| 291 |
> |
|
| 292 |
> |
if (summationMethod_ != esm_EWALD_FULL) { |
| 293 |
> |
selfMult1_ -= b0c; |
| 294 |
> |
selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0; |
| 295 |
> |
selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0; |
| 296 |
> |
} |
| 297 |
> |
|
| 298 |
> |
// working variables for the splines: |
| 299 |
> |
RealType ri, ri2; |
| 300 |
> |
RealType b0, b1, b2, b3, b4, b5; |
| 301 |
> |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
| 302 |
> |
RealType f, fc, f0; |
| 303 |
> |
RealType g, gc, g0, g1, g2, g3, g4; |
| 304 |
> |
RealType h, hc, h1, h2, h3, h4; |
| 305 |
> |
RealType s, sc, s2, s3, s4; |
| 306 |
> |
RealType t, tc, t3, t4; |
| 307 |
> |
RealType u, uc, u4; |
| 308 |
> |
|
| 309 |
> |
// working variables for Taylor expansion: |
| 310 |
> |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
| 311 |
> |
|
| 312 |
> |
// Approximate using splines using a maximum of 0.1 Angstroms |
| 313 |
> |
// between points. |
| 314 |
> |
int nptest = int((cutoffRadius_ + 2.0) / 0.1); |
| 315 |
> |
np_ = (np_ > nptest) ? np_ : nptest; |
| 316 |
> |
|
| 317 |
> |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
| 318 |
> |
// have charged atoms longer than the cutoffRadius away from each |
| 319 |
> |
// other. Splining is almost certainly the best choice here. |
| 320 |
> |
// Direct calls to erfc would be preferrable if it is a very fast |
| 321 |
> |
// implementation. |
| 322 |
> |
|
| 323 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
| 324 |
> |
|
| 325 |
> |
// Storage vectors for the computed functions |
| 326 |
> |
vector<RealType> rv; |
| 327 |
> |
vector<RealType> v01v; |
| 328 |
> |
vector<RealType> v11v; |
| 329 |
> |
vector<RealType> v21v, v22v; |
| 330 |
> |
vector<RealType> v31v, v32v; |
| 331 |
> |
vector<RealType> v41v, v42v, v43v; |
| 332 |
> |
|
| 333 |
> |
for (int i = 1; i < np_ + 1; i++) { |
| 334 |
> |
r = RealType(i) * dx; |
| 335 |
> |
rv.push_back(r); |
| 336 |
> |
|
| 337 |
> |
ri = 1.0 / r; |
| 338 |
> |
ri2 = ri * ri; |
| 339 |
> |
|
| 340 |
> |
r2 = r * r; |
| 341 |
> |
expTerm = exp(-a2 * r2); |
| 342 |
> |
|
| 343 |
> |
// Taylor expansion factors (no need for factorials this way): |
| 344 |
> |
rmRc = r - cutoffRadius_; |
| 345 |
> |
rmRc2 = rmRc * rmRc / 2.0; |
| 346 |
> |
rmRc3 = rmRc2 * rmRc / 3.0; |
| 347 |
> |
rmRc4 = rmRc3 * rmRc / 4.0; |
| 348 |
> |
|
| 349 |
> |
// values of Smith's B_l functions at r: |
| 350 |
> |
if (screeningMethod_ == DAMPED) { |
| 351 |
> |
b0 = erfc(dampingAlpha_ * r) * ri; |
| 352 |
> |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
| 353 |
> |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
| 354 |
> |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
| 355 |
> |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
| 356 |
> |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
| 357 |
|
} else { |
| 358 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric" |
| 359 |
< |
" value!\n"); |
| 360 |
< |
painCave.severity = OPENMD_ERROR; |
| 358 |
> |
b0 = ri; |
| 359 |
> |
b1 = ( b0) * ri2; |
| 360 |
> |
b2 = (3.0 * b1) * ri2; |
| 361 |
> |
b3 = (5.0 * b2) * ri2; |
| 362 |
> |
b4 = (7.0 * b3) * ri2; |
| 363 |
> |
b5 = (9.0 * b4) * ri2; |
| 364 |
> |
} |
| 365 |
> |
|
| 366 |
> |
// higher derivatives of B_0 at r: |
| 367 |
> |
db0_1 = -r * b1; |
| 368 |
> |
db0_2 = -b1 + r2 * b2; |
| 369 |
> |
db0_3 = 3.0*r*b2 - r2*r*b3; |
| 370 |
> |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
| 371 |
> |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
| 372 |
> |
|
| 373 |
> |
f = b0; |
| 374 |
> |
fc = b0c; |
| 375 |
> |
f0 = f - fc - rmRc*db0c_1; |
| 376 |
> |
|
| 377 |
> |
g = db0_1; |
| 378 |
> |
gc = db0c_1; |
| 379 |
> |
g0 = g - gc; |
| 380 |
> |
g1 = g0 - rmRc *db0c_2; |
| 381 |
> |
g2 = g1 - rmRc2*db0c_3; |
| 382 |
> |
g3 = g2 - rmRc3*db0c_4; |
| 383 |
> |
g4 = g3 - rmRc4*db0c_5; |
| 384 |
> |
|
| 385 |
> |
h = db0_2; |
| 386 |
> |
hc = db0c_2; |
| 387 |
> |
h1 = h - hc; |
| 388 |
> |
h2 = h1 - rmRc *db0c_3; |
| 389 |
> |
h3 = h2 - rmRc2*db0c_4; |
| 390 |
> |
h4 = h3 - rmRc3*db0c_5; |
| 391 |
> |
|
| 392 |
> |
s = db0_3; |
| 393 |
> |
sc = db0c_3; |
| 394 |
> |
s2 = s - sc; |
| 395 |
> |
s3 = s2 - rmRc *db0c_4; |
| 396 |
> |
s4 = s3 - rmRc2*db0c_5; |
| 397 |
> |
|
| 398 |
> |
t = db0_4; |
| 399 |
> |
tc = db0c_4; |
| 400 |
> |
t3 = t - tc; |
| 401 |
> |
t4 = t3 - rmRc *db0c_5; |
| 402 |
> |
|
| 403 |
> |
u = db0_5; |
| 404 |
> |
uc = db0c_5; |
| 405 |
> |
u4 = u - uc; |
| 406 |
> |
|
| 407 |
> |
// in what follows below, the various v functions are used for |
| 408 |
> |
// potentials and torques, while the w functions show up in the |
| 409 |
> |
// forces. |
| 410 |
> |
|
| 411 |
> |
switch (summationMethod_) { |
| 412 |
> |
case esm_SHIFTED_FORCE: |
| 413 |
> |
|
| 414 |
> |
v01 = f - fc - rmRc*gc; |
| 415 |
> |
v11 = g - gc - rmRc*hc; |
| 416 |
> |
v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric; |
| 417 |
> |
v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric); |
| 418 |
> |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric; |
| 419 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric) |
| 420 |
> |
- rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
| 421 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2 |
| 422 |
> |
- rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2; |
| 423 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric |
| 424 |
> |
- rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric; |
| 425 |
> |
|
| 426 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
| 427 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric) |
| 428 |
> |
- rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
| 429 |
> |
|
| 430 |
> |
dv01 = g - gc; |
| 431 |
> |
dv11 = h - hc; |
| 432 |
> |
dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric; |
| 433 |
> |
dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric); |
| 434 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric; |
| 435 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri) |
| 436 |
> |
- (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
| 437 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2; |
| 438 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri |
| 439 |
> |
- (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric; |
| 440 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri) |
| 441 |
> |
- (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
| 442 |
> |
|
| 443 |
> |
break; |
| 444 |
> |
|
| 445 |
> |
case esm_TAYLOR_SHIFTED: |
| 446 |
> |
|
| 447 |
> |
v01 = f0; |
| 448 |
> |
v11 = g1; |
| 449 |
> |
v21 = g2 * ri; |
| 450 |
> |
v22 = h2 - v21; |
| 451 |
> |
v31 = (h3 - g3 * ri) * ri; |
| 452 |
> |
v32 = s3 - 3.0*v31; |
| 453 |
> |
v41 = (h4 - g4 * ri) * ri2; |
| 454 |
> |
v42 = s4 * ri - 3.0*v41; |
| 455 |
> |
v43 = t4 - 6.0*v42 - 3.0*v41; |
| 456 |
> |
|
| 457 |
> |
dv01 = g0; |
| 458 |
> |
dv11 = h1; |
| 459 |
> |
dv21 = (h2 - g2*ri)*ri; |
| 460 |
> |
dv22 = (s2 - (h2 - g2*ri)*ri); |
| 461 |
> |
dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri; |
| 462 |
> |
dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri); |
| 463 |
> |
dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2; |
| 464 |
> |
dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri; |
| 465 |
> |
dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri); |
| 466 |
> |
|
| 467 |
> |
break; |
| 468 |
> |
|
| 469 |
> |
case esm_SHIFTED_POTENTIAL: |
| 470 |
> |
|
| 471 |
> |
v01 = f - fc; |
| 472 |
> |
v11 = g - gc; |
| 473 |
> |
v21 = g*ri - gc*ric; |
| 474 |
> |
v22 = h - g*ri - (hc - gc*ric); |
| 475 |
> |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
| 476 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
| 477 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
| 478 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
| 479 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
| 480 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
| 481 |
> |
|
| 482 |
> |
dv01 = g; |
| 483 |
> |
dv11 = h; |
| 484 |
> |
dv21 = (h - g*ri)*ri; |
| 485 |
> |
dv22 = (s - (h - g*ri)*ri); |
| 486 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
| 487 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
| 488 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
| 489 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
| 490 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
| 491 |
> |
|
| 492 |
> |
break; |
| 493 |
> |
|
| 494 |
> |
case esm_SWITCHING_FUNCTION: |
| 495 |
> |
case esm_HARD: |
| 496 |
> |
case esm_EWALD_FULL: |
| 497 |
> |
|
| 498 |
> |
v01 = f; |
| 499 |
> |
v11 = g; |
| 500 |
> |
v21 = g*ri; |
| 501 |
> |
v22 = h - g*ri; |
| 502 |
> |
v31 = (h-g*ri)*ri; |
| 503 |
> |
v32 = (s - 3.0*(h-g*ri)*ri); |
| 504 |
> |
v41 = (h - g*ri)*ri2; |
| 505 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri; |
| 506 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri); |
| 507 |
> |
|
| 508 |
> |
dv01 = g; |
| 509 |
> |
dv11 = h; |
| 510 |
> |
dv21 = (h - g*ri)*ri; |
| 511 |
> |
dv22 = (s - (h - g*ri)*ri); |
| 512 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
| 513 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
| 514 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
| 515 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
| 516 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
| 517 |
> |
|
| 518 |
> |
break; |
| 519 |
> |
|
| 520 |
> |
case esm_REACTION_FIELD: |
| 521 |
> |
|
| 522 |
> |
// following DL_POLY's lead for shifting the image charge potential: |
| 523 |
> |
f = b0 + preRF_ * r2; |
| 524 |
> |
fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_; |
| 525 |
> |
|
| 526 |
> |
g = db0_1 + preRF_ * 2.0 * r; |
| 527 |
> |
gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_; |
| 528 |
> |
|
| 529 |
> |
h = db0_2 + preRF_ * 2.0; |
| 530 |
> |
hc = db0c_2 + preRF_ * 2.0; |
| 531 |
> |
|
| 532 |
> |
v01 = f - fc; |
| 533 |
> |
v11 = g - gc; |
| 534 |
> |
v21 = g*ri - gc*ric; |
| 535 |
> |
v22 = h - g*ri - (hc - gc*ric); |
| 536 |
> |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
| 537 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
| 538 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
| 539 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
| 540 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
| 541 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
| 542 |
> |
|
| 543 |
> |
dv01 = g; |
| 544 |
> |
dv11 = h; |
| 545 |
> |
dv21 = (h - g*ri)*ri; |
| 546 |
> |
dv22 = (s - (h - g*ri)*ri); |
| 547 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
| 548 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
| 549 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
| 550 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
| 551 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
| 552 |
> |
|
| 553 |
> |
break; |
| 554 |
> |
|
| 555 |
> |
case esm_EWALD_PME: |
| 556 |
> |
case esm_EWALD_SPME: |
| 557 |
> |
default : |
| 558 |
> |
map<string, ElectrostaticSummationMethod>::iterator i; |
| 559 |
> |
std::string meth; |
| 560 |
> |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
| 561 |
> |
if ((*i).second == summationMethod_) meth = (*i).first; |
| 562 |
> |
} |
| 563 |
> |
sprintf( painCave.errMsg, |
| 564 |
> |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
| 565 |
> |
"\thas not been implemented yet. Please select one of:\n" |
| 566 |
> |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
| 567 |
> |
meth.c_str() ); |
| 568 |
|
painCave.isFatal = 1; |
| 569 |
|
simError(); |
| 570 |
+ |
break; |
| 571 |
|
} |
| 572 |
+ |
|
| 573 |
+ |
// Add these computed values to the storage vectors for spline creation: |
| 574 |
+ |
v01v.push_back(v01); |
| 575 |
+ |
v11v.push_back(v11); |
| 576 |
+ |
v21v.push_back(v21); |
| 577 |
+ |
v22v.push_back(v22); |
| 578 |
+ |
v31v.push_back(v31); |
| 579 |
+ |
v32v.push_back(v32); |
| 580 |
+ |
v41v.push_back(v41); |
| 581 |
+ |
v42v.push_back(v42); |
| 582 |
+ |
v43v.push_back(v43); |
| 583 |
|
} |
| 164 |
– |
|
| 165 |
– |
RealType dx = defaultCutoff_ / RealType(np_ - 1); |
| 166 |
– |
RealType rval; |
| 167 |
– |
vector<RealType> rvals; |
| 168 |
– |
vector<RealType> yvals; |
| 169 |
– |
for (int i = 0; i < np_; i++) { |
| 170 |
– |
rval = RealType(i) * dx; |
| 171 |
– |
rvals.push_back(rval); |
| 172 |
– |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
| 173 |
– |
} |
| 174 |
– |
erfcSpline_ = new CubicSpline(); |
| 175 |
– |
erfcSpline_->addPoints(rvals, yvals); |
| 176 |
– |
haveElectroSpline_ = true; |
| 584 |
|
|
| 585 |
+ |
// construct the spline structures and fill them with the values we've |
| 586 |
+ |
// computed: |
| 587 |
+ |
|
| 588 |
+ |
v01s = new CubicSpline(); |
| 589 |
+ |
v01s->addPoints(rv, v01v); |
| 590 |
+ |
v11s = new CubicSpline(); |
| 591 |
+ |
v11s->addPoints(rv, v11v); |
| 592 |
+ |
v21s = new CubicSpline(); |
| 593 |
+ |
v21s->addPoints(rv, v21v); |
| 594 |
+ |
v22s = new CubicSpline(); |
| 595 |
+ |
v22s->addPoints(rv, v22v); |
| 596 |
+ |
v31s = new CubicSpline(); |
| 597 |
+ |
v31s->addPoints(rv, v31v); |
| 598 |
+ |
v32s = new CubicSpline(); |
| 599 |
+ |
v32s->addPoints(rv, v32v); |
| 600 |
+ |
v41s = new CubicSpline(); |
| 601 |
+ |
v41s->addPoints(rv, v41v); |
| 602 |
+ |
v42s = new CubicSpline(); |
| 603 |
+ |
v42s->addPoints(rv, v42v); |
| 604 |
+ |
v43s = new CubicSpline(); |
| 605 |
+ |
v43s->addPoints(rv, v43v); |
| 606 |
+ |
|
| 607 |
+ |
haveElectroSplines_ = true; |
| 608 |
+ |
|
| 609 |
|
initialized_ = true; |
| 610 |
|
} |
| 611 |
|
|
| 612 |
|
void Electrostatic::addType(AtomType* atomType){ |
| 613 |
< |
|
| 613 |
> |
|
| 614 |
|
ElectrostaticAtomData electrostaticAtomData; |
| 615 |
|
electrostaticAtomData.is_Charge = false; |
| 616 |
|
electrostaticAtomData.is_Dipole = false; |
| 186 |
– |
electrostaticAtomData.is_SplitDipole = false; |
| 617 |
|
electrostaticAtomData.is_Quadrupole = false; |
| 618 |
+ |
electrostaticAtomData.is_Fluctuating = false; |
| 619 |
|
|
| 620 |
< |
if (atomType->isCharge()) { |
| 190 |
< |
GenericData* data = atomType->getPropertyByName("Charge"); |
| 620 |
> |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
| 621 |
|
|
| 622 |
< |
if (data == NULL) { |
| 193 |
< |
sprintf( painCave.errMsg, "Electrostatic::addType could not find " |
| 194 |
< |
"Charge\n" |
| 195 |
< |
"\tparameters for atomType %s.\n", |
| 196 |
< |
atomType->getName().c_str()); |
| 197 |
< |
painCave.severity = OPENMD_ERROR; |
| 198 |
< |
painCave.isFatal = 1; |
| 199 |
< |
simError(); |
| 200 |
< |
} |
| 201 |
< |
|
| 202 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 203 |
< |
if (doubleData == NULL) { |
| 204 |
< |
sprintf( painCave.errMsg, |
| 205 |
< |
"Electrostatic::addType could not convert GenericData to " |
| 206 |
< |
"Charge for\n" |
| 207 |
< |
"\tatom type %s\n", atomType->getName().c_str()); |
| 208 |
< |
painCave.severity = OPENMD_ERROR; |
| 209 |
< |
painCave.isFatal = 1; |
| 210 |
< |
simError(); |
| 211 |
< |
} |
| 622 |
> |
if (fca.isFixedCharge()) { |
| 623 |
|
electrostaticAtomData.is_Charge = true; |
| 624 |
< |
electrostaticAtomData.charge = doubleData->getData(); |
| 624 |
> |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
| 625 |
|
} |
| 626 |
|
|
| 627 |
< |
if (atomType->isDirectional()) { |
| 628 |
< |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
| 629 |
< |
|
| 219 |
< |
if (daType->isDipole()) { |
| 220 |
< |
GenericData* data = daType->getPropertyByName("Dipole"); |
| 221 |
< |
|
| 222 |
< |
if (data == NULL) { |
| 223 |
< |
sprintf( painCave.errMsg, |
| 224 |
< |
"Electrostatic::addType could not find Dipole\n" |
| 225 |
< |
"\tparameters for atomType %s.\n", |
| 226 |
< |
daType->getName().c_str()); |
| 227 |
< |
painCave.severity = OPENMD_ERROR; |
| 228 |
< |
painCave.isFatal = 1; |
| 229 |
< |
simError(); |
| 230 |
< |
} |
| 231 |
< |
|
| 232 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 233 |
< |
if (doubleData == NULL) { |
| 234 |
< |
sprintf( painCave.errMsg, |
| 235 |
< |
"Electrostatic::addType could not convert GenericData to " |
| 236 |
< |
"Dipole Moment\n" |
| 237 |
< |
"\tfor atom type %s\n", daType->getName().c_str()); |
| 238 |
< |
painCave.severity = OPENMD_ERROR; |
| 239 |
< |
painCave.isFatal = 1; |
| 240 |
< |
simError(); |
| 241 |
< |
} |
| 627 |
> |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
| 628 |
> |
if (ma.isMultipole()) { |
| 629 |
> |
if (ma.isDipole()) { |
| 630 |
|
electrostaticAtomData.is_Dipole = true; |
| 631 |
< |
electrostaticAtomData.dipole_moment = doubleData->getData(); |
| 631 |
> |
electrostaticAtomData.dipole = ma.getDipole(); |
| 632 |
|
} |
| 633 |
< |
|
| 246 |
< |
if (daType->isSplitDipole()) { |
| 247 |
< |
GenericData* data = daType->getPropertyByName("SplitDipoleDistance"); |
| 248 |
< |
|
| 249 |
< |
if (data == NULL) { |
| 250 |
< |
sprintf(painCave.errMsg, |
| 251 |
< |
"Electrostatic::addType could not find SplitDipoleDistance\n" |
| 252 |
< |
"\tparameter for atomType %s.\n", |
| 253 |
< |
daType->getName().c_str()); |
| 254 |
< |
painCave.severity = OPENMD_ERROR; |
| 255 |
< |
painCave.isFatal = 1; |
| 256 |
< |
simError(); |
| 257 |
< |
} |
| 258 |
< |
|
| 259 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
| 260 |
< |
if (doubleData == NULL) { |
| 261 |
< |
sprintf( painCave.errMsg, |
| 262 |
< |
"Electrostatic::addType could not convert GenericData to " |
| 263 |
< |
"SplitDipoleDistance for\n" |
| 264 |
< |
"\tatom type %s\n", daType->getName().c_str()); |
| 265 |
< |
painCave.severity = OPENMD_ERROR; |
| 266 |
< |
painCave.isFatal = 1; |
| 267 |
< |
simError(); |
| 268 |
< |
} |
| 269 |
< |
electrostaticAtomData.is_SplitDipole = true; |
| 270 |
< |
electrostaticAtomData.split_dipole_distance = doubleData->getData(); |
| 271 |
< |
} |
| 272 |
< |
|
| 273 |
< |
if (daType->isQuadrupole()) { |
| 274 |
< |
GenericData* data = daType->getPropertyByName("QuadrupoleMoments"); |
| 275 |
< |
|
| 276 |
< |
if (data == NULL) { |
| 277 |
< |
sprintf( painCave.errMsg, |
| 278 |
< |
"Electrostatic::addType could not find QuadrupoleMoments\n" |
| 279 |
< |
"\tparameter for atomType %s.\n", |
| 280 |
< |
daType->getName().c_str()); |
| 281 |
< |
painCave.severity = OPENMD_ERROR; |
| 282 |
< |
painCave.isFatal = 1; |
| 283 |
< |
simError(); |
| 284 |
< |
} |
| 285 |
< |
|
| 286 |
< |
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
| 287 |
< |
if (v3dData == NULL) { |
| 288 |
< |
sprintf( painCave.errMsg, |
| 289 |
< |
"Electrostatic::addType could not convert GenericData to " |
| 290 |
< |
"Quadrupole Moments for\n" |
| 291 |
< |
"\tatom type %s\n", daType->getName().c_str()); |
| 292 |
< |
painCave.severity = OPENMD_ERROR; |
| 293 |
< |
painCave.isFatal = 1; |
| 294 |
< |
simError(); |
| 295 |
< |
} |
| 633 |
> |
if (ma.isQuadrupole()) { |
| 634 |
|
electrostaticAtomData.is_Quadrupole = true; |
| 635 |
< |
electrostaticAtomData.quadrupole_moments = v3dData->getData(); |
| 635 |
> |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
| 636 |
|
} |
| 637 |
|
} |
| 638 |
|
|
| 639 |
< |
AtomTypeProperties atp = atomType->getATP(); |
| 639 |
> |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
| 640 |
|
|
| 641 |
< |
pair<map<int,AtomType*>::iterator,bool> ret; |
| 642 |
< |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) ); |
| 641 |
> |
if (fqa.isFluctuatingCharge()) { |
| 642 |
> |
electrostaticAtomData.is_Fluctuating = true; |
| 643 |
> |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
| 644 |
> |
electrostaticAtomData.hardness = fqa.getHardness(); |
| 645 |
> |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
| 646 |
> |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
| 647 |
> |
} |
| 648 |
> |
|
| 649 |
> |
int atid = atomType->getIdent(); |
| 650 |
> |
int etid = Etypes.size(); |
| 651 |
> |
int fqtid = FQtypes.size(); |
| 652 |
> |
|
| 653 |
> |
pair<set<int>::iterator,bool> ret; |
| 654 |
> |
ret = Etypes.insert( atid ); |
| 655 |
|
if (ret.second == false) { |
| 656 |
|
sprintf( painCave.errMsg, |
| 657 |
|
"Electrostatic already had a previous entry with ident %d\n", |
| 658 |
< |
atp.ident); |
| 658 |
> |
atid); |
| 659 |
|
painCave.severity = OPENMD_INFO; |
| 660 |
|
painCave.isFatal = 0; |
| 661 |
|
simError(); |
| 662 |
|
} |
| 663 |
|
|
| 664 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
| 664 |
> |
Etids[ atid ] = etid; |
| 665 |
> |
ElectrostaticMap.push_back(electrostaticAtomData); |
| 666 |
> |
|
| 667 |
> |
if (electrostaticAtomData.is_Fluctuating) { |
| 668 |
> |
ret = FQtypes.insert( atid ); |
| 669 |
> |
if (ret.second == false) { |
| 670 |
> |
sprintf( painCave.errMsg, |
| 671 |
> |
"Electrostatic already had a previous fluctuating charge entry with ident %d\n", |
| 672 |
> |
atid ); |
| 673 |
> |
painCave.severity = OPENMD_INFO; |
| 674 |
> |
painCave.isFatal = 0; |
| 675 |
> |
simError(); |
| 676 |
> |
} |
| 677 |
> |
FQtids[atid] = fqtid; |
| 678 |
> |
Jij[fqtid].resize(nFlucq_); |
| 679 |
> |
|
| 680 |
> |
// Now, iterate over all known fluctuating and add to the coulomb integral map: |
| 681 |
> |
|
| 682 |
> |
std::set<int>::iterator it; |
| 683 |
> |
for( it = FQtypes.begin(); it != FQtypes.end(); ++it) { |
| 684 |
> |
int etid2 = Etids[ (*it) ]; |
| 685 |
> |
int fqtid2 = FQtids[ (*it) ]; |
| 686 |
> |
ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ]; |
| 687 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
| 688 |
> |
RealType b = eaData2.slaterZeta; |
| 689 |
> |
int m = electrostaticAtomData.slaterN; |
| 690 |
> |
int n = eaData2.slaterN; |
| 691 |
> |
|
| 692 |
> |
// Create the spline of the coulombic integral for s-type |
| 693 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
| 694 |
> |
// with cutoffGroups that have charged atoms longer than the |
| 695 |
> |
// cutoffRadius away from each other. |
| 696 |
> |
|
| 697 |
> |
RealType rval; |
| 698 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
| 699 |
> |
vector<RealType> rvals; |
| 700 |
> |
vector<RealType> Jvals; |
| 701 |
> |
// don't start at i = 0, as rval = 0 is undefined for the |
| 702 |
> |
// slater overlap integrals. |
| 703 |
> |
for (int i = 1; i < np_+1; i++) { |
| 704 |
> |
rval = RealType(i) * dr; |
| 705 |
> |
rvals.push_back(rval); |
| 706 |
> |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
| 707 |
> |
PhysicalConstants::angstromToBohr ) * |
| 708 |
> |
PhysicalConstants::hartreeToKcal ); |
| 709 |
> |
} |
| 710 |
> |
|
| 711 |
> |
CubicSpline* J = new CubicSpline(); |
| 712 |
> |
J->addPoints(rvals, Jvals); |
| 713 |
> |
Jij[fqtid][fqtid2] = J; |
| 714 |
> |
Jij[fqtid2].resize( nFlucq_ ); |
| 715 |
> |
Jij[fqtid2][fqtid] = J; |
| 716 |
> |
} |
| 717 |
> |
} |
| 718 |
|
return; |
| 719 |
|
} |
| 720 |
|
|
| 721 |
< |
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
| 722 |
< |
RealType theRSW ) { |
| 723 |
< |
defaultCutoff_ = theECR; |
| 321 |
< |
rrf_ = defaultCutoff_; |
| 322 |
< |
rt_ = theRSW; |
| 323 |
< |
haveDefaultCutoff_ = true; |
| 721 |
> |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
| 722 |
> |
cutoffRadius_ = rCut; |
| 723 |
> |
haveCutoffRadius_ = true; |
| 724 |
|
} |
| 725 |
+ |
|
| 726 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
| 727 |
|
summationMethod_ = esm; |
| 728 |
|
} |
| 738 |
|
haveDielectric_ = true; |
| 739 |
|
} |
| 740 |
|
|
| 741 |
< |
void Electrostatic::calcForce(InteractionData idat) { |
| 341 |
< |
|
| 342 |
< |
// utility variables. Should clean these up and use the Vector3d and |
| 343 |
< |
// Mat3x3d to replace as many as we can in future versions: |
| 741 |
> |
void Electrostatic::calcForce(InteractionData &idat) { |
| 742 |
|
|
| 345 |
– |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
| 346 |
– |
RealType qxx_i, qyy_i, qzz_i; |
| 347 |
– |
RealType qxx_j, qyy_j, qzz_j; |
| 348 |
– |
RealType cx_i, cy_i, cz_i; |
| 349 |
– |
RealType cx_j, cy_j, cz_j; |
| 350 |
– |
RealType cx2, cy2, cz2; |
| 351 |
– |
RealType ct_i, ct_j, ct_ij, a1; |
| 352 |
– |
RealType riji, ri, ri2, ri3, ri4; |
| 353 |
– |
RealType pref, vterm, epot, dudr; |
| 354 |
– |
RealType scale, sc2; |
| 355 |
– |
RealType pot_term, preVal, rfVal; |
| 356 |
– |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
| 357 |
– |
RealType preSw, preSwSc; |
| 358 |
– |
RealType c1, c2, c3, c4; |
| 359 |
– |
RealType erfcVal, derfcVal; |
| 360 |
– |
RealType BigR; |
| 361 |
– |
|
| 362 |
– |
Vector3d Q_i, Q_j; |
| 363 |
– |
Vector3d ux_i, uy_i, uz_i; |
| 364 |
– |
Vector3d ux_j, uy_j, uz_j; |
| 365 |
– |
Vector3d dudux_i, duduy_i, duduz_i; |
| 366 |
– |
Vector3d dudux_j, duduy_j, duduz_j; |
| 367 |
– |
Vector3d rhatdot2, rhatc4; |
| 368 |
– |
Vector3d dVdr; |
| 369 |
– |
|
| 370 |
– |
pair<RealType, RealType> res; |
| 371 |
– |
|
| 743 |
|
if (!initialized_) initialize(); |
| 744 |
|
|
| 745 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1]; |
| 746 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2]; |
| 745 |
> |
data1 = ElectrostaticMap[Etids[idat.atid1]]; |
| 746 |
> |
data2 = ElectrostaticMap[Etids[idat.atid2]]; |
| 747 |
> |
|
| 748 |
> |
U = 0.0; // Potential |
| 749 |
> |
F.zero(); // Force |
| 750 |
> |
Ta.zero(); // Torque on site a |
| 751 |
> |
Tb.zero(); // Torque on site b |
| 752 |
> |
Ea.zero(); // Electric field at site a |
| 753 |
> |
Eb.zero(); // Electric field at site b |
| 754 |
> |
dUdCa = 0.0; // fluctuating charge force at site a |
| 755 |
> |
dUdCb = 0.0; // fluctuating charge force at site a |
| 756 |
|
|
| 757 |
< |
// some variables we'll need independent of electrostatic type: |
| 757 |
> |
// Indirect interactions mediated by the reaction field. |
| 758 |
> |
indirect_Pot = 0.0; // Potential |
| 759 |
> |
indirect_F.zero(); // Force |
| 760 |
> |
indirect_Ta.zero(); // Torque on site a |
| 761 |
> |
indirect_Tb.zero(); // Torque on site b |
| 762 |
|
|
| 763 |
< |
riji = 1.0 / idat.rij; |
| 764 |
< |
Vector3d rhat = idat.d * riji; |
| 763 |
> |
// Excluded potential that is still computed for fluctuating charges |
| 764 |
> |
excluded_Pot= 0.0; |
| 765 |
|
|
| 382 |
– |
// logicals |
| 766 |
|
|
| 767 |
< |
bool i_is_Charge = data1.is_Charge; |
| 385 |
< |
bool i_is_Dipole = data1.is_Dipole; |
| 386 |
< |
bool i_is_SplitDipole = data1.is_SplitDipole; |
| 387 |
< |
bool i_is_Quadrupole = data1.is_Quadrupole; |
| 767 |
> |
// some variables we'll need independent of electrostatic type: |
| 768 |
|
|
| 769 |
< |
bool j_is_Charge = data2.is_Charge; |
| 770 |
< |
bool j_is_Dipole = data2.is_Dipole; |
| 391 |
< |
bool j_is_SplitDipole = data2.is_SplitDipole; |
| 392 |
< |
bool j_is_Quadrupole = data2.is_Quadrupole; |
| 393 |
< |
|
| 394 |
< |
if (i_is_Charge) |
| 395 |
< |
q_i = data1.charge; |
| 396 |
< |
|
| 397 |
< |
if (i_is_Dipole) { |
| 398 |
< |
mu_i = data1.dipole_moment; |
| 399 |
< |
uz_i = idat.eFrame1.getColumn(2); |
| 769 |
> |
ri = 1.0 / *(idat.rij); |
| 770 |
> |
rhat = *(idat.d) * ri; |
| 771 |
|
|
| 772 |
< |
ct_i = dot(uz_i, rhat); |
| 772 |
> |
// logicals |
| 773 |
|
|
| 774 |
< |
if (i_is_SplitDipole) |
| 775 |
< |
d_i = data1.split_dipole_distance; |
| 776 |
< |
|
| 777 |
< |
duduz_i = V3Zero; |
| 407 |
< |
} |
| 408 |
< |
|
| 409 |
< |
if (i_is_Quadrupole) { |
| 410 |
< |
Q_i = data1.quadrupole_moments; |
| 411 |
< |
qxx_i = Q_i.x(); |
| 412 |
< |
qyy_i = Q_i.y(); |
| 413 |
< |
qzz_i = Q_i.z(); |
| 414 |
< |
|
| 415 |
< |
ux_i = idat.eFrame1.getColumn(0); |
| 416 |
< |
uy_i = idat.eFrame1.getColumn(1); |
| 417 |
< |
uz_i = idat.eFrame1.getColumn(2); |
| 774 |
> |
a_is_Charge = data1.is_Charge; |
| 775 |
> |
a_is_Dipole = data1.is_Dipole; |
| 776 |
> |
a_is_Quadrupole = data1.is_Quadrupole; |
| 777 |
> |
a_is_Fluctuating = data1.is_Fluctuating; |
| 778 |
|
|
| 779 |
< |
cx_i = dot(ux_i, rhat); |
| 780 |
< |
cy_i = dot(uy_i, rhat); |
| 781 |
< |
cz_i = dot(uz_i, rhat); |
| 779 |
> |
b_is_Charge = data2.is_Charge; |
| 780 |
> |
b_is_Dipole = data2.is_Dipole; |
| 781 |
> |
b_is_Quadrupole = data2.is_Quadrupole; |
| 782 |
> |
b_is_Fluctuating = data2.is_Fluctuating; |
| 783 |
|
|
| 784 |
< |
dudux_i = V3Zero; |
| 785 |
< |
duduy_i = V3Zero; |
| 786 |
< |
duduz_i = V3Zero; |
| 784 |
> |
// Obtain all of the required radial function values from the |
| 785 |
> |
// spline structures: |
| 786 |
> |
|
| 787 |
> |
// needed for fields (and forces): |
| 788 |
> |
if (a_is_Charge || b_is_Charge) { |
| 789 |
> |
v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01); |
| 790 |
|
} |
| 791 |
+ |
if (a_is_Dipole || b_is_Dipole) { |
| 792 |
+ |
v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11); |
| 793 |
+ |
v11or = ri * v11; |
| 794 |
+ |
} |
| 795 |
+ |
if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) { |
| 796 |
+ |
v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21); |
| 797 |
+ |
v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22); |
| 798 |
+ |
v22or = ri * v22; |
| 799 |
+ |
} |
| 800 |
|
|
| 801 |
< |
if (j_is_Charge) |
| 802 |
< |
q_j = data2.charge; |
| 801 |
> |
// needed for potentials (and forces and torques): |
| 802 |
> |
if ((a_is_Dipole && b_is_Quadrupole) || |
| 803 |
> |
(b_is_Dipole && a_is_Quadrupole)) { |
| 804 |
> |
v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31); |
| 805 |
> |
v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32); |
| 806 |
> |
v31or = v31 * ri; |
| 807 |
> |
v32or = v32 * ri; |
| 808 |
> |
} |
| 809 |
> |
if (a_is_Quadrupole && b_is_Quadrupole) { |
| 810 |
> |
v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41); |
| 811 |
> |
v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42); |
| 812 |
> |
v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43); |
| 813 |
> |
v42or = v42 * ri; |
| 814 |
> |
v43or = v43 * ri; |
| 815 |
> |
} |
| 816 |
|
|
| 817 |
< |
if (j_is_Dipole) { |
| 818 |
< |
mu_j = data2.dipole_moment; |
| 819 |
< |
uz_j = idat.eFrame2.getColumn(2); |
| 817 |
> |
// calculate the single-site contributions (fields, etc). |
| 818 |
> |
|
| 819 |
> |
if (a_is_Charge) { |
| 820 |
> |
C_a = data1.fixedCharge; |
| 821 |
|
|
| 822 |
< |
ct_j = dot(uz_j, rhat); |
| 823 |
< |
|
| 824 |
< |
if (j_is_SplitDipole) |
| 438 |
< |
d_j = data2.split_dipole_distance; |
| 822 |
> |
if (a_is_Fluctuating) { |
| 823 |
> |
C_a += *(idat.flucQ1); |
| 824 |
> |
} |
| 825 |
|
|
| 826 |
< |
duduz_j = V3Zero; |
| 826 |
> |
if (idat.excluded) { |
| 827 |
> |
*(idat.skippedCharge2) += C_a; |
| 828 |
> |
} else { |
| 829 |
> |
// only do the field if we're not excluded: |
| 830 |
> |
Eb -= C_a * pre11_ * dv01 * rhat; |
| 831 |
> |
} |
| 832 |
|
} |
| 833 |
|
|
| 834 |
< |
if (j_is_Quadrupole) { |
| 835 |
< |
Q_j = data2.quadrupole_moments; |
| 836 |
< |
qxx_j = Q_j.x(); |
| 837 |
< |
qyy_j = Q_j.y(); |
| 838 |
< |
qzz_j = Q_j.z(); |
| 834 |
> |
if (a_is_Dipole) { |
| 835 |
> |
D_a = *(idat.dipole1); |
| 836 |
> |
rdDa = dot(rhat, D_a); |
| 837 |
> |
rxDa = cross(rhat, D_a); |
| 838 |
> |
if (!idat.excluded) |
| 839 |
> |
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
| 840 |
> |
} |
| 841 |
> |
|
| 842 |
> |
if (a_is_Quadrupole) { |
| 843 |
> |
Q_a = *(idat.quadrupole1); |
| 844 |
> |
trQa = Q_a.trace(); |
| 845 |
> |
Qar = Q_a * rhat; |
| 846 |
> |
rQa = rhat * Q_a; |
| 847 |
> |
rdQar = dot(rhat, Qar); |
| 848 |
> |
rxQar = cross(rhat, Qar); |
| 849 |
> |
if (!idat.excluded) |
| 850 |
> |
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
| 851 |
> |
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
| 852 |
> |
} |
| 853 |
> |
|
| 854 |
> |
if (b_is_Charge) { |
| 855 |
> |
C_b = data2.fixedCharge; |
| 856 |
|
|
| 857 |
< |
ux_j = idat.eFrame2.getColumn(0); |
| 858 |
< |
uy_j = idat.eFrame2.getColumn(1); |
| 859 |
< |
uz_j = idat.eFrame2.getColumn(2); |
| 860 |
< |
|
| 861 |
< |
cx_j = dot(ux_j, rhat); |
| 862 |
< |
cy_j = dot(uy_j, rhat); |
| 863 |
< |
cz_j = dot(uz_j, rhat); |
| 864 |
< |
|
| 865 |
< |
dudux_j = V3Zero; |
| 458 |
< |
duduy_j = V3Zero; |
| 459 |
< |
duduz_j = V3Zero; |
| 857 |
> |
if (b_is_Fluctuating) |
| 858 |
> |
C_b += *(idat.flucQ2); |
| 859 |
> |
|
| 860 |
> |
if (idat.excluded) { |
| 861 |
> |
*(idat.skippedCharge1) += C_b; |
| 862 |
> |
} else { |
| 863 |
> |
// only do the field if we're not excluded: |
| 864 |
> |
Ea += C_b * pre11_ * dv01 * rhat; |
| 865 |
> |
} |
| 866 |
|
} |
| 867 |
|
|
| 868 |
< |
epot = 0.0; |
| 869 |
< |
dVdr = V3Zero; |
| 868 |
> |
if (b_is_Dipole) { |
| 869 |
> |
D_b = *(idat.dipole2); |
| 870 |
> |
rdDb = dot(rhat, D_b); |
| 871 |
> |
rxDb = cross(rhat, D_b); |
| 872 |
> |
if (!idat.excluded) |
| 873 |
> |
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
| 874 |
> |
} |
| 875 |
|
|
| 876 |
< |
if (i_is_Charge) { |
| 876 |
> |
if (b_is_Quadrupole) { |
| 877 |
> |
Q_b = *(idat.quadrupole2); |
| 878 |
> |
trQb = Q_b.trace(); |
| 879 |
> |
Qbr = Q_b * rhat; |
| 880 |
> |
rQb = rhat * Q_b; |
| 881 |
> |
rdQbr = dot(rhat, Qbr); |
| 882 |
> |
rxQbr = cross(rhat, Qbr); |
| 883 |
> |
if (!idat.excluded) |
| 884 |
> |
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
| 885 |
> |
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
| 886 |
> |
} |
| 887 |
> |
|
| 888 |
> |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
| 889 |
> |
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
| 890 |
> |
} |
| 891 |
> |
|
| 892 |
> |
if (a_is_Charge) { |
| 893 |
|
|
| 894 |
< |
if (j_is_Charge) { |
| 895 |
< |
if (screeningMethod_ == DAMPED) { |
| 896 |
< |
// assemble the damping variables |
| 897 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 898 |
< |
erfcVal = res.first; |
| 899 |
< |
derfcVal = res.second; |
| 900 |
< |
c1 = erfcVal * riji; |
| 474 |
< |
c2 = (-derfcVal + c1) * riji; |
| 475 |
< |
} else { |
| 476 |
< |
c1 = riji; |
| 477 |
< |
c2 = c1 * riji; |
| 478 |
< |
} |
| 894 |
> |
if (b_is_Charge) { |
| 895 |
> |
pref = pre11_ * *(idat.electroMult); |
| 896 |
> |
U += C_a * C_b * pref * v01; |
| 897 |
> |
F += C_a * C_b * pref * dv01 * rhat; |
| 898 |
> |
|
| 899 |
> |
// If this is an excluded pair, there are still indirect |
| 900 |
> |
// interactions via the reaction field we must worry about: |
| 901 |
|
|
| 902 |
< |
preVal = idat.electroMult * pre11_ * q_i * q_j; |
| 902 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
| 903 |
> |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
| 904 |
> |
indirect_Pot += rfContrib; |
| 905 |
> |
indirect_F += rfContrib * 2.0 * ri * rhat; |
| 906 |
> |
} |
| 907 |
|
|
| 908 |
< |
if (summationMethod_ == SHIFTED_POTENTIAL) { |
| 909 |
< |
vterm = preVal * (c1 - c1c_); |
| 910 |
< |
dudr = -idat.sw * preVal * c2; |
| 908 |
> |
// Fluctuating charge forces are handled via Coulomb integrals |
| 909 |
> |
// for excluded pairs (i.e. those connected via bonds) and |
| 910 |
> |
// with the standard charge-charge interaction otherwise. |
| 911 |
|
|
| 912 |
< |
} else if (summationMethod_ == SHIFTED_FORCE) { |
| 913 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) ); |
| 914 |
< |
dudr = idat.sw * preVal * (c2c_ - c2); |
| 915 |
< |
|
| 916 |
< |
} else if (summationMethod_ == REACTION_FIELD) { |
| 917 |
< |
rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij; |
| 918 |
< |
vterm = preVal * ( riji + rfVal ); |
| 493 |
< |
dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji; |
| 494 |
< |
|
| 912 |
> |
if (idat.excluded) { |
| 913 |
> |
if (a_is_Fluctuating || b_is_Fluctuating) { |
| 914 |
> |
coulInt = J->getValueAt( *(idat.rij) ); |
| 915 |
> |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
| 916 |
> |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
| 917 |
> |
excluded_Pot += C_a * C_b * coulInt; |
| 918 |
> |
} |
| 919 |
|
} else { |
| 920 |
< |
vterm = preVal * riji * erfcVal; |
| 921 |
< |
|
| 498 |
< |
dudr = - idat.sw * preVal * c2; |
| 499 |
< |
|
| 920 |
> |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
| 921 |
> |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
| 922 |
|
} |
| 501 |
– |
|
| 502 |
– |
idat.vpair += vterm; |
| 503 |
– |
epot += idat.sw * vterm; |
| 504 |
– |
|
| 505 |
– |
dVdr += dudr * rhat; |
| 923 |
|
} |
| 924 |
|
|
| 925 |
< |
if (j_is_Dipole) { |
| 926 |
< |
// pref is used by all the possible methods |
| 927 |
< |
pref = idat.electroMult * pre12_ * q_i * mu_j; |
| 928 |
< |
preSw = idat.sw * pref; |
| 925 |
> |
if (b_is_Dipole) { |
| 926 |
> |
pref = pre12_ * *(idat.electroMult); |
| 927 |
> |
U += C_a * pref * v11 * rdDb; |
| 928 |
> |
F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b); |
| 929 |
> |
Tb += C_a * pref * v11 * rxDb; |
| 930 |
|
|
| 931 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 514 |
< |
ri2 = riji * riji; |
| 515 |
< |
ri3 = ri2 * riji; |
| 516 |
< |
|
| 517 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij ); |
| 518 |
< |
idat.vpair += vterm; |
| 519 |
< |
epot += idat.sw * vterm; |
| 931 |
> |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
| 932 |
|
|
| 933 |
< |
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
| 934 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij); |
| 933 |
> |
// Even if we excluded this pair from direct interactions, we |
| 934 |
> |
// still have the reaction-field-mediated charge-dipole |
| 935 |
> |
// interaction: |
| 936 |
|
|
| 937 |
< |
} else { |
| 938 |
< |
// determine the inverse r used if we have split dipoles |
| 939 |
< |
if (j_is_SplitDipole) { |
| 940 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
| 941 |
< |
ri = 1.0 / BigR; |
| 529 |
< |
scale = idat.rij * ri; |
| 530 |
< |
} else { |
| 531 |
< |
ri = riji; |
| 532 |
< |
scale = 1.0; |
| 533 |
< |
} |
| 534 |
< |
|
| 535 |
< |
sc2 = scale * scale; |
| 536 |
< |
|
| 537 |
< |
if (screeningMethod_ == DAMPED) { |
| 538 |
< |
// assemble the damping variables |
| 539 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 540 |
< |
erfcVal = res.first; |
| 541 |
< |
derfcVal = res.second; |
| 542 |
< |
c1 = erfcVal * ri; |
| 543 |
< |
c2 = (-derfcVal + c1) * ri; |
| 544 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
| 545 |
< |
} else { |
| 546 |
< |
c1 = ri; |
| 547 |
< |
c2 = c1 * ri; |
| 548 |
< |
c3 = 3.0 * c2 * ri; |
| 549 |
< |
} |
| 550 |
< |
|
| 551 |
< |
c2ri = c2 * ri; |
| 552 |
< |
|
| 553 |
< |
// calculate the potential |
| 554 |
< |
pot_term = scale * c2; |
| 555 |
< |
vterm = -pref * ct_j * pot_term; |
| 556 |
< |
idat.vpair += vterm; |
| 557 |
< |
epot += idat.sw * vterm; |
| 558 |
< |
|
| 559 |
< |
// calculate derivatives for forces and torques |
| 560 |
< |
|
| 561 |
< |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
| 562 |
< |
duduz_j += -preSw * pot_term * rhat; |
| 563 |
< |
|
| 937 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
| 938 |
> |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
| 939 |
> |
indirect_Pot += rfContrib * rdDb; |
| 940 |
> |
indirect_F += rfContrib * D_b / (*idat.rij); |
| 941 |
> |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
| 942 |
|
} |
| 943 |
|
} |
| 944 |
|
|
| 945 |
< |
if (j_is_Quadrupole) { |
| 946 |
< |
// first precalculate some necessary variables |
| 947 |
< |
cx2 = cx_j * cx_j; |
| 948 |
< |
cy2 = cy_j * cy_j; |
| 949 |
< |
cz2 = cz_j * cz_j; |
| 950 |
< |
pref = idat.electroMult * pre14_ * q_i * one_third_; |
| 573 |
< |
|
| 574 |
< |
if (screeningMethod_ == DAMPED) { |
| 575 |
< |
// assemble the damping variables |
| 576 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 577 |
< |
erfcVal = res.first; |
| 578 |
< |
derfcVal = res.second; |
| 579 |
< |
c1 = erfcVal * riji; |
| 580 |
< |
c2 = (-derfcVal + c1) * riji; |
| 581 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
| 582 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
| 583 |
< |
} else { |
| 584 |
< |
c1 = riji; |
| 585 |
< |
c2 = c1 * riji; |
| 586 |
< |
c3 = 3.0 * c2 * riji; |
| 587 |
< |
c4 = 5.0 * c3 * riji * riji; |
| 588 |
< |
} |
| 945 |
> |
if (b_is_Quadrupole) { |
| 946 |
> |
pref = pre14_ * *(idat.electroMult); |
| 947 |
> |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
| 948 |
> |
F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or); |
| 949 |
> |
F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or); |
| 950 |
> |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
| 951 |
|
|
| 952 |
< |
// precompute variables for convenience |
| 591 |
< |
preSw = idat.sw * pref; |
| 592 |
< |
c2ri = c2 * riji; |
| 593 |
< |
c3ri = c3 * riji; |
| 594 |
< |
c4rij = c4 * idat.rij; |
| 595 |
< |
rhatdot2 = 2.0 * rhat * c3; |
| 596 |
< |
rhatc4 = rhat * c4rij; |
| 597 |
< |
|
| 598 |
< |
// calculate the potential |
| 599 |
< |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
| 600 |
< |
qyy_j * (cy2*c3 - c2ri) + |
| 601 |
< |
qzz_j * (cz2*c3 - c2ri) ); |
| 602 |
< |
vterm = pref * pot_term; |
| 603 |
< |
idat.vpair += vterm; |
| 604 |
< |
epot += idat.sw * vterm; |
| 605 |
< |
|
| 606 |
< |
// calculate derivatives for the forces and torques |
| 607 |
< |
|
| 608 |
< |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) + |
| 609 |
< |
qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) + |
| 610 |
< |
qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri)); |
| 611 |
< |
|
| 612 |
< |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
| 613 |
< |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
| 614 |
< |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
| 952 |
> |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
| 953 |
|
} |
| 954 |
|
} |
| 617 |
– |
|
| 618 |
– |
if (i_is_Dipole) { |
| 955 |
|
|
| 956 |
< |
if (j_is_Charge) { |
| 621 |
< |
// variables used by all the methods |
| 622 |
< |
pref = idat.electroMult * pre12_ * q_j * mu_i; |
| 623 |
< |
preSw = idat.sw * pref; |
| 956 |
> |
if (a_is_Dipole) { |
| 957 |
|
|
| 958 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 958 |
> |
if (b_is_Charge) { |
| 959 |
> |
pref = pre12_ * *(idat.electroMult); |
| 960 |
|
|
| 961 |
< |
ri2 = riji * riji; |
| 962 |
< |
ri3 = ri2 * riji; |
| 961 |
> |
U -= C_b * pref * v11 * rdDa; |
| 962 |
> |
F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
| 963 |
> |
Ta -= C_b * pref * v11 * rxDa; |
| 964 |
|
|
| 965 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij ); |
| 631 |
< |
idat.vpair += vterm; |
| 632 |
< |
epot += idat.sw * vterm; |
| 633 |
< |
|
| 634 |
< |
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
| 635 |
< |
|
| 636 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij); |
| 637 |
< |
|
| 638 |
< |
} else { |
| 639 |
< |
|
| 640 |
< |
// determine inverse r if we are using split dipoles |
| 641 |
< |
if (i_is_SplitDipole) { |
| 642 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
| 643 |
< |
ri = 1.0 / BigR; |
| 644 |
< |
scale = idat.rij * ri; |
| 645 |
< |
} else { |
| 646 |
< |
ri = riji; |
| 647 |
< |
scale = 1.0; |
| 648 |
< |
} |
| 649 |
< |
|
| 650 |
< |
sc2 = scale * scale; |
| 651 |
< |
|
| 652 |
< |
if (screeningMethod_ == DAMPED) { |
| 653 |
< |
// assemble the damping variables |
| 654 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 655 |
< |
erfcVal = res.first; |
| 656 |
< |
derfcVal = res.second; |
| 657 |
< |
c1 = erfcVal * ri; |
| 658 |
< |
c2 = (-derfcVal + c1) * ri; |
| 659 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
| 660 |
< |
} else { |
| 661 |
< |
c1 = ri; |
| 662 |
< |
c2 = c1 * ri; |
| 663 |
< |
c3 = 3.0 * c2 * ri; |
| 664 |
< |
} |
| 665 |
< |
|
| 666 |
< |
c2ri = c2 * ri; |
| 667 |
< |
|
| 668 |
< |
// calculate the potential |
| 669 |
< |
pot_term = c2 * scale; |
| 670 |
< |
vterm = pref * ct_i * pot_term; |
| 671 |
< |
idat.vpair += vterm; |
| 672 |
< |
epot += idat.sw * vterm; |
| 965 |
> |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
| 966 |
|
|
| 967 |
< |
// calculate derivatives for the forces and torques |
| 968 |
< |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
| 969 |
< |
duduz_i += preSw * pot_term * rhat; |
| 967 |
> |
// Even if we excluded this pair from direct interactions, |
| 968 |
> |
// we still have the reaction-field-mediated charge-dipole |
| 969 |
> |
// interaction: |
| 970 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
| 971 |
> |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
| 972 |
> |
indirect_Pot -= rfContrib * rdDa; |
| 973 |
> |
indirect_F -= rfContrib * D_a / (*idat.rij); |
| 974 |
> |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
| 975 |
|
} |
| 976 |
|
} |
| 977 |
|
|
| 978 |
< |
if (j_is_Dipole) { |
| 979 |
< |
// variables used by all methods |
| 980 |
< |
ct_ij = dot(uz_i, uz_j); |
| 978 |
> |
if (b_is_Dipole) { |
| 979 |
> |
pref = pre22_ * *(idat.electroMult); |
| 980 |
> |
DadDb = dot(D_a, D_b); |
| 981 |
> |
DaxDb = cross(D_a, D_b); |
| 982 |
|
|
| 983 |
< |
pref = idat.electroMult * pre22_ * mu_i * mu_j; |
| 984 |
< |
preSw = idat.sw * pref; |
| 983 |
> |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
| 984 |
> |
F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b)); |
| 985 |
> |
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
| 986 |
> |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
| 987 |
> |
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
| 988 |
|
|
| 989 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 990 |
< |
ri2 = riji * riji; |
| 991 |
< |
ri3 = ri2 * riji; |
| 992 |
< |
ri4 = ri2 * ri2; |
| 989 |
> |
// Even if we excluded this pair from direct interactions, we |
| 990 |
> |
// still have the reaction-field-mediated dipole-dipole |
| 991 |
> |
// interaction: |
| 992 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
| 993 |
> |
rfContrib = -pref * preRF_ * 2.0; |
| 994 |
> |
indirect_Pot += rfContrib * DadDb; |
| 995 |
> |
indirect_Ta += rfContrib * DaxDb; |
| 996 |
> |
indirect_Tb -= rfContrib * DaxDb; |
| 997 |
> |
} |
| 998 |
> |
} |
| 999 |
|
|
| 1000 |
< |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
| 1001 |
< |
preRF2_ * ct_ij ); |
| 1002 |
< |
idat.vpair += vterm; |
| 1003 |
< |
epot += idat.sw * vterm; |
| 1004 |
< |
|
| 697 |
< |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
| 698 |
< |
|
| 699 |
< |
dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
| 1000 |
> |
if (b_is_Quadrupole) { |
| 1001 |
> |
pref = pre24_ * *(idat.electroMult); |
| 1002 |
> |
DadQb = D_a * Q_b; |
| 1003 |
> |
DadQbr = dot(D_a, Qbr); |
| 1004 |
> |
DaxQbr = cross(D_a, Qbr); |
| 1005 |
|
|
| 1006 |
< |
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
| 1007 |
< |
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
| 1006 |
> |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
| 1007 |
> |
F -= pref * (trQb*D_a + 2.0*DadQb) * v31or; |
| 1008 |
> |
F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat; |
| 1009 |
> |
F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or; |
| 1010 |
> |
F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or)); |
| 1011 |
> |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
| 1012 |
> |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
| 1013 |
> |
- 2.0*rdDa*rxQbr*v32); |
| 1014 |
> |
} |
| 1015 |
> |
} |
| 1016 |
|
|
| 1017 |
< |
} else { |
| 1018 |
< |
|
| 1019 |
< |
if (i_is_SplitDipole) { |
| 1020 |
< |
if (j_is_SplitDipole) { |
| 1021 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
| 1022 |
< |
} else { |
| 1023 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
| 711 |
< |
} |
| 712 |
< |
ri = 1.0 / BigR; |
| 713 |
< |
scale = idat.rij * ri; |
| 714 |
< |
} else { |
| 715 |
< |
if (j_is_SplitDipole) { |
| 716 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
| 717 |
< |
ri = 1.0 / BigR; |
| 718 |
< |
scale = idat.rij * ri; |
| 719 |
< |
} else { |
| 720 |
< |
ri = riji; |
| 721 |
< |
scale = 1.0; |
| 722 |
< |
} |
| 723 |
< |
} |
| 724 |
< |
if (screeningMethod_ == DAMPED) { |
| 725 |
< |
// assemble damping variables |
| 726 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 727 |
< |
erfcVal = res.first; |
| 728 |
< |
derfcVal = res.second; |
| 729 |
< |
c1 = erfcVal * ri; |
| 730 |
< |
c2 = (-derfcVal + c1) * ri; |
| 731 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
| 732 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
| 733 |
< |
} else { |
| 734 |
< |
c1 = ri; |
| 735 |
< |
c2 = c1 * ri; |
| 736 |
< |
c3 = 3.0 * c2 * ri; |
| 737 |
< |
c4 = 5.0 * c3 * ri * ri; |
| 738 |
< |
} |
| 1017 |
> |
if (a_is_Quadrupole) { |
| 1018 |
> |
if (b_is_Charge) { |
| 1019 |
> |
pref = pre14_ * *(idat.electroMult); |
| 1020 |
> |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
| 1021 |
> |
F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or); |
| 1022 |
> |
F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or); |
| 1023 |
> |
Ta += C_b * pref * 2.0 * rxQar * v22; |
| 1024 |
|
|
| 1025 |
< |
// precompute variables for convenience |
| 1026 |
< |
sc2 = scale * scale; |
| 1027 |
< |
cti3 = ct_i * sc2 * c3; |
| 1028 |
< |
ctj3 = ct_j * sc2 * c3; |
| 1029 |
< |
ctidotj = ct_i * ct_j * sc2; |
| 1030 |
< |
preSwSc = preSw * scale; |
| 1031 |
< |
c2ri = c2 * ri; |
| 747 |
< |
c3ri = c3 * ri; |
| 748 |
< |
c4rij = c4 * idat.rij; |
| 1025 |
> |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
| 1026 |
> |
} |
| 1027 |
> |
if (b_is_Dipole) { |
| 1028 |
> |
pref = pre24_ * *(idat.electroMult); |
| 1029 |
> |
DbdQa = D_b * Q_a; |
| 1030 |
> |
DbdQar = dot(D_b, Qar); |
| 1031 |
> |
DbxQar = cross(D_b, Qar); |
| 1032 |
|
|
| 1033 |
< |
// calculate the potential |
| 1034 |
< |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
| 1035 |
< |
vterm = pref * pot_term; |
| 1036 |
< |
idat.vpair += vterm; |
| 1037 |
< |
epot += idat.sw * vterm; |
| 1038 |
< |
|
| 1039 |
< |
// calculate derivatives for the forces and torques |
| 1040 |
< |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
| 758 |
< |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
| 759 |
< |
|
| 760 |
< |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
| 761 |
< |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
| 762 |
< |
} |
| 1033 |
> |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
| 1034 |
> |
F += pref * (trQa*D_b + 2.0*DbdQa) * v31or; |
| 1035 |
> |
F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat; |
| 1036 |
> |
F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or; |
| 1037 |
> |
F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or)); |
| 1038 |
> |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
| 1039 |
> |
+ 2.0*rdDb*rxQar*v32); |
| 1040 |
> |
Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
| 1041 |
|
} |
| 1042 |
< |
} |
| 1042 |
> |
if (b_is_Quadrupole) { |
| 1043 |
> |
pref = pre44_ * *(idat.electroMult); // yes |
| 1044 |
> |
QaQb = Q_a * Q_b; |
| 1045 |
> |
trQaQb = QaQb.trace(); |
| 1046 |
> |
rQaQb = rhat * QaQb; |
| 1047 |
> |
QaQbr = QaQb * rhat; |
| 1048 |
> |
QaxQb = cross(Q_a, Q_b); |
| 1049 |
> |
rQaQbr = dot(rQa, Qbr); |
| 1050 |
> |
rQaxQbr = cross(rQa, Qbr); |
| 1051 |
> |
|
| 1052 |
> |
U += pref * (trQa * trQb + 2.0 * trQaQb) * v41; |
| 1053 |
> |
U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42; |
| 1054 |
> |
U += pref * (rdQar * rdQbr) * v43; |
| 1055 |
|
|
| 1056 |
< |
if (i_is_Quadrupole) { |
| 1057 |
< |
if (j_is_Charge) { |
| 1058 |
< |
// precompute some necessary variables |
| 769 |
< |
cx2 = cx_i * cx_i; |
| 770 |
< |
cy2 = cy_i * cy_i; |
| 771 |
< |
cz2 = cz_i * cz_i; |
| 1056 |
> |
F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41; |
| 1057 |
> |
F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or); |
| 1058 |
> |
F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or); |
| 1059 |
|
|
| 1060 |
< |
pref = idat.electroMult * pre14_ * q_j * one_third_; |
| 1060 |
> |
F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or; |
| 1061 |
> |
F += pref * 4.0 * (rQaQb + QaQbr) * v42or; |
| 1062 |
> |
F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or; |
| 1063 |
|
|
| 1064 |
< |
if (screeningMethod_ == DAMPED) { |
| 1065 |
< |
// assemble the damping variables |
| 1066 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 1067 |
< |
erfcVal = res.first; |
| 1068 |
< |
derfcVal = res.second; |
| 780 |
< |
c1 = erfcVal * riji; |
| 781 |
< |
c2 = (-derfcVal + c1) * riji; |
| 782 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
| 783 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
| 784 |
< |
} else { |
| 785 |
< |
c1 = riji; |
| 786 |
< |
c2 = c1 * riji; |
| 787 |
< |
c3 = 3.0 * c2 * riji; |
| 788 |
< |
c4 = 5.0 * c3 * riji * riji; |
| 789 |
< |
} |
| 790 |
< |
|
| 791 |
< |
// precompute some variables for convenience |
| 792 |
< |
preSw = idat.sw * pref; |
| 793 |
< |
c2ri = c2 * riji; |
| 794 |
< |
c3ri = c3 * riji; |
| 795 |
< |
c4rij = c4 * idat.rij; |
| 796 |
< |
rhatdot2 = 2.0 * rhat * c3; |
| 797 |
< |
rhatc4 = rhat * c4rij; |
| 1064 |
> |
Ta += pref * (- 4.0 * QaxQb * v41); |
| 1065 |
> |
Ta += pref * (- 2.0 * trQb * cross(rQa, rhat) |
| 1066 |
> |
+ 4.0 * cross(rhat, QaQbr) |
| 1067 |
> |
- 4.0 * rQaxQbr) * v42; |
| 1068 |
> |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
| 1069 |
|
|
| 799 |
– |
// calculate the potential |
| 800 |
– |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
| 801 |
– |
qyy_i * (cy2 * c3 - c2ri) + |
| 802 |
– |
qzz_i * (cz2 * c3 - c2ri) ); |
| 803 |
– |
|
| 804 |
– |
vterm = pref * pot_term; |
| 805 |
– |
idat.vpair += vterm; |
| 806 |
– |
epot += idat.sw * vterm; |
| 1070 |
|
|
| 1071 |
< |
// calculate the derivatives for the forces and torques |
| 1071 |
> |
Tb += pref * (+ 4.0 * QaxQb * v41); |
| 1072 |
> |
Tb += pref * (- 2.0 * trQa * cross(rQb, rhat) |
| 1073 |
> |
- 4.0 * cross(rQaQb, rhat) |
| 1074 |
> |
+ 4.0 * rQaxQbr) * v42; |
| 1075 |
> |
// Possible replacement for line 2 above: |
| 1076 |
> |
// + 4.0 * cross(rhat, QbQar) |
| 1077 |
|
|
| 1078 |
< |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) + |
| 811 |
< |
qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) + |
| 812 |
< |
qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri)); |
| 1078 |
> |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
| 1079 |
|
|
| 814 |
– |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
| 815 |
– |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
| 816 |
– |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
| 1080 |
|
} |
| 1081 |
|
} |
| 1082 |
|
|
| 1083 |
< |
idat.pot += epot; |
| 1084 |
< |
idat.f1 += dVdr; |
| 1085 |
< |
|
| 823 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
| 824 |
< |
idat.t1 -= cross(uz_i, duduz_i); |
| 825 |
< |
if (i_is_Quadrupole) { |
| 826 |
< |
idat.t1 -= cross(ux_i, dudux_i); |
| 827 |
< |
idat.t1 -= cross(uy_i, duduy_i); |
| 1083 |
> |
if (idat.doElectricField) { |
| 1084 |
> |
*(idat.eField1) += Ea * *(idat.electroMult); |
| 1085 |
> |
*(idat.eField2) += Eb * *(idat.electroMult); |
| 1086 |
|
} |
| 1087 |
|
|
| 1088 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
| 1089 |
< |
idat.t2 -= cross(uz_j, duduz_j); |
| 832 |
< |
if (j_is_Quadrupole) { |
| 833 |
< |
idat.t2 -= cross(uz_j, dudux_j); |
| 834 |
< |
idat.t2 -= cross(uz_j, duduy_j); |
| 835 |
< |
} |
| 1088 |
> |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
| 1089 |
> |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
| 1090 |
|
|
| 1091 |
< |
return; |
| 1092 |
< |
} |
| 1091 |
> |
if (!idat.excluded) { |
| 1092 |
> |
|
| 1093 |
> |
*(idat.vpair) += U; |
| 1094 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
| 1095 |
> |
*(idat.f1) += F * *(idat.sw); |
| 1096 |
> |
|
| 1097 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
| 1098 |
> |
*(idat.t1) += Ta * *(idat.sw); |
| 1099 |
|
|
| 1100 |
< |
void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) { |
| 1100 |
> |
if (b_is_Dipole || b_is_Quadrupole) |
| 1101 |
> |
*(idat.t2) += Tb * *(idat.sw); |
| 1102 |
> |
|
| 1103 |
> |
} else { |
| 1104 |
|
|
| 1105 |
< |
if (!initialized_) initialize(); |
| 1105 |
> |
// only accumulate the forces and torques resulting from the |
| 1106 |
> |
// indirect reaction field terms. |
| 1107 |
> |
|
| 1108 |
> |
*(idat.vpair) += indirect_Pot; |
| 1109 |
> |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
| 1110 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
| 1111 |
> |
*(idat.f1) += *(idat.sw) * indirect_F; |
| 1112 |
> |
|
| 1113 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
| 1114 |
> |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
| 1115 |
> |
|
| 1116 |
> |
if (b_is_Dipole || b_is_Quadrupole) |
| 1117 |
> |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
| 1118 |
> |
} |
| 1119 |
> |
return; |
| 1120 |
> |
} |
| 1121 |
|
|
| 1122 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1]; |
| 845 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2]; |
| 846 |
< |
|
| 847 |
< |
// logicals |
| 1122 |
> |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
| 1123 |
|
|
| 1124 |
< |
bool i_is_Charge = data1.is_Charge; |
| 850 |
< |
bool i_is_Dipole = data1.is_Dipole; |
| 1124 |
> |
if (!initialized_) initialize(); |
| 1125 |
|
|
| 1126 |
< |
bool j_is_Charge = data2.is_Charge; |
| 853 |
< |
bool j_is_Dipole = data2.is_Dipole; |
| 854 |
< |
|
| 855 |
< |
RealType q_i, q_j; |
| 1126 |
> |
ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]]; |
| 1127 |
|
|
| 1128 |
< |
// The skippedCharge computation is needed by the real-space cutoff methods |
| 1129 |
< |
// (i.e. shifted force and shifted potential) |
| 1128 |
> |
// logicals |
| 1129 |
> |
bool i_is_Charge = data.is_Charge; |
| 1130 |
> |
bool i_is_Dipole = data.is_Dipole; |
| 1131 |
> |
bool i_is_Quadrupole = data.is_Quadrupole; |
| 1132 |
> |
bool i_is_Fluctuating = data.is_Fluctuating; |
| 1133 |
> |
RealType C_a = data.fixedCharge; |
| 1134 |
> |
RealType self(0.0), preVal, DdD, trQ, trQQ; |
| 1135 |
|
|
| 1136 |
< |
if (i_is_Charge) { |
| 1137 |
< |
q_i = data1.charge; |
| 862 |
< |
skdat.skippedCharge2 += q_i; |
| 1136 |
> |
if (i_is_Dipole) { |
| 1137 |
> |
DdD = data.dipole.lengthSquare(); |
| 1138 |
|
} |
| 1139 |
< |
|
| 1140 |
< |
if (j_is_Charge) { |
| 1141 |
< |
q_j = data2.charge; |
| 1142 |
< |
skdat.skippedCharge1 += q_j; |
| 1139 |
> |
|
| 1140 |
> |
if (i_is_Fluctuating) { |
| 1141 |
> |
C_a += *(sdat.flucQ); |
| 1142 |
> |
// dVdFQ is really a force, so this is negative the derivative |
| 1143 |
> |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
| 1144 |
> |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
| 1145 |
> |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
| 1146 |
|
} |
| 1147 |
|
|
| 1148 |
< |
// the rest of this function should only be necessary for reaction field. |
| 1149 |
< |
|
| 872 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 873 |
< |
RealType riji, ri2, ri3; |
| 874 |
< |
RealType q_i, mu_i, ct_i; |
| 875 |
< |
RealType q_j, mu_j, ct_j; |
| 876 |
< |
RealType preVal, rfVal, vterm, dudr, pref, myPot; |
| 877 |
< |
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
| 878 |
< |
|
| 879 |
< |
// some variables we'll need independent of electrostatic type: |
| 1148 |
> |
switch (summationMethod_) { |
| 1149 |
> |
case esm_REACTION_FIELD: |
| 1150 |
|
|
| 881 |
– |
riji = 1.0 / skdat.rij; |
| 882 |
– |
rhat = skdat.d * riji; |
| 883 |
– |
|
| 884 |
– |
if (i_is_Dipole) { |
| 885 |
– |
mu_i = data1.dipole_moment; |
| 886 |
– |
uz_i = skdat.eFrame1.getColumn(2); |
| 887 |
– |
ct_i = dot(uz_i, rhat); |
| 888 |
– |
duduz_i = V3Zero; |
| 889 |
– |
} |
| 890 |
– |
|
| 891 |
– |
if (j_is_Dipole) { |
| 892 |
– |
mu_j = data2.dipole_moment; |
| 893 |
– |
uz_j = skdat.eFrame2.getColumn(2); |
| 894 |
– |
ct_j = dot(uz_j, rhat); |
| 895 |
– |
duduz_j = V3Zero; |
| 896 |
– |
} |
| 897 |
– |
|
| 1151 |
|
if (i_is_Charge) { |
| 1152 |
< |
if (j_is_Charge) { |
| 1153 |
< |
preVal = skdat.electroMult * pre11_ * q_i * q_j; |
| 1154 |
< |
rfVal = preRF_ * skdat.rij * skdat.rij; |
| 1155 |
< |
vterm = preVal * rfVal; |
| 1156 |
< |
myPot += skdat.sw * vterm; |
| 904 |
< |
dudr = skdat.sw * preVal * 2.0 * rfVal * riji; |
| 905 |
< |
dVdr += dudr * rhat; |
| 906 |
< |
} |
| 907 |
< |
|
| 908 |
< |
if (j_is_Dipole) { |
| 909 |
< |
ri2 = riji * riji; |
| 910 |
< |
ri3 = ri2 * riji; |
| 911 |
< |
pref = skdat.electroMult * pre12_ * q_i * mu_j; |
| 912 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij ); |
| 913 |
< |
myPot += skdat.sw * vterm; |
| 914 |
< |
dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
| 915 |
< |
duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
| 916 |
< |
} |
| 1152 |
> |
// Self potential [see Wang and Hermans, "Reaction Field |
| 1153 |
> |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
| 1154 |
> |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
| 1155 |
> |
preVal = pre11_ * preRF_ * C_a * C_a; |
| 1156 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
| 1157 |
|
} |
| 1158 |
+ |
|
| 1159 |
|
if (i_is_Dipole) { |
| 1160 |
< |
if (j_is_Charge) { |
| 920 |
< |
ri2 = riji * riji; |
| 921 |
< |
ri3 = ri2 * riji; |
| 922 |
< |
pref = skdat.electroMult * pre12_ * q_j * mu_i; |
| 923 |
< |
vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij ); |
| 924 |
< |
myPot += skdat.sw * vterm; |
| 925 |
< |
dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
| 926 |
< |
duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
| 927 |
< |
} |
| 1160 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD; |
| 1161 |
|
} |
| 1162 |
|
|
| 1163 |
< |
// accumulate the forces and torques resulting from the self term |
| 931 |
< |
skdat.pot += myPot; |
| 932 |
< |
skdat.f1 += dVdr; |
| 1163 |
> |
break; |
| 1164 |
|
|
| 1165 |
+ |
case esm_SHIFTED_FORCE: |
| 1166 |
+ |
case esm_SHIFTED_POTENTIAL: |
| 1167 |
+ |
case esm_TAYLOR_SHIFTED: |
| 1168 |
+ |
if (i_is_Charge) |
| 1169 |
+ |
self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge)); |
| 1170 |
|
if (i_is_Dipole) |
| 1171 |
< |
skdat.t1 -= cross(uz_i, duduz_i); |
| 1172 |
< |
if (j_is_Dipole) |
| 1173 |
< |
skdat.t2 -= cross(uz_j, duduz_j); |
| 1171 |
> |
self += selfMult2_ * pre22_ * DdD; |
| 1172 |
> |
if (i_is_Quadrupole) { |
| 1173 |
> |
trQ = data.quadrupole.trace(); |
| 1174 |
> |
trQQ = (data.quadrupole * data.quadrupole).trace(); |
| 1175 |
> |
self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ); |
| 1176 |
> |
if (i_is_Charge) |
| 1177 |
> |
self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ; |
| 1178 |
> |
} |
| 1179 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
| 1180 |
> |
break; |
| 1181 |
> |
default: |
| 1182 |
> |
break; |
| 1183 |
|
} |
| 1184 |
|
} |
| 1185 |
+ |
|
| 1186 |
+ |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
| 1187 |
+ |
// This seems to work moderately well as a default. There's no |
| 1188 |
+ |
// inherent scale for 1/r interactions that we can standardize. |
| 1189 |
+ |
// 12 angstroms seems to be a reasonably good guess for most |
| 1190 |
+ |
// cases. |
| 1191 |
+ |
return 12.0; |
| 1192 |
+ |
} |
| 1193 |
+ |
|
| 1194 |
+ |
|
| 1195 |
+ |
void Electrostatic::ReciprocalSpaceSum () { |
| 1196 |
|
|
| 1197 |
< |
void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) { |
| 1198 |
< |
RealType mu1, preVal, chg1, self; |
| 1197 |
> |
RealType kPot = 0.0; |
| 1198 |
> |
RealType kVir = 0.0; |
| 1199 |
|
|
| 1200 |
< |
if (!initialized_) initialize(); |
| 1200 |
> |
const RealType mPoleConverter = 0.20819434; // converts from the |
| 1201 |
> |
// internal units of |
| 1202 |
> |
// Debye (for dipoles) |
| 1203 |
> |
// or Debye-angstroms |
| 1204 |
> |
// (for quadrupoles) to |
| 1205 |
> |
// electron angstroms or |
| 1206 |
> |
// electron-angstroms^2 |
| 1207 |
|
|
| 1208 |
< |
ElectrostaticAtomData data = ElectrostaticMap[scdat.atype]; |
| 1209 |
< |
|
| 1210 |
< |
// logicals |
| 1208 |
> |
const RealType eConverter = 332.0637778; // convert the |
| 1209 |
> |
// Charge-Charge |
| 1210 |
> |
// electrostatic |
| 1211 |
> |
// interactions into kcal / |
| 1212 |
> |
// mol assuming distances |
| 1213 |
> |
// are measured in |
| 1214 |
> |
// angstroms. |
| 1215 |
|
|
| 1216 |
< |
bool i_is_Charge = data.is_Charge; |
| 1217 |
< |
bool i_is_Dipole = data.is_Dipole; |
| 1218 |
< |
|
| 1219 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 1220 |
< |
if (i_is_Dipole) { |
| 1221 |
< |
mu1 = data.dipole_moment; |
| 1222 |
< |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
| 1223 |
< |
scdat.pot -= 0.5 * preVal; |
| 1224 |
< |
|
| 1225 |
< |
// The self-correction term adds into the reaction field vector |
| 1226 |
< |
Vector3d uz_i = scdat.eFrame.getColumn(2); |
| 1227 |
< |
Vector3d ei = preVal * uz_i; |
| 1228 |
< |
|
| 1229 |
< |
// This looks very wrong. A vector crossed with itself is zero. |
| 1230 |
< |
scdat.t -= cross(uz_i, ei); |
| 1216 |
> |
Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
| 1217 |
> |
Vector3d box = hmat.diagonals(); |
| 1218 |
> |
RealType boxMax = box.max(); |
| 1219 |
> |
|
| 1220 |
> |
//int kMax = int(pow(dampingAlpha_,2)*cutoffRadius_ * boxMax / M_PI); |
| 1221 |
> |
const int kMax = 5; |
| 1222 |
> |
int kSqMax = kMax*kMax + 2; |
| 1223 |
> |
|
| 1224 |
> |
int kLimit = kMax+1; |
| 1225 |
> |
int kLim2 = 2*kMax+1; |
| 1226 |
> |
int kSqLim = kSqMax; |
| 1227 |
> |
|
| 1228 |
> |
vector<RealType> AK(kSqLim+1, 0.0); |
| 1229 |
> |
RealType xcl = 2.0 * M_PI / box.x(); |
| 1230 |
> |
RealType ycl = 2.0 * M_PI / box.y(); |
| 1231 |
> |
RealType zcl = 2.0 * M_PI / box.z(); |
| 1232 |
> |
RealType rcl = 2.0 * M_PI / boxMax; |
| 1233 |
> |
RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z()); |
| 1234 |
> |
|
| 1235 |
> |
if(dampingAlpha_ < 1.0e-12) return; |
| 1236 |
> |
|
| 1237 |
> |
RealType ralph = -0.25/pow(dampingAlpha_,2); |
| 1238 |
> |
|
| 1239 |
> |
// Calculate and store exponential factors |
| 1240 |
> |
|
| 1241 |
> |
vector<vector<Vector3d> > eCos; |
| 1242 |
> |
vector<vector<Vector3d> > eSin; |
| 1243 |
> |
|
| 1244 |
> |
int nMax = info_->getNAtoms(); |
| 1245 |
> |
|
| 1246 |
> |
eCos.resize(kLimit+1); |
| 1247 |
> |
eSin.resize(kLimit+1); |
| 1248 |
> |
for (int j = 0; j < kLimit+1; j++) { |
| 1249 |
> |
eCos[j].resize(nMax); |
| 1250 |
> |
eSin[j].resize(nMax); |
| 1251 |
> |
} |
| 1252 |
> |
|
| 1253 |
> |
Vector3d t( 2.0 * M_PI ); |
| 1254 |
> |
t.Vdiv(t, box); |
| 1255 |
> |
|
| 1256 |
> |
SimInfo::MoleculeIterator mi; |
| 1257 |
> |
Molecule::AtomIterator ai; |
| 1258 |
> |
int i; |
| 1259 |
> |
Vector3d r; |
| 1260 |
> |
Vector3d tt; |
| 1261 |
> |
Vector3d w; |
| 1262 |
> |
Vector3d u; |
| 1263 |
> |
|
| 1264 |
> |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
| 1265 |
> |
mol = info_->nextMolecule(mi)) { |
| 1266 |
> |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
| 1267 |
> |
atom = mol->nextAtom(ai)) { |
| 1268 |
> |
|
| 1269 |
> |
i = atom->getLocalIndex(); |
| 1270 |
> |
r = atom->getPos(); |
| 1271 |
> |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r); |
| 1272 |
> |
|
| 1273 |
> |
tt.Vmul(t, r); |
| 1274 |
> |
|
| 1275 |
> |
eCos[1][i] = Vector3d(1.0, 1.0, 1.0); |
| 1276 |
> |
eSin[1][i] = Vector3d(0.0, 0.0, 0.0); |
| 1277 |
> |
eCos[2][i] = Vector3d(cos(tt.x()), cos(tt.y()), cos(tt.z())); |
| 1278 |
> |
eSin[2][i] = Vector3d(sin(tt.x()), sin(tt.y()), sin(tt.z())); |
| 1279 |
> |
u = 2.0 * eCos[1][i]; |
| 1280 |
> |
eCos[3][i].Vmul(u, eCos[2][i]); |
| 1281 |
> |
eSin[3][i].Vmul(u, eSin[2][i]); |
| 1282 |
> |
|
| 1283 |
> |
for(int l = 3; l <= kLimit; l++) { |
| 1284 |
> |
w.Vmul(u, eCos[l-1][i]); |
| 1285 |
> |
eCos[l][i] = w - eCos[l-2][i]; |
| 1286 |
> |
w.Vmul(u, eSin[l-1][i]); |
| 1287 |
> |
eSin[l][i] = w - eSin[l-2][i]; |
| 1288 |
> |
} |
| 1289 |
|
} |
| 1290 |
< |
} else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) { |
| 1291 |
< |
if (i_is_Charge) { |
| 1292 |
< |
chg1 = data.charge; |
| 1293 |
< |
if (screeningMethod_ == DAMPED) { |
| 1294 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
| 1295 |
< |
} else { |
| 1296 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
| 1290 |
> |
} |
| 1291 |
> |
|
| 1292 |
> |
// Calculate and store AK coefficients: |
| 1293 |
> |
|
| 1294 |
> |
RealType eksq = 1.0; |
| 1295 |
> |
RealType expf = 0.0; |
| 1296 |
> |
if (ralph < 0.0) expf = exp(ralph*rcl*rcl); |
| 1297 |
> |
for (i = 1; i <= kSqLim; i++) { |
| 1298 |
> |
RealType rksq = float(i)*rcl*rcl; |
| 1299 |
> |
eksq = expf*eksq; |
| 1300 |
> |
AK[i] = eConverter * eksq/rksq; |
| 1301 |
> |
} |
| 1302 |
> |
|
| 1303 |
> |
/* |
| 1304 |
> |
* Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz) |
| 1305 |
> |
* the values of ll, mm and nn are selected so that the symmetry of |
| 1306 |
> |
* reciprocal lattice is taken into account i.e. the following |
| 1307 |
> |
* rules apply. |
| 1308 |
> |
* |
| 1309 |
> |
* ll ranges over the values 0 to kMax only. |
| 1310 |
> |
* |
| 1311 |
> |
* mm ranges over 0 to kMax when ll=0 and over |
| 1312 |
> |
* -kMax to kMax otherwise. |
| 1313 |
> |
* nn ranges over 1 to kMax when ll=mm=0 and over |
| 1314 |
> |
* -kMax to kMax otherwise. |
| 1315 |
> |
* |
| 1316 |
> |
* Hence the result of the summation must be doubled at the end. |
| 1317 |
> |
*/ |
| 1318 |
> |
|
| 1319 |
> |
std::vector<RealType> clm(nMax, 0.0); |
| 1320 |
> |
std::vector<RealType> slm(nMax, 0.0); |
| 1321 |
> |
std::vector<RealType> ckr(nMax, 0.0); |
| 1322 |
> |
std::vector<RealType> skr(nMax, 0.0); |
| 1323 |
> |
std::vector<RealType> ckc(nMax, 0.0); |
| 1324 |
> |
std::vector<RealType> cks(nMax, 0.0); |
| 1325 |
> |
std::vector<RealType> dkc(nMax, 0.0); |
| 1326 |
> |
std::vector<RealType> dks(nMax, 0.0); |
| 1327 |
> |
std::vector<RealType> qkc(nMax, 0.0); |
| 1328 |
> |
std::vector<RealType> qks(nMax, 0.0); |
| 1329 |
> |
std::vector<Vector3d> dxk(nMax, V3Zero); |
| 1330 |
> |
std::vector<Vector3d> qxk(nMax, V3Zero); |
| 1331 |
> |
|
| 1332 |
> |
int mMin = kLimit; |
| 1333 |
> |
int nMin = kLimit + 1; |
| 1334 |
> |
for (int l = 1; l <= kLimit; l++) { |
| 1335 |
> |
int ll =l - 1; |
| 1336 |
> |
RealType rl = xcl * float(ll); |
| 1337 |
> |
for (int mmm = mMin; mmm <= kLim2; mmm++) { |
| 1338 |
> |
int mm = mmm - kLimit; |
| 1339 |
> |
int m = abs(mm) + 1; |
| 1340 |
> |
RealType rm = ycl * float(mm); |
| 1341 |
> |
// Set temporary products of exponential terms |
| 1342 |
> |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
| 1343 |
> |
mol = info_->nextMolecule(mi)) { |
| 1344 |
> |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
| 1345 |
> |
atom = mol->nextAtom(ai)) { |
| 1346 |
> |
|
| 1347 |
> |
i = atom->getLocalIndex(); |
| 1348 |
> |
if(mm < 0) { |
| 1349 |
> |
clm[i] = eCos[l][i].x()*eCos[m][i].y() |
| 1350 |
> |
+ eSin[l][i].x()*eSin[m][i].y(); |
| 1351 |
> |
slm[i] = eCos[l][i].x()*eCos[m][i].y() |
| 1352 |
> |
- eSin[m][i].y()*eCos[l][i].x(); |
| 1353 |
> |
} else { |
| 1354 |
> |
clm[i] = eCos[l][i].x()*eCos[m][i].y() |
| 1355 |
> |
- eSin[l][i].x()*eSin[m][i].y(); |
| 1356 |
> |
slm[i] = eSin[l][i].x()*eCos[m][i].y() |
| 1357 |
> |
+ eSin[m][i].y()*eCos[l][i].x(); |
| 1358 |
> |
} |
| 1359 |
> |
} |
| 1360 |
|
} |
| 1361 |
< |
scdat.pot += self; |
| 1361 |
> |
for (int nnn = nMin; nnn <= kLim2; nnn++) { |
| 1362 |
> |
int nn = nnn - kLimit; |
| 1363 |
> |
int n = abs(nn) + 1; |
| 1364 |
> |
RealType rn = zcl * float(nn); |
| 1365 |
> |
// Test on magnitude of k vector: |
| 1366 |
> |
int kk=ll*ll + mm*mm + nn*nn; |
| 1367 |
> |
if(kk <= kSqLim) { |
| 1368 |
> |
Vector3d kVec = Vector3d(rl, rm, rn); |
| 1369 |
> |
Mat3x3d k2 = outProduct(kVec, kVec); |
| 1370 |
> |
// Calculate exp(ikr) terms |
| 1371 |
> |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
| 1372 |
> |
mol = info_->nextMolecule(mi)) { |
| 1373 |
> |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
| 1374 |
> |
atom = mol->nextAtom(ai)) { |
| 1375 |
> |
i = atom->getLocalIndex(); |
| 1376 |
> |
|
| 1377 |
> |
if (nn < 0) { |
| 1378 |
> |
ckr[i]=clm[i]*eCos[n][i].z()+slm[i]*eSin[n][i].z(); |
| 1379 |
> |
skr[i]=slm[i]*eCos[n][i].z()-clm[i]*eSin[n][i].z(); |
| 1380 |
> |
} else { |
| 1381 |
> |
ckr[i]=clm[i]*eCos[n][i].z()-slm[i]*eSin[n][i].z(); |
| 1382 |
> |
skr[i]=slm[i]*eCos[n][i].z()+clm[i]*eSin[n][i].z(); |
| 1383 |
> |
} |
| 1384 |
> |
} |
| 1385 |
> |
} |
| 1386 |
> |
|
| 1387 |
> |
// Calculate scalar and vector products for each site: |
| 1388 |
> |
|
| 1389 |
> |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
| 1390 |
> |
mol = info_->nextMolecule(mi)) { |
| 1391 |
> |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
| 1392 |
> |
atom = mol->nextAtom(ai)) { |
| 1393 |
> |
i = atom->getGlobalIndex(); |
| 1394 |
> |
int atid = atom->getAtomType()->getIdent(); |
| 1395 |
> |
ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]]; |
| 1396 |
> |
|
| 1397 |
> |
if (data.is_Charge) { |
| 1398 |
> |
RealType C = data.fixedCharge; |
| 1399 |
> |
if (atom->isFluctuatingCharge()) C += atom->getFlucQPos(); |
| 1400 |
> |
ckc[i] = C * ckr[i]; |
| 1401 |
> |
cks[i] = C * cks[i]; |
| 1402 |
> |
} |
| 1403 |
> |
|
| 1404 |
> |
if (data.is_Dipole) { |
| 1405 |
> |
Vector3d D = atom->getDipole() * mPoleConverter; |
| 1406 |
> |
RealType dk = dot(kVec, D); |
| 1407 |
> |
dxk[i] = cross(kVec, D); |
| 1408 |
> |
dkc[i] = dk * ckr[i]; |
| 1409 |
> |
dks[i] = dk * skr[i]; |
| 1410 |
> |
} |
| 1411 |
> |
if (data.is_Quadrupole) { |
| 1412 |
> |
Mat3x3d Q = atom->getQuadrupole(); |
| 1413 |
> |
Q *= mPoleConverter; |
| 1414 |
> |
RealType qk = -( Q * k2 ).trace(); |
| 1415 |
> |
qxk[i] = -2.0 * cross(k2, Q); |
| 1416 |
> |
qkc[i] = qk * ckr[i]; |
| 1417 |
> |
qks[i] = qk * skr[i]; |
| 1418 |
> |
} |
| 1419 |
> |
} |
| 1420 |
> |
} |
| 1421 |
> |
|
| 1422 |
> |
// calculate vector sums |
| 1423 |
> |
|
| 1424 |
> |
RealType ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0); |
| 1425 |
> |
RealType ckss = std::accumulate(cks.begin(),cks.end(),0.0); |
| 1426 |
> |
RealType dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0); |
| 1427 |
> |
RealType dkss = std::accumulate(dks.begin(),dks.end(),0.0); |
| 1428 |
> |
RealType qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0); |
| 1429 |
> |
RealType qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
| 1430 |
> |
|
| 1431 |
> |
#ifdef IS_MPI |
| 1432 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE, |
| 1433 |
> |
MPI::SUM); |
| 1434 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE, |
| 1435 |
> |
MPI::SUM); |
| 1436 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE, |
| 1437 |
> |
MPI::SUM); |
| 1438 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE, |
| 1439 |
> |
MPI::SUM); |
| 1440 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE, |
| 1441 |
> |
MPI::SUM); |
| 1442 |
> |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE, |
| 1443 |
> |
MPI::SUM); |
| 1444 |
> |
#endif |
| 1445 |
> |
|
| 1446 |
> |
// Accumulate potential energy and virial contribution: |
| 1447 |
> |
|
| 1448 |
> |
//cerr << "l, m, n = " << l << " " << m << " " << n << "\n"; |
| 1449 |
> |
cerr << "kVec = " << kVec << "\n"; |
| 1450 |
> |
cerr << "ckss = " << ckss << " ckcs = " << ckcs << "\n"; |
| 1451 |
> |
kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss) |
| 1452 |
> |
+ (ckcs-dkss-qkcs)*(ckcs-dkss-qkss)); |
| 1453 |
> |
//cerr << "kspace pot = " << kPot << "\n"; |
| 1454 |
> |
kVir -= 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss |
| 1455 |
> |
+4.0*(ckss*dkcs-ckcs*dkss) |
| 1456 |
> |
+3.0*(dkcs*dkcs+dkss*dkss) |
| 1457 |
> |
-6.0*(ckss*qkss+ckcs*qkcs) |
| 1458 |
> |
+8.0*(dkss*qkcs-dkcs*qkss) |
| 1459 |
> |
+5.0*(qkss*qkss+qkcs*qkcs)); |
| 1460 |
> |
|
| 1461 |
> |
// Calculate force and torque for each site: |
| 1462 |
> |
|
| 1463 |
> |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
| 1464 |
> |
mol = info_->nextMolecule(mi)) { |
| 1465 |
> |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
| 1466 |
> |
atom = mol->nextAtom(ai)) { |
| 1467 |
> |
|
| 1468 |
> |
i = atom->getLocalIndex(); |
| 1469 |
> |
int atid = atom->getAtomType()->getIdent(); |
| 1470 |
> |
ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]]; |
| 1471 |
> |
|
| 1472 |
> |
RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs) |
| 1473 |
> |
- (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss)); |
| 1474 |
> |
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
| 1475 |
> |
-ckr[i]*(ckss+dkcs-qkss)); |
| 1476 |
> |
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)+ |
| 1477 |
> |
skr[i]*(ckss+dkcs-qkss)); |
| 1478 |
> |
|
| 1479 |
> |
|
| 1480 |
> |
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
| 1481 |
> |
|
| 1482 |
> |
if (data.is_Dipole) { |
| 1483 |
> |
atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] ); |
| 1484 |
> |
} |
| 1485 |
> |
if (data.is_Quadrupole) { |
| 1486 |
> |
atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] ); |
| 1487 |
> |
} |
| 1488 |
> |
} |
| 1489 |
> |
} |
| 1490 |
> |
} |
| 1491 |
> |
} |
| 1492 |
|
} |
| 1493 |
|
} |
| 1494 |
|
} |