ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
Revision: 1938
Committed: Thu Oct 31 15:32:17 2013 UTC (11 years, 7 months ago) by gezelter
File size: 54099 byte(s)
Log Message:
Some MPI include re-ordering to work with the Intel MPI implementation.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #ifdef IS_MPI
44 #include <mpi.h>
45 #endif
46
47 #include <stdio.h>
48 #include <string.h>
49
50 #include <cmath>
51 #include <numeric>
52 #include "nonbonded/Electrostatic.hpp"
53 #include "utils/simError.h"
54 #include "types/NonBondedInteractionType.hpp"
55 #include "types/FixedChargeAdapter.hpp"
56 #include "types/FluctuatingChargeAdapter.hpp"
57 #include "types/MultipoleAdapter.hpp"
58 #include "io/Globals.hpp"
59 #include "nonbonded/SlaterIntegrals.hpp"
60 #include "utils/PhysicalConstants.hpp"
61 #include "math/erfc.hpp"
62 #include "math/SquareMatrix.hpp"
63 #include "primitives/Molecule.hpp"
64
65 namespace OpenMD {
66
67 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
68 forceField_(NULL), info_(NULL),
69 haveCutoffRadius_(false),
70 haveDampingAlpha_(false),
71 haveDielectric_(false),
72 haveElectroSplines_(false)
73 {}
74
75 void Electrostatic::initialize() {
76
77 Globals* simParams_ = info_->getSimParams();
78
79 summationMap_["HARD"] = esm_HARD;
80 summationMap_["NONE"] = esm_HARD;
81 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
82 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
83 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
84 summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED;
85 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
86 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
87 summationMap_["EWALD_PME"] = esm_EWALD_PME;
88 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
89 screeningMap_["DAMPED"] = DAMPED;
90 screeningMap_["UNDAMPED"] = UNDAMPED;
91
92 // these prefactors convert the multipole interactions into kcal / mol
93 // all were computed assuming distances are measured in angstroms
94 // Charge-Charge, assuming charges are measured in electrons
95 pre11_ = 332.0637778;
96 // Charge-Dipole, assuming charges are measured in electrons, and
97 // dipoles are measured in debyes
98 pre12_ = 69.13373;
99 // Dipole-Dipole, assuming dipoles are measured in Debye
100 pre22_ = 14.39325;
101 // Charge-Quadrupole, assuming charges are measured in electrons, and
102 // quadrupoles are measured in 10^-26 esu cm^2
103 // This unit is also known affectionately as an esu centibarn.
104 pre14_ = 69.13373;
105 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
106 // quadrupoles in esu centibarns:
107 pre24_ = 14.39325;
108 // Quadrupole-Quadrupole, assuming esu centibarns:
109 pre44_ = 14.39325;
110
111 // conversions for the simulation box dipole moment
112 chargeToC_ = 1.60217733e-19;
113 angstromToM_ = 1.0e-10;
114 debyeToCm_ = 3.33564095198e-30;
115
116 // Default number of points for electrostatic splines
117 np_ = 100;
118
119 // variables to handle different summation methods for long-range
120 // electrostatics:
121 summationMethod_ = esm_HARD;
122 screeningMethod_ = UNDAMPED;
123 dielectric_ = 1.0;
124
125 // check the summation method:
126 if (simParams_->haveElectrostaticSummationMethod()) {
127 string myMethod = simParams_->getElectrostaticSummationMethod();
128 toUpper(myMethod);
129 map<string, ElectrostaticSummationMethod>::iterator i;
130 i = summationMap_.find(myMethod);
131 if ( i != summationMap_.end() ) {
132 summationMethod_ = (*i).second;
133 } else {
134 // throw error
135 sprintf( painCave.errMsg,
136 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
137 "\t(Input file specified %s .)\n"
138 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
139 "\t\"shifted_potential\", \"shifted_force\",\n"
140 "\t\"taylor_shifted\", or \"reaction_field\".\n",
141 myMethod.c_str() );
142 painCave.isFatal = 1;
143 simError();
144 }
145 } else {
146 // set ElectrostaticSummationMethod to the cutoffMethod:
147 if (simParams_->haveCutoffMethod()){
148 string myMethod = simParams_->getCutoffMethod();
149 toUpper(myMethod);
150 map<string, ElectrostaticSummationMethod>::iterator i;
151 i = summationMap_.find(myMethod);
152 if ( i != summationMap_.end() ) {
153 summationMethod_ = (*i).second;
154 }
155 }
156 }
157
158 if (summationMethod_ == esm_REACTION_FIELD) {
159 if (!simParams_->haveDielectric()) {
160 // throw warning
161 sprintf( painCave.errMsg,
162 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
163 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
164 painCave.isFatal = 0;
165 painCave.severity = OPENMD_INFO;
166 simError();
167 } else {
168 dielectric_ = simParams_->getDielectric();
169 }
170 haveDielectric_ = true;
171 }
172
173 if (simParams_->haveElectrostaticScreeningMethod()) {
174 string myScreen = simParams_->getElectrostaticScreeningMethod();
175 toUpper(myScreen);
176 map<string, ElectrostaticScreeningMethod>::iterator i;
177 i = screeningMap_.find(myScreen);
178 if ( i != screeningMap_.end()) {
179 screeningMethod_ = (*i).second;
180 } else {
181 sprintf( painCave.errMsg,
182 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
183 "\t(Input file specified %s .)\n"
184 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
185 "or \"damped\".\n", myScreen.c_str() );
186 painCave.isFatal = 1;
187 simError();
188 }
189 }
190
191 // check to make sure a cutoff value has been set:
192 if (!haveCutoffRadius_) {
193 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
194 "Cutoff value!\n");
195 painCave.severity = OPENMD_ERROR;
196 painCave.isFatal = 1;
197 simError();
198 }
199
200 if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
201 if (!simParams_->haveDampingAlpha()) {
202 // first set a cutoff dependent alpha value
203 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
204 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
205 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
206 // throw warning
207 sprintf( painCave.errMsg,
208 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
209 "\tinput file. A default value of %f (1/ang) will be used for the\n"
210 "\tcutoff of %f (ang).\n",
211 dampingAlpha_, cutoffRadius_);
212 painCave.severity = OPENMD_INFO;
213 painCave.isFatal = 0;
214 simError();
215 } else {
216 dampingAlpha_ = simParams_->getDampingAlpha();
217 }
218 haveDampingAlpha_ = true;
219 }
220
221
222 Etypes.clear();
223 Etids.clear();
224 FQtypes.clear();
225 FQtids.clear();
226 ElectrostaticMap.clear();
227 Jij.clear();
228 nElectro_ = 0;
229 nFlucq_ = 0;
230
231 Etids.resize( forceField_->getNAtomType(), -1);
232 FQtids.resize( forceField_->getNAtomType(), -1);
233
234 set<AtomType*>::iterator at;
235 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
236 if ((*at)->isElectrostatic()) nElectro_++;
237 if ((*at)->isFluctuatingCharge()) nFlucq_++;
238 }
239
240 Jij.resize(nFlucq_);
241
242 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
243 if ((*at)->isElectrostatic()) addType(*at);
244 }
245
246 if (summationMethod_ == esm_REACTION_FIELD) {
247 preRF_ = (dielectric_ - 1.0) /
248 ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
249 }
250
251 RealType b0c, b1c, b2c, b3c, b4c, b5c;
252 RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
253 RealType a2, expTerm, invArootPi;
254
255 RealType r = cutoffRadius_;
256 RealType r2 = r * r;
257 RealType ric = 1.0 / r;
258 RealType ric2 = ric * ric;
259
260 if (screeningMethod_ == DAMPED) {
261 a2 = dampingAlpha_ * dampingAlpha_;
262 invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
263 expTerm = exp(-a2 * r2);
264 // values of Smith's B_l functions at the cutoff radius:
265 b0c = erfc(dampingAlpha_ * r) / r;
266 b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
267 b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
268 b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
269 b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
270 b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
271 // Half the Smith self piece:
272 selfMult1_ = - a2 * invArootPi;
273 selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
274 selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
275 } else {
276 a2 = 0.0;
277 b0c = 1.0 / r;
278 b1c = ( b0c) / r2;
279 b2c = (3.0 * b1c) / r2;
280 b3c = (5.0 * b2c) / r2;
281 b4c = (7.0 * b3c) / r2;
282 b5c = (9.0 * b4c) / r2;
283 selfMult1_ = 0.0;
284 selfMult2_ = 0.0;
285 selfMult4_ = 0.0;
286 }
287
288 // higher derivatives of B_0 at the cutoff radius:
289 db0c_1 = -r * b1c;
290 db0c_2 = -b1c + r2 * b2c;
291 db0c_3 = 3.0*r*b2c - r2*r*b3c;
292 db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
293 db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
294
295 if (summationMethod_ != esm_EWALD_FULL) {
296 selfMult1_ -= b0c;
297 selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0;
298 selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
299 }
300
301 // working variables for the splines:
302 RealType ri, ri2;
303 RealType b0, b1, b2, b3, b4, b5;
304 RealType db0_1, db0_2, db0_3, db0_4, db0_5;
305 RealType f, fc, f0;
306 RealType g, gc, g0, g1, g2, g3, g4;
307 RealType h, hc, h1, h2, h3, h4;
308 RealType s, sc, s2, s3, s4;
309 RealType t, tc, t3, t4;
310 RealType u, uc, u4;
311
312 // working variables for Taylor expansion:
313 RealType rmRc, rmRc2, rmRc3, rmRc4;
314
315 // Approximate using splines using a maximum of 0.1 Angstroms
316 // between points.
317 int nptest = int((cutoffRadius_ + 2.0) / 0.1);
318 np_ = (np_ > nptest) ? np_ : nptest;
319
320 // Add a 2 angstrom safety window to deal with cutoffGroups that
321 // have charged atoms longer than the cutoffRadius away from each
322 // other. Splining is almost certainly the best choice here.
323 // Direct calls to erfc would be preferrable if it is a very fast
324 // implementation.
325
326 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
327
328 // Storage vectors for the computed functions
329 vector<RealType> rv;
330 vector<RealType> v01v;
331 vector<RealType> v11v;
332 vector<RealType> v21v, v22v;
333 vector<RealType> v31v, v32v;
334 vector<RealType> v41v, v42v, v43v;
335
336 for (int i = 1; i < np_ + 1; i++) {
337 r = RealType(i) * dx;
338 rv.push_back(r);
339
340 ri = 1.0 / r;
341 ri2 = ri * ri;
342
343 r2 = r * r;
344 expTerm = exp(-a2 * r2);
345
346 // Taylor expansion factors (no need for factorials this way):
347 rmRc = r - cutoffRadius_;
348 rmRc2 = rmRc * rmRc / 2.0;
349 rmRc3 = rmRc2 * rmRc / 3.0;
350 rmRc4 = rmRc3 * rmRc / 4.0;
351
352 // values of Smith's B_l functions at r:
353 if (screeningMethod_ == DAMPED) {
354 b0 = erfc(dampingAlpha_ * r) * ri;
355 b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
356 b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
357 b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
358 b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
359 b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
360 } else {
361 b0 = ri;
362 b1 = ( b0) * ri2;
363 b2 = (3.0 * b1) * ri2;
364 b3 = (5.0 * b2) * ri2;
365 b4 = (7.0 * b3) * ri2;
366 b5 = (9.0 * b4) * ri2;
367 }
368
369 // higher derivatives of B_0 at r:
370 db0_1 = -r * b1;
371 db0_2 = -b1 + r2 * b2;
372 db0_3 = 3.0*r*b2 - r2*r*b3;
373 db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
374 db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
375
376 f = b0;
377 fc = b0c;
378 f0 = f - fc - rmRc*db0c_1;
379
380 g = db0_1;
381 gc = db0c_1;
382 g0 = g - gc;
383 g1 = g0 - rmRc *db0c_2;
384 g2 = g1 - rmRc2*db0c_3;
385 g3 = g2 - rmRc3*db0c_4;
386 g4 = g3 - rmRc4*db0c_5;
387
388 h = db0_2;
389 hc = db0c_2;
390 h1 = h - hc;
391 h2 = h1 - rmRc *db0c_3;
392 h3 = h2 - rmRc2*db0c_4;
393 h4 = h3 - rmRc3*db0c_5;
394
395 s = db0_3;
396 sc = db0c_3;
397 s2 = s - sc;
398 s3 = s2 - rmRc *db0c_4;
399 s4 = s3 - rmRc2*db0c_5;
400
401 t = db0_4;
402 tc = db0c_4;
403 t3 = t - tc;
404 t4 = t3 - rmRc *db0c_5;
405
406 u = db0_5;
407 uc = db0c_5;
408 u4 = u - uc;
409
410 // in what follows below, the various v functions are used for
411 // potentials and torques, while the w functions show up in the
412 // forces.
413
414 switch (summationMethod_) {
415 case esm_SHIFTED_FORCE:
416
417 v01 = f - fc - rmRc*gc;
418 v11 = g - gc - rmRc*hc;
419 v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
420 v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
421 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
422 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
423 - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
424 v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
425 - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
426 v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
427 - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
428
429 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
430 - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
431 - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
432
433 dv01 = g - gc;
434 dv11 = h - hc;
435 dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
436 dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);
437 dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
438 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
439 - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
440 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
441 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
442 - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
443 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
444 - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
445
446 break;
447
448 case esm_TAYLOR_SHIFTED:
449
450 v01 = f0;
451 v11 = g1;
452 v21 = g2 * ri;
453 v22 = h2 - v21;
454 v31 = (h3 - g3 * ri) * ri;
455 v32 = s3 - 3.0*v31;
456 v41 = (h4 - g4 * ri) * ri2;
457 v42 = s4 * ri - 3.0*v41;
458 v43 = t4 - 6.0*v42 - 3.0*v41;
459
460 dv01 = g0;
461 dv11 = h1;
462 dv21 = (h2 - g2*ri)*ri;
463 dv22 = (s2 - (h2 - g2*ri)*ri);
464 dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
465 dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
466 dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
467 dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
468 dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
469
470 break;
471
472 case esm_SHIFTED_POTENTIAL:
473
474 v01 = f - fc;
475 v11 = g - gc;
476 v21 = g*ri - gc*ric;
477 v22 = h - g*ri - (hc - gc*ric);
478 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
479 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
480 v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
481 v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
482 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
483 - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
484
485 dv01 = g;
486 dv11 = h;
487 dv21 = (h - g*ri)*ri;
488 dv22 = (s - (h - g*ri)*ri);
489 dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
490 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
491 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
492 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
493 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
494
495 break;
496
497 case esm_SWITCHING_FUNCTION:
498 case esm_HARD:
499 case esm_EWALD_FULL:
500
501 v01 = f;
502 v11 = g;
503 v21 = g*ri;
504 v22 = h - g*ri;
505 v31 = (h-g*ri)*ri;
506 v32 = (s - 3.0*(h-g*ri)*ri);
507 v41 = (h - g*ri)*ri2;
508 v42 = (s-3.0*(h-g*ri)*ri)*ri;
509 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
510
511 dv01 = g;
512 dv11 = h;
513 dv21 = (h - g*ri)*ri;
514 dv22 = (s - (h - g*ri)*ri);
515 dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
516 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
517 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
518 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
519 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
520
521 break;
522
523 case esm_REACTION_FIELD:
524
525 // following DL_POLY's lead for shifting the image charge potential:
526 f = b0 + preRF_ * r2;
527 fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
528
529 g = db0_1 + preRF_ * 2.0 * r;
530 gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
531
532 h = db0_2 + preRF_ * 2.0;
533 hc = db0c_2 + preRF_ * 2.0;
534
535 v01 = f - fc;
536 v11 = g - gc;
537 v21 = g*ri - gc*ric;
538 v22 = h - g*ri - (hc - gc*ric);
539 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
540 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
541 v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
542 v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
543 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
544 - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
545
546 dv01 = g;
547 dv11 = h;
548 dv21 = (h - g*ri)*ri;
549 dv22 = (s - (h - g*ri)*ri);
550 dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
551 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
552 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
553 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
554 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
555
556 break;
557
558 case esm_EWALD_PME:
559 case esm_EWALD_SPME:
560 default :
561 map<string, ElectrostaticSummationMethod>::iterator i;
562 std::string meth;
563 for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
564 if ((*i).second == summationMethod_) meth = (*i).first;
565 }
566 sprintf( painCave.errMsg,
567 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
568 "\thas not been implemented yet. Please select one of:\n"
569 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
570 meth.c_str() );
571 painCave.isFatal = 1;
572 simError();
573 break;
574 }
575
576 // Add these computed values to the storage vectors for spline creation:
577 v01v.push_back(v01);
578 v11v.push_back(v11);
579 v21v.push_back(v21);
580 v22v.push_back(v22);
581 v31v.push_back(v31);
582 v32v.push_back(v32);
583 v41v.push_back(v41);
584 v42v.push_back(v42);
585 v43v.push_back(v43);
586 }
587
588 // construct the spline structures and fill them with the values we've
589 // computed:
590
591 v01s = new CubicSpline();
592 v01s->addPoints(rv, v01v);
593 v11s = new CubicSpline();
594 v11s->addPoints(rv, v11v);
595 v21s = new CubicSpline();
596 v21s->addPoints(rv, v21v);
597 v22s = new CubicSpline();
598 v22s->addPoints(rv, v22v);
599 v31s = new CubicSpline();
600 v31s->addPoints(rv, v31v);
601 v32s = new CubicSpline();
602 v32s->addPoints(rv, v32v);
603 v41s = new CubicSpline();
604 v41s->addPoints(rv, v41v);
605 v42s = new CubicSpline();
606 v42s->addPoints(rv, v42v);
607 v43s = new CubicSpline();
608 v43s->addPoints(rv, v43v);
609
610 haveElectroSplines_ = true;
611
612 initialized_ = true;
613 }
614
615 void Electrostatic::addType(AtomType* atomType){
616
617 ElectrostaticAtomData electrostaticAtomData;
618 electrostaticAtomData.is_Charge = false;
619 electrostaticAtomData.is_Dipole = false;
620 electrostaticAtomData.is_Quadrupole = false;
621 electrostaticAtomData.is_Fluctuating = false;
622
623 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
624
625 if (fca.isFixedCharge()) {
626 electrostaticAtomData.is_Charge = true;
627 electrostaticAtomData.fixedCharge = fca.getCharge();
628 }
629
630 MultipoleAdapter ma = MultipoleAdapter(atomType);
631 if (ma.isMultipole()) {
632 if (ma.isDipole()) {
633 electrostaticAtomData.is_Dipole = true;
634 electrostaticAtomData.dipole = ma.getDipole();
635 }
636 if (ma.isQuadrupole()) {
637 electrostaticAtomData.is_Quadrupole = true;
638 electrostaticAtomData.quadrupole = ma.getQuadrupole();
639 }
640 }
641
642 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
643
644 if (fqa.isFluctuatingCharge()) {
645 electrostaticAtomData.is_Fluctuating = true;
646 electrostaticAtomData.electronegativity = fqa.getElectronegativity();
647 electrostaticAtomData.hardness = fqa.getHardness();
648 electrostaticAtomData.slaterN = fqa.getSlaterN();
649 electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
650 }
651
652 int atid = atomType->getIdent();
653 int etid = Etypes.size();
654 int fqtid = FQtypes.size();
655
656 pair<set<int>::iterator,bool> ret;
657 ret = Etypes.insert( atid );
658 if (ret.second == false) {
659 sprintf( painCave.errMsg,
660 "Electrostatic already had a previous entry with ident %d\n",
661 atid);
662 painCave.severity = OPENMD_INFO;
663 painCave.isFatal = 0;
664 simError();
665 }
666
667 Etids[ atid ] = etid;
668 ElectrostaticMap.push_back(electrostaticAtomData);
669
670 if (electrostaticAtomData.is_Fluctuating) {
671 ret = FQtypes.insert( atid );
672 if (ret.second == false) {
673 sprintf( painCave.errMsg,
674 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
675 atid );
676 painCave.severity = OPENMD_INFO;
677 painCave.isFatal = 0;
678 simError();
679 }
680 FQtids[atid] = fqtid;
681 Jij[fqtid].resize(nFlucq_);
682
683 // Now, iterate over all known fluctuating and add to the
684 // coulomb integral map:
685
686 std::set<int>::iterator it;
687 for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {
688 int etid2 = Etids[ (*it) ];
689 int fqtid2 = FQtids[ (*it) ];
690 ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
691 RealType a = electrostaticAtomData.slaterZeta;
692 RealType b = eaData2.slaterZeta;
693 int m = electrostaticAtomData.slaterN;
694 int n = eaData2.slaterN;
695
696 // Create the spline of the coulombic integral for s-type
697 // Slater orbitals. Add a 2 angstrom safety window to deal
698 // with cutoffGroups that have charged atoms longer than the
699 // cutoffRadius away from each other.
700
701 RealType rval;
702 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
703 vector<RealType> rvals;
704 vector<RealType> Jvals;
705 // don't start at i = 0, as rval = 0 is undefined for the
706 // slater overlap integrals.
707 for (int i = 1; i < np_+1; i++) {
708 rval = RealType(i) * dr;
709 rvals.push_back(rval);
710 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
711 PhysicalConstants::angstromToBohr ) *
712 PhysicalConstants::hartreeToKcal );
713 }
714
715 CubicSpline* J = new CubicSpline();
716 J->addPoints(rvals, Jvals);
717 Jij[fqtid][fqtid2] = J;
718 Jij[fqtid2].resize( nFlucq_ );
719 Jij[fqtid2][fqtid] = J;
720 }
721 }
722 return;
723 }
724
725 void Electrostatic::setCutoffRadius( RealType rCut ) {
726 cutoffRadius_ = rCut;
727 haveCutoffRadius_ = true;
728 }
729
730 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
731 summationMethod_ = esm;
732 }
733 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
734 screeningMethod_ = sm;
735 }
736 void Electrostatic::setDampingAlpha( RealType alpha ) {
737 dampingAlpha_ = alpha;
738 haveDampingAlpha_ = true;
739 }
740 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
741 dielectric_ = dielectric;
742 haveDielectric_ = true;
743 }
744
745 void Electrostatic::calcForce(InteractionData &idat) {
746
747 if (!initialized_) initialize();
748
749 data1 = ElectrostaticMap[Etids[idat.atid1]];
750 data2 = ElectrostaticMap[Etids[idat.atid2]];
751
752 U = 0.0; // Potential
753 F.zero(); // Force
754 Ta.zero(); // Torque on site a
755 Tb.zero(); // Torque on site b
756 Ea.zero(); // Electric field at site a
757 Eb.zero(); // Electric field at site b
758 dUdCa = 0.0; // fluctuating charge force at site a
759 dUdCb = 0.0; // fluctuating charge force at site a
760
761 // Indirect interactions mediated by the reaction field.
762 indirect_Pot = 0.0; // Potential
763 indirect_F.zero(); // Force
764 indirect_Ta.zero(); // Torque on site a
765 indirect_Tb.zero(); // Torque on site b
766
767 // Excluded potential that is still computed for fluctuating charges
768 excluded_Pot= 0.0;
769
770 // some variables we'll need independent of electrostatic type:
771
772 ri = 1.0 / *(idat.rij);
773 rhat = *(idat.d) * ri;
774
775 // logicals
776
777 a_is_Charge = data1.is_Charge;
778 a_is_Dipole = data1.is_Dipole;
779 a_is_Quadrupole = data1.is_Quadrupole;
780 a_is_Fluctuating = data1.is_Fluctuating;
781
782 b_is_Charge = data2.is_Charge;
783 b_is_Dipole = data2.is_Dipole;
784 b_is_Quadrupole = data2.is_Quadrupole;
785 b_is_Fluctuating = data2.is_Fluctuating;
786
787 // Obtain all of the required radial function values from the
788 // spline structures:
789
790 // needed for fields (and forces):
791 if (a_is_Charge || b_is_Charge) {
792 v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
793 }
794 if (a_is_Dipole || b_is_Dipole) {
795 v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
796 v11or = ri * v11;
797 }
798 if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) {
799 v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
800 v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
801 v22or = ri * v22;
802 }
803
804 // needed for potentials (and forces and torques):
805 if ((a_is_Dipole && b_is_Quadrupole) ||
806 (b_is_Dipole && a_is_Quadrupole)) {
807 v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
808 v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
809 v31or = v31 * ri;
810 v32or = v32 * ri;
811 }
812 if (a_is_Quadrupole && b_is_Quadrupole) {
813 v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
814 v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
815 v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
816 v42or = v42 * ri;
817 v43or = v43 * ri;
818 }
819
820 // calculate the single-site contributions (fields, etc).
821
822 if (a_is_Charge) {
823 C_a = data1.fixedCharge;
824
825 if (a_is_Fluctuating) {
826 C_a += *(idat.flucQ1);
827 }
828
829 if (idat.excluded) {
830 *(idat.skippedCharge2) += C_a;
831 } else {
832 // only do the field if we're not excluded:
833 Eb -= C_a * pre11_ * dv01 * rhat;
834 }
835 }
836
837 if (a_is_Dipole) {
838 D_a = *(idat.dipole1);
839 rdDa = dot(rhat, D_a);
840 rxDa = cross(rhat, D_a);
841 if (!idat.excluded)
842 Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
843 }
844
845 if (a_is_Quadrupole) {
846 Q_a = *(idat.quadrupole1);
847 trQa = Q_a.trace();
848 Qar = Q_a * rhat;
849 rQa = rhat * Q_a;
850 rdQar = dot(rhat, Qar);
851 rxQar = cross(rhat, Qar);
852 if (!idat.excluded)
853 Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
854 + rdQar * rhat * (dv22 - 2.0*v22or));
855 }
856
857 if (b_is_Charge) {
858 C_b = data2.fixedCharge;
859
860 if (b_is_Fluctuating)
861 C_b += *(idat.flucQ2);
862
863 if (idat.excluded) {
864 *(idat.skippedCharge1) += C_b;
865 } else {
866 // only do the field if we're not excluded:
867 Ea += C_b * pre11_ * dv01 * rhat;
868 }
869 }
870
871 if (b_is_Dipole) {
872 D_b = *(idat.dipole2);
873 rdDb = dot(rhat, D_b);
874 rxDb = cross(rhat, D_b);
875 if (!idat.excluded)
876 Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
877 }
878
879 if (b_is_Quadrupole) {
880 Q_b = *(idat.quadrupole2);
881 trQb = Q_b.trace();
882 Qbr = Q_b * rhat;
883 rQb = rhat * Q_b;
884 rdQbr = dot(rhat, Qbr);
885 rxQbr = cross(rhat, Qbr);
886 if (!idat.excluded)
887 Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
888 + rdQbr * rhat * (dv22 - 2.0*v22or));
889 }
890
891
892 if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
893 J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
894 }
895
896 if (a_is_Charge) {
897
898 if (b_is_Charge) {
899 pref = pre11_ * *(idat.electroMult);
900 U += C_a * C_b * pref * v01;
901 F += C_a * C_b * pref * dv01 * rhat;
902
903 // If this is an excluded pair, there are still indirect
904 // interactions via the reaction field we must worry about:
905
906 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
907 rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
908 indirect_Pot += rfContrib;
909 indirect_F += rfContrib * 2.0 * ri * rhat;
910 }
911
912 // Fluctuating charge forces are handled via Coulomb integrals
913 // for excluded pairs (i.e. those connected via bonds) and
914 // with the standard charge-charge interaction otherwise.
915
916 if (idat.excluded) {
917 if (a_is_Fluctuating || b_is_Fluctuating) {
918 coulInt = J->getValueAt( *(idat.rij) );
919 if (a_is_Fluctuating) dUdCa += C_b * coulInt;
920 if (b_is_Fluctuating) dUdCb += C_a * coulInt;
921 }
922 } else {
923 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
924 if (b_is_Fluctuating) dUdCb += C_a * pref * v01;
925 }
926 }
927
928 if (b_is_Dipole) {
929 pref = pre12_ * *(idat.electroMult);
930 U += C_a * pref * v11 * rdDb;
931 F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
932 Tb += C_a * pref * v11 * rxDb;
933
934 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
935
936 // Even if we excluded this pair from direct interactions, we
937 // still have the reaction-field-mediated charge-dipole
938 // interaction:
939
940 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
941 rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
942 indirect_Pot += rfContrib * rdDb;
943 indirect_F += rfContrib * D_b / (*idat.rij);
944 indirect_Tb += C_a * pref * preRF_ * rxDb;
945 }
946 }
947
948 if (b_is_Quadrupole) {
949 pref = pre14_ * *(idat.electroMult);
950 U += C_a * pref * (v21 * trQb + v22 * rdQbr);
951 F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
952 F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
953 Tb += C_a * pref * 2.0 * rxQbr * v22;
954
955 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
956 }
957 }
958
959 if (a_is_Dipole) {
960
961 if (b_is_Charge) {
962 pref = pre12_ * *(idat.electroMult);
963
964 U -= C_b * pref * v11 * rdDa;
965 F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
966 Ta -= C_b * pref * v11 * rxDa;
967
968 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
969
970 // Even if we excluded this pair from direct interactions,
971 // we still have the reaction-field-mediated charge-dipole
972 // interaction:
973 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
974 rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
975 indirect_Pot -= rfContrib * rdDa;
976 indirect_F -= rfContrib * D_a / (*idat.rij);
977 indirect_Ta -= C_b * pref * preRF_ * rxDa;
978 }
979 }
980
981 if (b_is_Dipole) {
982 pref = pre22_ * *(idat.electroMult);
983 DadDb = dot(D_a, D_b);
984 DaxDb = cross(D_a, D_b);
985
986 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
987 F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
988 F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
989 Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
990 Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
991 // Even if we excluded this pair from direct interactions, we
992 // still have the reaction-field-mediated dipole-dipole
993 // interaction:
994 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
995 rfContrib = -pref * preRF_ * 2.0;
996 indirect_Pot += rfContrib * DadDb;
997 indirect_Ta += rfContrib * DaxDb;
998 indirect_Tb -= rfContrib * DaxDb;
999 }
1000 }
1001
1002 if (b_is_Quadrupole) {
1003 pref = pre24_ * *(idat.electroMult);
1004 DadQb = D_a * Q_b;
1005 DadQbr = dot(D_a, Qbr);
1006 DaxQbr = cross(D_a, Qbr);
1007
1008 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1009 F -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1010 F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1011 F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1012 F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1013 Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1014 Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1015 - 2.0*rdDa*rxQbr*v32);
1016 }
1017 }
1018
1019 if (a_is_Quadrupole) {
1020 if (b_is_Charge) {
1021 pref = pre14_ * *(idat.electroMult);
1022 U += C_b * pref * (v21 * trQa + v22 * rdQar);
1023 F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1024 F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1025 Ta += C_b * pref * 2.0 * rxQar * v22;
1026
1027 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1028 }
1029 if (b_is_Dipole) {
1030 pref = pre24_ * *(idat.electroMult);
1031 DbdQa = D_b * Q_a;
1032 DbdQar = dot(D_b, Qar);
1033 DbxQar = cross(D_b, Qar);
1034
1035 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1036 F += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1037 F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1038 F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1039 F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1040 Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1041 + 2.0*rdDb*rxQar*v32);
1042 Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1043 }
1044 if (b_is_Quadrupole) {
1045 pref = pre44_ * *(idat.electroMult); // yes
1046 QaQb = Q_a * Q_b;
1047 trQaQb = QaQb.trace();
1048 rQaQb = rhat * QaQb;
1049 QaQbr = QaQb * rhat;
1050 QaxQb = mCross(Q_a, Q_b);
1051 rQaQbr = dot(rQa, Qbr);
1052 rQaxQbr = cross(rQa, Qbr);
1053
1054 U += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1055 U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42;
1056 U += pref * (rdQar * rdQbr) * v43;
1057
1058 F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1059 F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1060 F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1061
1062 F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1063 F += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1064 F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1065
1066 Ta += pref * (- 4.0 * QaxQb * v41);
1067 Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1068 + 4.0 * cross(rhat, QaQbr)
1069 - 4.0 * rQaxQbr) * v42;
1070 Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1071
1072
1073 Tb += pref * (+ 4.0 * QaxQb * v41);
1074 Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1075 - 4.0 * cross(rQaQb, rhat)
1076 + 4.0 * rQaxQbr) * v42;
1077 // Possible replacement for line 2 above:
1078 // + 4.0 * cross(rhat, QbQar)
1079
1080 Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1081 }
1082 }
1083
1084 if (idat.doElectricField) {
1085 *(idat.eField1) += Ea * *(idat.electroMult);
1086 *(idat.eField2) += Eb * *(idat.electroMult);
1087 }
1088
1089 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1090 if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1091
1092 if (!idat.excluded) {
1093
1094 *(idat.vpair) += U;
1095 (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1096 *(idat.f1) += F * *(idat.sw);
1097
1098 if (a_is_Dipole || a_is_Quadrupole)
1099 *(idat.t1) += Ta * *(idat.sw);
1100
1101 if (b_is_Dipole || b_is_Quadrupole)
1102 *(idat.t2) += Tb * *(idat.sw);
1103
1104 } else {
1105
1106 // only accumulate the forces and torques resulting from the
1107 // indirect reaction field terms.
1108
1109 *(idat.vpair) += indirect_Pot;
1110 (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1111 (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1112 *(idat.f1) += *(idat.sw) * indirect_F;
1113
1114 if (a_is_Dipole || a_is_Quadrupole)
1115 *(idat.t1) += *(idat.sw) * indirect_Ta;
1116
1117 if (b_is_Dipole || b_is_Quadrupole)
1118 *(idat.t2) += *(idat.sw) * indirect_Tb;
1119 }
1120 return;
1121 }
1122
1123 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1124
1125 if (!initialized_) initialize();
1126
1127 ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1128
1129 // logicals
1130 bool i_is_Charge = data.is_Charge;
1131 bool i_is_Dipole = data.is_Dipole;
1132 bool i_is_Quadrupole = data.is_Quadrupole;
1133 bool i_is_Fluctuating = data.is_Fluctuating;
1134 RealType C_a = data.fixedCharge;
1135 RealType self(0.0), preVal, DdD, trQ, trQQ;
1136
1137 if (i_is_Dipole) {
1138 DdD = data.dipole.lengthSquare();
1139 }
1140
1141 if (i_is_Fluctuating) {
1142 C_a += *(sdat.flucQ);
1143 *(sdat.flucQfrc) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1144 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1145 (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1146 }
1147
1148 switch (summationMethod_) {
1149 case esm_REACTION_FIELD:
1150
1151 if (i_is_Charge) {
1152 // Self potential [see Wang and Hermans, "Reaction Field
1153 // Molecular Dynamics Simulation with Friedman’s Image Charge
1154 // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1155 preVal = pre11_ * preRF_ * C_a * C_a;
1156 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1157 }
1158
1159 if (i_is_Dipole) {
1160 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1161 }
1162
1163 break;
1164
1165 case esm_SHIFTED_FORCE:
1166 case esm_SHIFTED_POTENTIAL:
1167 case esm_TAYLOR_SHIFTED:
1168 case esm_EWALD_FULL:
1169 if (i_is_Charge)
1170 self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));
1171 if (i_is_Dipole)
1172 self += selfMult2_ * pre22_ * DdD;
1173 if (i_is_Quadrupole) {
1174 trQ = data.quadrupole.trace();
1175 trQQ = (data.quadrupole * data.quadrupole).trace();
1176 self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1177 if (i_is_Charge)
1178 self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1179 }
1180 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1181 break;
1182 default:
1183 break;
1184 }
1185 }
1186
1187 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1188 // This seems to work moderately well as a default. There's no
1189 // inherent scale for 1/r interactions that we can standardize.
1190 // 12 angstroms seems to be a reasonably good guess for most
1191 // cases.
1192 return 12.0;
1193 }
1194
1195
1196 void Electrostatic::ReciprocalSpaceSum(RealType& pot) {
1197
1198 RealType kPot = 0.0;
1199 RealType kVir = 0.0;
1200
1201 const RealType mPoleConverter = 0.20819434; // converts from the
1202 // internal units of
1203 // Debye (for dipoles)
1204 // or Debye-angstroms
1205 // (for quadrupoles) to
1206 // electron angstroms or
1207 // electron-angstroms^2
1208
1209 const RealType eConverter = 332.0637778; // convert the
1210 // Charge-Charge
1211 // electrostatic
1212 // interactions into kcal /
1213 // mol assuming distances
1214 // are measured in
1215 // angstroms.
1216
1217 Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1218 Vector3d box = hmat.diagonals();
1219 RealType boxMax = box.max();
1220
1221 //int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) );
1222 int kMax = 7;
1223 int kSqMax = kMax*kMax + 2;
1224
1225 int kLimit = kMax+1;
1226 int kLim2 = 2*kMax+1;
1227 int kSqLim = kSqMax;
1228
1229 vector<RealType> AK(kSqLim+1, 0.0);
1230 RealType xcl = 2.0 * M_PI / box.x();
1231 RealType ycl = 2.0 * M_PI / box.y();
1232 RealType zcl = 2.0 * M_PI / box.z();
1233 RealType rcl = 2.0 * M_PI / boxMax;
1234 RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1235
1236 if(dampingAlpha_ < 1.0e-12) return;
1237
1238 RealType ralph = -0.25/pow(dampingAlpha_,2);
1239
1240 // Calculate and store exponential factors
1241
1242 vector<vector<RealType> > elc;
1243 vector<vector<RealType> > emc;
1244 vector<vector<RealType> > enc;
1245 vector<vector<RealType> > els;
1246 vector<vector<RealType> > ems;
1247 vector<vector<RealType> > ens;
1248
1249
1250 int nMax = info_->getNAtoms();
1251
1252 elc.resize(kLimit+1);
1253 emc.resize(kLimit+1);
1254 enc.resize(kLimit+1);
1255 els.resize(kLimit+1);
1256 ems.resize(kLimit+1);
1257 ens.resize(kLimit+1);
1258
1259 for (int j = 0; j < kLimit+1; j++) {
1260 elc[j].resize(nMax);
1261 emc[j].resize(nMax);
1262 enc[j].resize(nMax);
1263 els[j].resize(nMax);
1264 ems[j].resize(nMax);
1265 ens[j].resize(nMax);
1266 }
1267
1268 Vector3d t( 2.0 * M_PI );
1269 t.Vdiv(t, box);
1270
1271
1272 SimInfo::MoleculeIterator mi;
1273 Molecule::AtomIterator ai;
1274 int i;
1275 Vector3d r;
1276 Vector3d tt;
1277
1278 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1279 mol = info_->nextMolecule(mi)) {
1280 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1281 atom = mol->nextAtom(ai)) {
1282
1283 i = atom->getLocalIndex();
1284 r = atom->getPos();
1285 info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1286
1287 tt.Vmul(t, r);
1288
1289 elc[1][i] = 1.0;
1290 emc[1][i] = 1.0;
1291 enc[1][i] = 1.0;
1292 els[1][i] = 0.0;
1293 ems[1][i] = 0.0;
1294 ens[1][i] = 0.0;
1295
1296 elc[2][i] = cos(tt.x());
1297 emc[2][i] = cos(tt.y());
1298 enc[2][i] = cos(tt.z());
1299 els[2][i] = sin(tt.x());
1300 ems[2][i] = sin(tt.y());
1301 ens[2][i] = sin(tt.z());
1302
1303 for(int l = 3; l <= kLimit; l++) {
1304 elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i];
1305 emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i];
1306 enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i];
1307 els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i];
1308 ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i];
1309 ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i];
1310 }
1311 }
1312 }
1313
1314 // Calculate and store AK coefficients:
1315
1316 RealType eksq = 1.0;
1317 RealType expf = 0.0;
1318 if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1319 for (i = 1; i <= kSqLim; i++) {
1320 RealType rksq = float(i)*rcl*rcl;
1321 eksq = expf*eksq;
1322 AK[i] = eConverter * eksq/rksq;
1323 }
1324
1325 /*
1326 * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1327 * the values of ll, mm and nn are selected so that the symmetry of
1328 * reciprocal lattice is taken into account i.e. the following
1329 * rules apply.
1330 *
1331 * ll ranges over the values 0 to kMax only.
1332 *
1333 * mm ranges over 0 to kMax when ll=0 and over
1334 * -kMax to kMax otherwise.
1335 * nn ranges over 1 to kMax when ll=mm=0 and over
1336 * -kMax to kMax otherwise.
1337 *
1338 * Hence the result of the summation must be doubled at the end.
1339 */
1340
1341 std::vector<RealType> clm(nMax, 0.0);
1342 std::vector<RealType> slm(nMax, 0.0);
1343 std::vector<RealType> ckr(nMax, 0.0);
1344 std::vector<RealType> skr(nMax, 0.0);
1345 std::vector<RealType> ckc(nMax, 0.0);
1346 std::vector<RealType> cks(nMax, 0.0);
1347 std::vector<RealType> dkc(nMax, 0.0);
1348 std::vector<RealType> dks(nMax, 0.0);
1349 std::vector<RealType> qkc(nMax, 0.0);
1350 std::vector<RealType> qks(nMax, 0.0);
1351 std::vector<Vector3d> dxk(nMax, V3Zero);
1352 std::vector<Vector3d> qxk(nMax, V3Zero);
1353 RealType rl, rm, rn;
1354 Vector3d kVec;
1355 Vector3d Qk;
1356 Mat3x3d k2;
1357 RealType ckcs, ckss, dkcs, dkss, qkcs, qkss;
1358 int atid;
1359 ElectrostaticAtomData data;
1360 RealType C, dk, qk;
1361 Vector3d D;
1362 Mat3x3d Q;
1363
1364 int mMin = kLimit;
1365 int nMin = kLimit + 1;
1366 for (int l = 1; l <= kLimit; l++) {
1367 int ll = l - 1;
1368 rl = xcl * float(ll);
1369 for (int mmm = mMin; mmm <= kLim2; mmm++) {
1370 int mm = mmm - kLimit;
1371 int m = abs(mm) + 1;
1372 rm = ycl * float(mm);
1373 // Set temporary products of exponential terms
1374 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1375 mol = info_->nextMolecule(mi)) {
1376 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1377 atom = mol->nextAtom(ai)) {
1378
1379 i = atom->getLocalIndex();
1380 if(mm < 0) {
1381 clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i];
1382 slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i];
1383 } else {
1384 clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i];
1385 slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i];
1386 }
1387 }
1388 }
1389 for (int nnn = nMin; nnn <= kLim2; nnn++) {
1390 int nn = nnn - kLimit;
1391 int n = abs(nn) + 1;
1392 rn = zcl * float(nn);
1393 // Test on magnitude of k vector:
1394 int kk=ll*ll + mm*mm + nn*nn;
1395 if(kk <= kSqLim) {
1396 kVec = Vector3d(rl, rm, rn);
1397 k2 = outProduct(kVec, kVec);
1398 // Calculate exp(ikr) terms
1399 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1400 mol = info_->nextMolecule(mi)) {
1401 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1402 atom = mol->nextAtom(ai)) {
1403 i = atom->getLocalIndex();
1404
1405 if (nn < 0) {
1406 ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i];
1407 skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i];
1408
1409 } else {
1410 ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i];
1411 skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i];
1412 }
1413 }
1414 }
1415
1416 // Calculate scalar and vector products for each site:
1417
1418 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1419 mol = info_->nextMolecule(mi)) {
1420 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1421 atom = mol->nextAtom(ai)) {
1422 i = atom->getLocalIndex();
1423 int atid = atom->getAtomType()->getIdent();
1424 data = ElectrostaticMap[Etids[atid]];
1425
1426 if (data.is_Charge) {
1427 C = data.fixedCharge;
1428 if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1429 ckc[i] = C * ckr[i];
1430 cks[i] = C * skr[i];
1431 }
1432
1433 if (data.is_Dipole) {
1434 D = atom->getDipole() * mPoleConverter;
1435 dk = dot(D, kVec);
1436 dxk[i] = cross(D, kVec);
1437 dkc[i] = dk * ckr[i];
1438 dks[i] = dk * skr[i];
1439 }
1440 if (data.is_Quadrupole) {
1441 Q = atom->getQuadrupole() * mPoleConverter;
1442 Qk = Q * kVec;
1443 qk = dot(kVec, Qk);
1444 qxk[i] = -cross(kVec, Qk);
1445 qkc[i] = qk * ckr[i];
1446 qks[i] = qk * skr[i];
1447 }
1448 }
1449 }
1450
1451 // calculate vector sums
1452
1453 ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1454 ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1455 dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1456 dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1457 qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1458 qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1459
1460 #ifdef IS_MPI
1461 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE,
1462 MPI::SUM);
1463 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE,
1464 MPI::SUM);
1465 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE,
1466 MPI::SUM);
1467 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE,
1468 MPI::SUM);
1469 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE,
1470 MPI::SUM);
1471 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE,
1472 MPI::SUM);
1473 #endif
1474
1475 // Accumulate potential energy and virial contribution:
1476
1477 kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1478 + (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs));
1479
1480 kVir += 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss
1481 +4.0*(ckss*dkcs-ckcs*dkss)
1482 +3.0*(dkcs*dkcs+dkss*dkss)
1483 -6.0*(ckss*qkss+ckcs*qkcs)
1484 +8.0*(dkss*qkcs-dkcs*qkss)
1485 +5.0*(qkss*qkss+qkcs*qkcs));
1486
1487 // Calculate force and torque for each site:
1488
1489 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1490 mol = info_->nextMolecule(mi)) {
1491 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1492 atom = mol->nextAtom(ai)) {
1493
1494 i = atom->getLocalIndex();
1495 atid = atom->getAtomType()->getIdent();
1496 data = ElectrostaticMap[Etids[atid]];
1497
1498 RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1499 - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1500 RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1501 -ckr[i]*(ckss+dkcs-qkss));
1502 RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)
1503 +skr[i]*(ckss+dkcs-qkss));
1504
1505 atom->addFrc( 4.0 * rvol * qfrc * kVec );
1506
1507 if (data.is_Dipole) {
1508 atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1509 }
1510 if (data.is_Quadrupole) {
1511 atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1512 }
1513 }
1514 }
1515 }
1516 }
1517 nMin = 1;
1518 }
1519 mMin = 1;
1520 }
1521 pot += kPot;
1522 }
1523 }

Properties

Name Value
svn:eol-style native