1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include <numeric> |
48 |
#include "nonbonded/Electrostatic.hpp" |
49 |
#include "utils/simError.h" |
50 |
#include "types/NonBondedInteractionType.hpp" |
51 |
#include "types/FixedChargeAdapter.hpp" |
52 |
#include "types/FluctuatingChargeAdapter.hpp" |
53 |
#include "types/MultipoleAdapter.hpp" |
54 |
#include "io/Globals.hpp" |
55 |
#include "nonbonded/SlaterIntegrals.hpp" |
56 |
#include "utils/PhysicalConstants.hpp" |
57 |
#include "math/erfc.hpp" |
58 |
#include "math/SquareMatrix.hpp" |
59 |
#include "primitives/Molecule.hpp" |
60 |
#ifdef IS_MPI |
61 |
#include <mpi.h> |
62 |
#endif |
63 |
|
64 |
namespace OpenMD { |
65 |
|
66 |
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
67 |
forceField_(NULL), info_(NULL), |
68 |
haveCutoffRadius_(false), |
69 |
haveDampingAlpha_(false), |
70 |
haveDielectric_(false), |
71 |
haveElectroSplines_(false) |
72 |
{} |
73 |
|
74 |
void Electrostatic::initialize() { |
75 |
|
76 |
Globals* simParams_ = info_->getSimParams(); |
77 |
|
78 |
summationMap_["HARD"] = esm_HARD; |
79 |
summationMap_["NONE"] = esm_HARD; |
80 |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
81 |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
82 |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
83 |
summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED; |
84 |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
85 |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
86 |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
87 |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
88 |
screeningMap_["DAMPED"] = DAMPED; |
89 |
screeningMap_["UNDAMPED"] = UNDAMPED; |
90 |
|
91 |
// these prefactors convert the multipole interactions into kcal / mol |
92 |
// all were computed assuming distances are measured in angstroms |
93 |
// Charge-Charge, assuming charges are measured in electrons |
94 |
pre11_ = 332.0637778; |
95 |
// Charge-Dipole, assuming charges are measured in electrons, and |
96 |
// dipoles are measured in debyes |
97 |
pre12_ = 69.13373; |
98 |
// Dipole-Dipole, assuming dipoles are measured in Debye |
99 |
pre22_ = 14.39325; |
100 |
// Charge-Quadrupole, assuming charges are measured in electrons, and |
101 |
// quadrupoles are measured in 10^-26 esu cm^2 |
102 |
// This unit is also known affectionately as an esu centibarn. |
103 |
pre14_ = 69.13373; |
104 |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
105 |
// quadrupoles in esu centibarns: |
106 |
pre24_ = 14.39325; |
107 |
// Quadrupole-Quadrupole, assuming esu centibarns: |
108 |
pre44_ = 14.39325; |
109 |
|
110 |
// conversions for the simulation box dipole moment |
111 |
chargeToC_ = 1.60217733e-19; |
112 |
angstromToM_ = 1.0e-10; |
113 |
debyeToCm_ = 3.33564095198e-30; |
114 |
|
115 |
// Default number of points for electrostatic splines |
116 |
np_ = 100; |
117 |
|
118 |
// variables to handle different summation methods for long-range |
119 |
// electrostatics: |
120 |
summationMethod_ = esm_HARD; |
121 |
screeningMethod_ = UNDAMPED; |
122 |
dielectric_ = 1.0; |
123 |
|
124 |
// check the summation method: |
125 |
if (simParams_->haveElectrostaticSummationMethod()) { |
126 |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
127 |
toUpper(myMethod); |
128 |
map<string, ElectrostaticSummationMethod>::iterator i; |
129 |
i = summationMap_.find(myMethod); |
130 |
if ( i != summationMap_.end() ) { |
131 |
summationMethod_ = (*i).second; |
132 |
} else { |
133 |
// throw error |
134 |
sprintf( painCave.errMsg, |
135 |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
136 |
"\t(Input file specified %s .)\n" |
137 |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
138 |
"\t\"shifted_potential\", \"shifted_force\",\n" |
139 |
"\t\"taylor_shifted\", or \"reaction_field\".\n", |
140 |
myMethod.c_str() ); |
141 |
painCave.isFatal = 1; |
142 |
simError(); |
143 |
} |
144 |
} else { |
145 |
// set ElectrostaticSummationMethod to the cutoffMethod: |
146 |
if (simParams_->haveCutoffMethod()){ |
147 |
string myMethod = simParams_->getCutoffMethod(); |
148 |
toUpper(myMethod); |
149 |
map<string, ElectrostaticSummationMethod>::iterator i; |
150 |
i = summationMap_.find(myMethod); |
151 |
if ( i != summationMap_.end() ) { |
152 |
summationMethod_ = (*i).second; |
153 |
} |
154 |
} |
155 |
} |
156 |
|
157 |
if (summationMethod_ == esm_REACTION_FIELD) { |
158 |
if (!simParams_->haveDielectric()) { |
159 |
// throw warning |
160 |
sprintf( painCave.errMsg, |
161 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
162 |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
163 |
painCave.isFatal = 0; |
164 |
painCave.severity = OPENMD_INFO; |
165 |
simError(); |
166 |
} else { |
167 |
dielectric_ = simParams_->getDielectric(); |
168 |
} |
169 |
haveDielectric_ = true; |
170 |
} |
171 |
|
172 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
173 |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
174 |
toUpper(myScreen); |
175 |
map<string, ElectrostaticScreeningMethod>::iterator i; |
176 |
i = screeningMap_.find(myScreen); |
177 |
if ( i != screeningMap_.end()) { |
178 |
screeningMethod_ = (*i).second; |
179 |
} else { |
180 |
sprintf( painCave.errMsg, |
181 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
182 |
"\t(Input file specified %s .)\n" |
183 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
184 |
"or \"damped\".\n", myScreen.c_str() ); |
185 |
painCave.isFatal = 1; |
186 |
simError(); |
187 |
} |
188 |
} |
189 |
|
190 |
// check to make sure a cutoff value has been set: |
191 |
if (!haveCutoffRadius_) { |
192 |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
193 |
"Cutoff value!\n"); |
194 |
painCave.severity = OPENMD_ERROR; |
195 |
painCave.isFatal = 1; |
196 |
simError(); |
197 |
} |
198 |
|
199 |
if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) { |
200 |
if (!simParams_->haveDampingAlpha()) { |
201 |
// first set a cutoff dependent alpha value |
202 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
203 |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
204 |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
205 |
// throw warning |
206 |
sprintf( painCave.errMsg, |
207 |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
208 |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
209 |
"\tcutoff of %f (ang).\n", |
210 |
dampingAlpha_, cutoffRadius_); |
211 |
painCave.severity = OPENMD_INFO; |
212 |
painCave.isFatal = 0; |
213 |
simError(); |
214 |
} else { |
215 |
dampingAlpha_ = simParams_->getDampingAlpha(); |
216 |
} |
217 |
haveDampingAlpha_ = true; |
218 |
} |
219 |
|
220 |
|
221 |
Etypes.clear(); |
222 |
Etids.clear(); |
223 |
FQtypes.clear(); |
224 |
FQtids.clear(); |
225 |
ElectrostaticMap.clear(); |
226 |
Jij.clear(); |
227 |
nElectro_ = 0; |
228 |
nFlucq_ = 0; |
229 |
|
230 |
Etids.resize( forceField_->getNAtomType(), -1); |
231 |
FQtids.resize( forceField_->getNAtomType(), -1); |
232 |
|
233 |
set<AtomType*>::iterator at; |
234 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
235 |
if ((*at)->isElectrostatic()) nElectro_++; |
236 |
if ((*at)->isFluctuatingCharge()) nFlucq_++; |
237 |
} |
238 |
|
239 |
Jij.resize(nFlucq_); |
240 |
|
241 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
242 |
if ((*at)->isElectrostatic()) addType(*at); |
243 |
} |
244 |
|
245 |
if (summationMethod_ == esm_REACTION_FIELD) { |
246 |
preRF_ = (dielectric_ - 1.0) / |
247 |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
248 |
} |
249 |
|
250 |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
251 |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
252 |
RealType a2, expTerm, invArootPi; |
253 |
|
254 |
RealType r = cutoffRadius_; |
255 |
RealType r2 = r * r; |
256 |
RealType ric = 1.0 / r; |
257 |
RealType ric2 = ric * ric; |
258 |
|
259 |
if (screeningMethod_ == DAMPED) { |
260 |
a2 = dampingAlpha_ * dampingAlpha_; |
261 |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
262 |
expTerm = exp(-a2 * r2); |
263 |
// values of Smith's B_l functions at the cutoff radius: |
264 |
b0c = erfc(dampingAlpha_ * r) / r; |
265 |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
266 |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
267 |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
268 |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
269 |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
270 |
// Half the Smith self piece: |
271 |
selfMult1_ = - a2 * invArootPi; |
272 |
selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0; |
273 |
selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0; |
274 |
} else { |
275 |
a2 = 0.0; |
276 |
b0c = 1.0 / r; |
277 |
b1c = ( b0c) / r2; |
278 |
b2c = (3.0 * b1c) / r2; |
279 |
b3c = (5.0 * b2c) / r2; |
280 |
b4c = (7.0 * b3c) / r2; |
281 |
b5c = (9.0 * b4c) / r2; |
282 |
selfMult1_ = 0.0; |
283 |
selfMult2_ = 0.0; |
284 |
selfMult4_ = 0.0; |
285 |
} |
286 |
|
287 |
// higher derivatives of B_0 at the cutoff radius: |
288 |
db0c_1 = -r * b1c; |
289 |
db0c_2 = -b1c + r2 * b2c; |
290 |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
291 |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
292 |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
293 |
|
294 |
if (summationMethod_ != esm_EWALD_FULL) { |
295 |
selfMult1_ -= b0c; |
296 |
selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0; |
297 |
selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0; |
298 |
} |
299 |
|
300 |
// working variables for the splines: |
301 |
RealType ri, ri2; |
302 |
RealType b0, b1, b2, b3, b4, b5; |
303 |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
304 |
RealType f, fc, f0; |
305 |
RealType g, gc, g0, g1, g2, g3, g4; |
306 |
RealType h, hc, h1, h2, h3, h4; |
307 |
RealType s, sc, s2, s3, s4; |
308 |
RealType t, tc, t3, t4; |
309 |
RealType u, uc, u4; |
310 |
|
311 |
// working variables for Taylor expansion: |
312 |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
313 |
|
314 |
// Approximate using splines using a maximum of 0.1 Angstroms |
315 |
// between points. |
316 |
int nptest = int((cutoffRadius_ + 2.0) / 0.1); |
317 |
np_ = (np_ > nptest) ? np_ : nptest; |
318 |
|
319 |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
320 |
// have charged atoms longer than the cutoffRadius away from each |
321 |
// other. Splining is almost certainly the best choice here. |
322 |
// Direct calls to erfc would be preferrable if it is a very fast |
323 |
// implementation. |
324 |
|
325 |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
326 |
|
327 |
// Storage vectors for the computed functions |
328 |
vector<RealType> rv; |
329 |
vector<RealType> v01v; |
330 |
vector<RealType> v11v; |
331 |
vector<RealType> v21v, v22v; |
332 |
vector<RealType> v31v, v32v; |
333 |
vector<RealType> v41v, v42v, v43v; |
334 |
|
335 |
for (int i = 1; i < np_ + 1; i++) { |
336 |
r = RealType(i) * dx; |
337 |
rv.push_back(r); |
338 |
|
339 |
ri = 1.0 / r; |
340 |
ri2 = ri * ri; |
341 |
|
342 |
r2 = r * r; |
343 |
expTerm = exp(-a2 * r2); |
344 |
|
345 |
// Taylor expansion factors (no need for factorials this way): |
346 |
rmRc = r - cutoffRadius_; |
347 |
rmRc2 = rmRc * rmRc / 2.0; |
348 |
rmRc3 = rmRc2 * rmRc / 3.0; |
349 |
rmRc4 = rmRc3 * rmRc / 4.0; |
350 |
|
351 |
// values of Smith's B_l functions at r: |
352 |
if (screeningMethod_ == DAMPED) { |
353 |
b0 = erfc(dampingAlpha_ * r) * ri; |
354 |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
355 |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
356 |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
357 |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
358 |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
359 |
} else { |
360 |
b0 = ri; |
361 |
b1 = ( b0) * ri2; |
362 |
b2 = (3.0 * b1) * ri2; |
363 |
b3 = (5.0 * b2) * ri2; |
364 |
b4 = (7.0 * b3) * ri2; |
365 |
b5 = (9.0 * b4) * ri2; |
366 |
} |
367 |
|
368 |
// higher derivatives of B_0 at r: |
369 |
db0_1 = -r * b1; |
370 |
db0_2 = -b1 + r2 * b2; |
371 |
db0_3 = 3.0*r*b2 - r2*r*b3; |
372 |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
373 |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
374 |
|
375 |
f = b0; |
376 |
fc = b0c; |
377 |
f0 = f - fc - rmRc*db0c_1; |
378 |
|
379 |
g = db0_1; |
380 |
gc = db0c_1; |
381 |
g0 = g - gc; |
382 |
g1 = g0 - rmRc *db0c_2; |
383 |
g2 = g1 - rmRc2*db0c_3; |
384 |
g3 = g2 - rmRc3*db0c_4; |
385 |
g4 = g3 - rmRc4*db0c_5; |
386 |
|
387 |
h = db0_2; |
388 |
hc = db0c_2; |
389 |
h1 = h - hc; |
390 |
h2 = h1 - rmRc *db0c_3; |
391 |
h3 = h2 - rmRc2*db0c_4; |
392 |
h4 = h3 - rmRc3*db0c_5; |
393 |
|
394 |
s = db0_3; |
395 |
sc = db0c_3; |
396 |
s2 = s - sc; |
397 |
s3 = s2 - rmRc *db0c_4; |
398 |
s4 = s3 - rmRc2*db0c_5; |
399 |
|
400 |
t = db0_4; |
401 |
tc = db0c_4; |
402 |
t3 = t - tc; |
403 |
t4 = t3 - rmRc *db0c_5; |
404 |
|
405 |
u = db0_5; |
406 |
uc = db0c_5; |
407 |
u4 = u - uc; |
408 |
|
409 |
// in what follows below, the various v functions are used for |
410 |
// potentials and torques, while the w functions show up in the |
411 |
// forces. |
412 |
|
413 |
switch (summationMethod_) { |
414 |
case esm_SHIFTED_FORCE: |
415 |
|
416 |
v01 = f - fc - rmRc*gc; |
417 |
v11 = g - gc - rmRc*hc; |
418 |
v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric; |
419 |
v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric); |
420 |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric; |
421 |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric) |
422 |
- rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
423 |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2 |
424 |
- rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2; |
425 |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric |
426 |
- rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric; |
427 |
|
428 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
429 |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric) |
430 |
- rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
431 |
|
432 |
dv01 = g - gc; |
433 |
dv11 = h - hc; |
434 |
dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric; |
435 |
dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric); |
436 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric; |
437 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri) |
438 |
- (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
439 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2; |
440 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri |
441 |
- (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric; |
442 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri) |
443 |
- (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
444 |
|
445 |
break; |
446 |
|
447 |
case esm_TAYLOR_SHIFTED: |
448 |
|
449 |
v01 = f0; |
450 |
v11 = g1; |
451 |
v21 = g2 * ri; |
452 |
v22 = h2 - v21; |
453 |
v31 = (h3 - g3 * ri) * ri; |
454 |
v32 = s3 - 3.0*v31; |
455 |
v41 = (h4 - g4 * ri) * ri2; |
456 |
v42 = s4 * ri - 3.0*v41; |
457 |
v43 = t4 - 6.0*v42 - 3.0*v41; |
458 |
|
459 |
dv01 = g0; |
460 |
dv11 = h1; |
461 |
dv21 = (h2 - g2*ri)*ri; |
462 |
dv22 = (s2 - (h2 - g2*ri)*ri); |
463 |
dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri; |
464 |
dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri); |
465 |
dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2; |
466 |
dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri; |
467 |
dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri); |
468 |
|
469 |
break; |
470 |
|
471 |
case esm_SHIFTED_POTENTIAL: |
472 |
|
473 |
v01 = f - fc; |
474 |
v11 = g - gc; |
475 |
v21 = g*ri - gc*ric; |
476 |
v22 = h - g*ri - (hc - gc*ric); |
477 |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
478 |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
479 |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
480 |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
481 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
482 |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
483 |
|
484 |
dv01 = g; |
485 |
dv11 = h; |
486 |
dv21 = (h - g*ri)*ri; |
487 |
dv22 = (s - (h - g*ri)*ri); |
488 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
489 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
490 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
491 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
492 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
493 |
|
494 |
break; |
495 |
|
496 |
case esm_SWITCHING_FUNCTION: |
497 |
case esm_HARD: |
498 |
case esm_EWALD_FULL: |
499 |
|
500 |
v01 = f; |
501 |
v11 = g; |
502 |
v21 = g*ri; |
503 |
v22 = h - g*ri; |
504 |
v31 = (h-g*ri)*ri; |
505 |
v32 = (s - 3.0*(h-g*ri)*ri); |
506 |
v41 = (h - g*ri)*ri2; |
507 |
v42 = (s-3.0*(h-g*ri)*ri)*ri; |
508 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri); |
509 |
|
510 |
dv01 = g; |
511 |
dv11 = h; |
512 |
dv21 = (h - g*ri)*ri; |
513 |
dv22 = (s - (h - g*ri)*ri); |
514 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
515 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
516 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
517 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
518 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
519 |
|
520 |
break; |
521 |
|
522 |
case esm_REACTION_FIELD: |
523 |
|
524 |
// following DL_POLY's lead for shifting the image charge potential: |
525 |
f = b0 + preRF_ * r2; |
526 |
fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_; |
527 |
|
528 |
g = db0_1 + preRF_ * 2.0 * r; |
529 |
gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_; |
530 |
|
531 |
h = db0_2 + preRF_ * 2.0; |
532 |
hc = db0c_2 + preRF_ * 2.0; |
533 |
|
534 |
v01 = f - fc; |
535 |
v11 = g - gc; |
536 |
v21 = g*ri - gc*ric; |
537 |
v22 = h - g*ri - (hc - gc*ric); |
538 |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
539 |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
540 |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
541 |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
542 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
543 |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
544 |
|
545 |
dv01 = g; |
546 |
dv11 = h; |
547 |
dv21 = (h - g*ri)*ri; |
548 |
dv22 = (s - (h - g*ri)*ri); |
549 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
550 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
551 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
552 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
553 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
554 |
|
555 |
break; |
556 |
|
557 |
case esm_EWALD_PME: |
558 |
case esm_EWALD_SPME: |
559 |
default : |
560 |
map<string, ElectrostaticSummationMethod>::iterator i; |
561 |
std::string meth; |
562 |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
563 |
if ((*i).second == summationMethod_) meth = (*i).first; |
564 |
} |
565 |
sprintf( painCave.errMsg, |
566 |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
567 |
"\thas not been implemented yet. Please select one of:\n" |
568 |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
569 |
meth.c_str() ); |
570 |
painCave.isFatal = 1; |
571 |
simError(); |
572 |
break; |
573 |
} |
574 |
|
575 |
// Add these computed values to the storage vectors for spline creation: |
576 |
v01v.push_back(v01); |
577 |
v11v.push_back(v11); |
578 |
v21v.push_back(v21); |
579 |
v22v.push_back(v22); |
580 |
v31v.push_back(v31); |
581 |
v32v.push_back(v32); |
582 |
v41v.push_back(v41); |
583 |
v42v.push_back(v42); |
584 |
v43v.push_back(v43); |
585 |
} |
586 |
|
587 |
// construct the spline structures and fill them with the values we've |
588 |
// computed: |
589 |
|
590 |
v01s = new CubicSpline(); |
591 |
v01s->addPoints(rv, v01v); |
592 |
v11s = new CubicSpline(); |
593 |
v11s->addPoints(rv, v11v); |
594 |
v21s = new CubicSpline(); |
595 |
v21s->addPoints(rv, v21v); |
596 |
v22s = new CubicSpline(); |
597 |
v22s->addPoints(rv, v22v); |
598 |
v31s = new CubicSpline(); |
599 |
v31s->addPoints(rv, v31v); |
600 |
v32s = new CubicSpline(); |
601 |
v32s->addPoints(rv, v32v); |
602 |
v41s = new CubicSpline(); |
603 |
v41s->addPoints(rv, v41v); |
604 |
v42s = new CubicSpline(); |
605 |
v42s->addPoints(rv, v42v); |
606 |
v43s = new CubicSpline(); |
607 |
v43s->addPoints(rv, v43v); |
608 |
|
609 |
haveElectroSplines_ = true; |
610 |
|
611 |
initialized_ = true; |
612 |
} |
613 |
|
614 |
void Electrostatic::addType(AtomType* atomType){ |
615 |
|
616 |
ElectrostaticAtomData electrostaticAtomData; |
617 |
electrostaticAtomData.is_Charge = false; |
618 |
electrostaticAtomData.is_Dipole = false; |
619 |
electrostaticAtomData.is_Quadrupole = false; |
620 |
electrostaticAtomData.is_Fluctuating = false; |
621 |
|
622 |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
623 |
|
624 |
if (fca.isFixedCharge()) { |
625 |
electrostaticAtomData.is_Charge = true; |
626 |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
627 |
} |
628 |
|
629 |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
630 |
if (ma.isMultipole()) { |
631 |
if (ma.isDipole()) { |
632 |
electrostaticAtomData.is_Dipole = true; |
633 |
electrostaticAtomData.dipole = ma.getDipole(); |
634 |
} |
635 |
if (ma.isQuadrupole()) { |
636 |
electrostaticAtomData.is_Quadrupole = true; |
637 |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
638 |
} |
639 |
} |
640 |
|
641 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
642 |
|
643 |
if (fqa.isFluctuatingCharge()) { |
644 |
electrostaticAtomData.is_Fluctuating = true; |
645 |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
646 |
electrostaticAtomData.hardness = fqa.getHardness(); |
647 |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
648 |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
649 |
} |
650 |
|
651 |
int atid = atomType->getIdent(); |
652 |
int etid = Etypes.size(); |
653 |
int fqtid = FQtypes.size(); |
654 |
|
655 |
pair<set<int>::iterator,bool> ret; |
656 |
ret = Etypes.insert( atid ); |
657 |
if (ret.second == false) { |
658 |
sprintf( painCave.errMsg, |
659 |
"Electrostatic already had a previous entry with ident %d\n", |
660 |
atid); |
661 |
painCave.severity = OPENMD_INFO; |
662 |
painCave.isFatal = 0; |
663 |
simError(); |
664 |
} |
665 |
|
666 |
Etids[ atid ] = etid; |
667 |
ElectrostaticMap.push_back(electrostaticAtomData); |
668 |
|
669 |
if (electrostaticAtomData.is_Fluctuating) { |
670 |
ret = FQtypes.insert( atid ); |
671 |
if (ret.second == false) { |
672 |
sprintf( painCave.errMsg, |
673 |
"Electrostatic already had a previous fluctuating charge entry with ident %d\n", |
674 |
atid ); |
675 |
painCave.severity = OPENMD_INFO; |
676 |
painCave.isFatal = 0; |
677 |
simError(); |
678 |
} |
679 |
FQtids[atid] = fqtid; |
680 |
Jij[fqtid].resize(nFlucq_); |
681 |
|
682 |
// Now, iterate over all known fluctuating and add to the |
683 |
// coulomb integral map: |
684 |
|
685 |
std::set<int>::iterator it; |
686 |
for( it = FQtypes.begin(); it != FQtypes.end(); ++it) { |
687 |
int etid2 = Etids[ (*it) ]; |
688 |
int fqtid2 = FQtids[ (*it) ]; |
689 |
ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ]; |
690 |
RealType a = electrostaticAtomData.slaterZeta; |
691 |
RealType b = eaData2.slaterZeta; |
692 |
int m = electrostaticAtomData.slaterN; |
693 |
int n = eaData2.slaterN; |
694 |
|
695 |
// Create the spline of the coulombic integral for s-type |
696 |
// Slater orbitals. Add a 2 angstrom safety window to deal |
697 |
// with cutoffGroups that have charged atoms longer than the |
698 |
// cutoffRadius away from each other. |
699 |
|
700 |
RealType rval; |
701 |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
702 |
vector<RealType> rvals; |
703 |
vector<RealType> Jvals; |
704 |
// don't start at i = 0, as rval = 0 is undefined for the |
705 |
// slater overlap integrals. |
706 |
for (int i = 1; i < np_+1; i++) { |
707 |
rval = RealType(i) * dr; |
708 |
rvals.push_back(rval); |
709 |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
710 |
PhysicalConstants::angstromToBohr ) * |
711 |
PhysicalConstants::hartreeToKcal ); |
712 |
} |
713 |
|
714 |
CubicSpline* J = new CubicSpline(); |
715 |
J->addPoints(rvals, Jvals); |
716 |
Jij[fqtid][fqtid2] = J; |
717 |
Jij[fqtid2].resize( nFlucq_ ); |
718 |
Jij[fqtid2][fqtid] = J; |
719 |
} |
720 |
} |
721 |
return; |
722 |
} |
723 |
|
724 |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
725 |
cutoffRadius_ = rCut; |
726 |
haveCutoffRadius_ = true; |
727 |
} |
728 |
|
729 |
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
730 |
summationMethod_ = esm; |
731 |
} |
732 |
void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) { |
733 |
screeningMethod_ = sm; |
734 |
} |
735 |
void Electrostatic::setDampingAlpha( RealType alpha ) { |
736 |
dampingAlpha_ = alpha; |
737 |
haveDampingAlpha_ = true; |
738 |
} |
739 |
void Electrostatic::setReactionFieldDielectric( RealType dielectric ){ |
740 |
dielectric_ = dielectric; |
741 |
haveDielectric_ = true; |
742 |
} |
743 |
|
744 |
void Electrostatic::calcForce(InteractionData &idat) { |
745 |
|
746 |
if (!initialized_) initialize(); |
747 |
|
748 |
data1 = ElectrostaticMap[Etids[idat.atid1]]; |
749 |
data2 = ElectrostaticMap[Etids[idat.atid2]]; |
750 |
|
751 |
U = 0.0; // Potential |
752 |
F.zero(); // Force |
753 |
Ta.zero(); // Torque on site a |
754 |
Tb.zero(); // Torque on site b |
755 |
Ea.zero(); // Electric field at site a |
756 |
Eb.zero(); // Electric field at site b |
757 |
dUdCa = 0.0; // fluctuating charge force at site a |
758 |
dUdCb = 0.0; // fluctuating charge force at site a |
759 |
|
760 |
// Indirect interactions mediated by the reaction field. |
761 |
indirect_Pot = 0.0; // Potential |
762 |
indirect_F.zero(); // Force |
763 |
indirect_Ta.zero(); // Torque on site a |
764 |
indirect_Tb.zero(); // Torque on site b |
765 |
|
766 |
// Excluded potential that is still computed for fluctuating charges |
767 |
excluded_Pot= 0.0; |
768 |
|
769 |
|
770 |
// some variables we'll need independent of electrostatic type: |
771 |
|
772 |
ri = 1.0 / *(idat.rij); |
773 |
rhat = *(idat.d) * ri; |
774 |
|
775 |
// logicals |
776 |
|
777 |
a_is_Charge = data1.is_Charge; |
778 |
a_is_Dipole = data1.is_Dipole; |
779 |
a_is_Quadrupole = data1.is_Quadrupole; |
780 |
a_is_Fluctuating = data1.is_Fluctuating; |
781 |
|
782 |
b_is_Charge = data2.is_Charge; |
783 |
b_is_Dipole = data2.is_Dipole; |
784 |
b_is_Quadrupole = data2.is_Quadrupole; |
785 |
b_is_Fluctuating = data2.is_Fluctuating; |
786 |
|
787 |
// Obtain all of the required radial function values from the |
788 |
// spline structures: |
789 |
|
790 |
// needed for fields (and forces): |
791 |
if (a_is_Charge || b_is_Charge) { |
792 |
v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01); |
793 |
} |
794 |
if (a_is_Dipole || b_is_Dipole) { |
795 |
v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11); |
796 |
v11or = ri * v11; |
797 |
} |
798 |
if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) { |
799 |
v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21); |
800 |
v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22); |
801 |
v22or = ri * v22; |
802 |
} |
803 |
|
804 |
// needed for potentials (and forces and torques): |
805 |
if ((a_is_Dipole && b_is_Quadrupole) || |
806 |
(b_is_Dipole && a_is_Quadrupole)) { |
807 |
v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31); |
808 |
v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32); |
809 |
v31or = v31 * ri; |
810 |
v32or = v32 * ri; |
811 |
} |
812 |
if (a_is_Quadrupole && b_is_Quadrupole) { |
813 |
v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41); |
814 |
v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42); |
815 |
v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43); |
816 |
v42or = v42 * ri; |
817 |
v43or = v43 * ri; |
818 |
} |
819 |
|
820 |
// calculate the single-site contributions (fields, etc). |
821 |
|
822 |
if (a_is_Charge) { |
823 |
C_a = data1.fixedCharge; |
824 |
|
825 |
if (a_is_Fluctuating) { |
826 |
C_a += *(idat.flucQ1); |
827 |
} |
828 |
|
829 |
if (idat.excluded) { |
830 |
*(idat.skippedCharge2) += C_a; |
831 |
} else { |
832 |
// only do the field if we're not excluded: |
833 |
Eb -= C_a * pre11_ * dv01 * rhat; |
834 |
} |
835 |
} |
836 |
|
837 |
if (a_is_Dipole) { |
838 |
D_a = *(idat.dipole1); |
839 |
rdDa = dot(rhat, D_a); |
840 |
rxDa = cross(rhat, D_a); |
841 |
if (!idat.excluded) |
842 |
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
843 |
} |
844 |
|
845 |
if (a_is_Quadrupole) { |
846 |
Q_a = *(idat.quadrupole1); |
847 |
trQa = Q_a.trace(); |
848 |
Qar = Q_a * rhat; |
849 |
rQa = rhat * Q_a; |
850 |
rdQar = dot(rhat, Qar); |
851 |
rxQar = cross(rhat, Qar); |
852 |
if (!idat.excluded) |
853 |
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
854 |
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
855 |
} |
856 |
|
857 |
if (b_is_Charge) { |
858 |
C_b = data2.fixedCharge; |
859 |
|
860 |
if (b_is_Fluctuating) |
861 |
C_b += *(idat.flucQ2); |
862 |
|
863 |
if (idat.excluded) { |
864 |
*(idat.skippedCharge1) += C_b; |
865 |
} else { |
866 |
// only do the field if we're not excluded: |
867 |
Ea += C_b * pre11_ * dv01 * rhat; |
868 |
} |
869 |
} |
870 |
|
871 |
if (b_is_Dipole) { |
872 |
D_b = *(idat.dipole2); |
873 |
rdDb = dot(rhat, D_b); |
874 |
rxDb = cross(rhat, D_b); |
875 |
if (!idat.excluded) |
876 |
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
877 |
} |
878 |
|
879 |
if (b_is_Quadrupole) { |
880 |
Q_b = *(idat.quadrupole2); |
881 |
trQb = Q_b.trace(); |
882 |
Qbr = Q_b * rhat; |
883 |
rQb = rhat * Q_b; |
884 |
rdQbr = dot(rhat, Qbr); |
885 |
rxQbr = cross(rhat, Qbr); |
886 |
if (!idat.excluded) |
887 |
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
888 |
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
889 |
} |
890 |
|
891 |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
892 |
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
893 |
} |
894 |
|
895 |
if (a_is_Charge) { |
896 |
|
897 |
if (b_is_Charge) { |
898 |
pref = pre11_ * *(idat.electroMult); |
899 |
U += C_a * C_b * pref * v01; |
900 |
F += C_a * C_b * pref * dv01 * rhat; |
901 |
|
902 |
// If this is an excluded pair, there are still indirect |
903 |
// interactions via the reaction field we must worry about: |
904 |
|
905 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
906 |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
907 |
indirect_Pot += rfContrib; |
908 |
indirect_F += rfContrib * 2.0 * ri * rhat; |
909 |
} |
910 |
|
911 |
// Fluctuating charge forces are handled via Coulomb integrals |
912 |
// for excluded pairs (i.e. those connected via bonds) and |
913 |
// with the standard charge-charge interaction otherwise. |
914 |
|
915 |
if (idat.excluded) { |
916 |
if (a_is_Fluctuating || b_is_Fluctuating) { |
917 |
coulInt = J->getValueAt( *(idat.rij) ); |
918 |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
919 |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
920 |
excluded_Pot += C_a * C_b * coulInt; |
921 |
} |
922 |
} else { |
923 |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
924 |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
925 |
} |
926 |
} |
927 |
|
928 |
if (b_is_Dipole) { |
929 |
pref = pre12_ * *(idat.electroMult); |
930 |
U += C_a * pref * v11 * rdDb; |
931 |
F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b); |
932 |
Tb += C_a * pref * v11 * rxDb; |
933 |
|
934 |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
935 |
|
936 |
// Even if we excluded this pair from direct interactions, we |
937 |
// still have the reaction-field-mediated charge-dipole |
938 |
// interaction: |
939 |
|
940 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
941 |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
942 |
indirect_Pot += rfContrib * rdDb; |
943 |
indirect_F += rfContrib * D_b / (*idat.rij); |
944 |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
945 |
} |
946 |
} |
947 |
|
948 |
if (b_is_Quadrupole) { |
949 |
pref = pre14_ * *(idat.electroMult); |
950 |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
951 |
F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or); |
952 |
F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or); |
953 |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
954 |
|
955 |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
956 |
} |
957 |
} |
958 |
|
959 |
if (a_is_Dipole) { |
960 |
|
961 |
if (b_is_Charge) { |
962 |
pref = pre12_ * *(idat.electroMult); |
963 |
|
964 |
U -= C_b * pref * v11 * rdDa; |
965 |
F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
966 |
Ta -= C_b * pref * v11 * rxDa; |
967 |
|
968 |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
969 |
|
970 |
// Even if we excluded this pair from direct interactions, |
971 |
// we still have the reaction-field-mediated charge-dipole |
972 |
// interaction: |
973 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
974 |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
975 |
indirect_Pot -= rfContrib * rdDa; |
976 |
indirect_F -= rfContrib * D_a / (*idat.rij); |
977 |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
978 |
} |
979 |
} |
980 |
|
981 |
if (b_is_Dipole) { |
982 |
pref = pre22_ * *(idat.electroMult); |
983 |
DadDb = dot(D_a, D_b); |
984 |
DaxDb = cross(D_a, D_b); |
985 |
|
986 |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
987 |
F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b)); |
988 |
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
989 |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
990 |
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
991 |
|
992 |
// Even if we excluded this pair from direct interactions, we |
993 |
// still have the reaction-field-mediated dipole-dipole |
994 |
// interaction: |
995 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
996 |
rfContrib = -pref * preRF_ * 2.0; |
997 |
indirect_Pot += rfContrib * DadDb; |
998 |
indirect_Ta += rfContrib * DaxDb; |
999 |
indirect_Tb -= rfContrib * DaxDb; |
1000 |
} |
1001 |
} |
1002 |
|
1003 |
if (b_is_Quadrupole) { |
1004 |
pref = pre24_ * *(idat.electroMult); |
1005 |
DadQb = D_a * Q_b; |
1006 |
DadQbr = dot(D_a, Qbr); |
1007 |
DaxQbr = cross(D_a, Qbr); |
1008 |
|
1009 |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
1010 |
F -= pref * (trQb*D_a + 2.0*DadQb) * v31or; |
1011 |
F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat; |
1012 |
F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or; |
1013 |
F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or)); |
1014 |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
1015 |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
1016 |
- 2.0*rdDa*rxQbr*v32); |
1017 |
} |
1018 |
} |
1019 |
|
1020 |
if (a_is_Quadrupole) { |
1021 |
if (b_is_Charge) { |
1022 |
pref = pre14_ * *(idat.electroMult); |
1023 |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
1024 |
F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or); |
1025 |
F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or); |
1026 |
Ta += C_b * pref * 2.0 * rxQar * v22; |
1027 |
|
1028 |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
1029 |
} |
1030 |
if (b_is_Dipole) { |
1031 |
pref = pre24_ * *(idat.electroMult); |
1032 |
DbdQa = D_b * Q_a; |
1033 |
DbdQar = dot(D_b, Qar); |
1034 |
DbxQar = cross(D_b, Qar); |
1035 |
|
1036 |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
1037 |
F += pref * (trQa*D_b + 2.0*DbdQa) * v31or; |
1038 |
F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat; |
1039 |
F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or; |
1040 |
F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or)); |
1041 |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
1042 |
+ 2.0*rdDb*rxQar*v32); |
1043 |
Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
1044 |
} |
1045 |
if (b_is_Quadrupole) { |
1046 |
pref = pre44_ * *(idat.electroMult); // yes |
1047 |
QaQb = Q_a * Q_b; |
1048 |
trQaQb = QaQb.trace(); |
1049 |
rQaQb = rhat * QaQb; |
1050 |
QaQbr = QaQb * rhat; |
1051 |
QaxQb = cross(Q_a, Q_b); |
1052 |
rQaQbr = dot(rQa, Qbr); |
1053 |
rQaxQbr = cross(rQa, Qbr); |
1054 |
|
1055 |
U += pref * (trQa * trQb + 2.0 * trQaQb) * v41; |
1056 |
U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42; |
1057 |
U += pref * (rdQar * rdQbr) * v43; |
1058 |
|
1059 |
F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41; |
1060 |
F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or); |
1061 |
F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or); |
1062 |
|
1063 |
F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or; |
1064 |
F += pref * 4.0 * (rQaQb + QaQbr) * v42or; |
1065 |
F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or; |
1066 |
|
1067 |
Ta += pref * (- 4.0 * QaxQb * v41); |
1068 |
Ta += pref * (- 2.0 * trQb * cross(rQa, rhat) |
1069 |
+ 4.0 * cross(rhat, QaQbr) |
1070 |
- 4.0 * rQaxQbr) * v42; |
1071 |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
1072 |
|
1073 |
|
1074 |
Tb += pref * (+ 4.0 * QaxQb * v41); |
1075 |
Tb += pref * (- 2.0 * trQa * cross(rQb, rhat) |
1076 |
- 4.0 * cross(rQaQb, rhat) |
1077 |
+ 4.0 * rQaxQbr) * v42; |
1078 |
// Possible replacement for line 2 above: |
1079 |
// + 4.0 * cross(rhat, QbQar) |
1080 |
|
1081 |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1082 |
|
1083 |
} |
1084 |
} |
1085 |
|
1086 |
if (idat.doElectricField) { |
1087 |
*(idat.eField1) += Ea * *(idat.electroMult); |
1088 |
*(idat.eField2) += Eb * *(idat.electroMult); |
1089 |
} |
1090 |
|
1091 |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1092 |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1093 |
|
1094 |
if (!idat.excluded) { |
1095 |
|
1096 |
*(idat.vpair) += U; |
1097 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
1098 |
*(idat.f1) += F * *(idat.sw); |
1099 |
|
1100 |
if (a_is_Dipole || a_is_Quadrupole) |
1101 |
*(idat.t1) += Ta * *(idat.sw); |
1102 |
|
1103 |
if (b_is_Dipole || b_is_Quadrupole) |
1104 |
*(idat.t2) += Tb * *(idat.sw); |
1105 |
|
1106 |
} else { |
1107 |
|
1108 |
// only accumulate the forces and torques resulting from the |
1109 |
// indirect reaction field terms. |
1110 |
|
1111 |
*(idat.vpair) += indirect_Pot; |
1112 |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
1113 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
1114 |
*(idat.f1) += *(idat.sw) * indirect_F; |
1115 |
|
1116 |
if (a_is_Dipole || a_is_Quadrupole) |
1117 |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
1118 |
|
1119 |
if (b_is_Dipole || b_is_Quadrupole) |
1120 |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
1121 |
} |
1122 |
return; |
1123 |
} |
1124 |
|
1125 |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1126 |
|
1127 |
if (!initialized_) initialize(); |
1128 |
|
1129 |
ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]]; |
1130 |
|
1131 |
// logicals |
1132 |
bool i_is_Charge = data.is_Charge; |
1133 |
bool i_is_Dipole = data.is_Dipole; |
1134 |
bool i_is_Quadrupole = data.is_Quadrupole; |
1135 |
bool i_is_Fluctuating = data.is_Fluctuating; |
1136 |
RealType C_a = data.fixedCharge; |
1137 |
RealType self(0.0), preVal, DdD, trQ, trQQ; |
1138 |
|
1139 |
if (i_is_Dipole) { |
1140 |
DdD = data.dipole.lengthSquare(); |
1141 |
} |
1142 |
|
1143 |
if (i_is_Fluctuating) { |
1144 |
C_a += *(sdat.flucQ); |
1145 |
// dVdFQ is really a force, so this is negative the derivative |
1146 |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1147 |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1148 |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1149 |
} |
1150 |
|
1151 |
switch (summationMethod_) { |
1152 |
case esm_REACTION_FIELD: |
1153 |
|
1154 |
if (i_is_Charge) { |
1155 |
// Self potential [see Wang and Hermans, "Reaction Field |
1156 |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
1157 |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
1158 |
preVal = pre11_ * preRF_ * C_a * C_a; |
1159 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
1160 |
} |
1161 |
|
1162 |
if (i_is_Dipole) { |
1163 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD; |
1164 |
} |
1165 |
|
1166 |
break; |
1167 |
|
1168 |
case esm_SHIFTED_FORCE: |
1169 |
case esm_SHIFTED_POTENTIAL: |
1170 |
case esm_TAYLOR_SHIFTED: |
1171 |
case esm_EWALD_FULL: |
1172 |
if (i_is_Charge) |
1173 |
self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge)); |
1174 |
if (i_is_Dipole) |
1175 |
self += selfMult2_ * pre22_ * DdD; |
1176 |
if (i_is_Quadrupole) { |
1177 |
trQ = data.quadrupole.trace(); |
1178 |
trQQ = (data.quadrupole * data.quadrupole).trace(); |
1179 |
self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ); |
1180 |
if (i_is_Charge) |
1181 |
self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ; |
1182 |
} |
1183 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1184 |
break; |
1185 |
default: |
1186 |
break; |
1187 |
} |
1188 |
} |
1189 |
|
1190 |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1191 |
// This seems to work moderately well as a default. There's no |
1192 |
// inherent scale for 1/r interactions that we can standardize. |
1193 |
// 12 angstroms seems to be a reasonably good guess for most |
1194 |
// cases. |
1195 |
return 12.0; |
1196 |
} |
1197 |
|
1198 |
|
1199 |
void Electrostatic::ReciprocalSpaceSum(RealType& pot) { |
1200 |
|
1201 |
RealType kPot = 0.0; |
1202 |
RealType kVir = 0.0; |
1203 |
|
1204 |
const RealType mPoleConverter = 0.20819434; // converts from the |
1205 |
// internal units of |
1206 |
// Debye (for dipoles) |
1207 |
// or Debye-angstroms |
1208 |
// (for quadrupoles) to |
1209 |
// electron angstroms or |
1210 |
// electron-angstroms^2 |
1211 |
|
1212 |
const RealType eConverter = 332.0637778; // convert the |
1213 |
// Charge-Charge |
1214 |
// electrostatic |
1215 |
// interactions into kcal / |
1216 |
// mol assuming distances |
1217 |
// are measured in |
1218 |
// angstroms. |
1219 |
|
1220 |
Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat(); |
1221 |
Vector3d box = hmat.diagonals(); |
1222 |
RealType boxMax = box.max(); |
1223 |
|
1224 |
//int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) ); |
1225 |
int kMax = 7; |
1226 |
int kSqMax = kMax*kMax + 2; |
1227 |
|
1228 |
int kLimit = kMax+1; |
1229 |
int kLim2 = 2*kMax+1; |
1230 |
int kSqLim = kSqMax; |
1231 |
|
1232 |
vector<RealType> AK(kSqLim+1, 0.0); |
1233 |
RealType xcl = 2.0 * M_PI / box.x(); |
1234 |
RealType ycl = 2.0 * M_PI / box.y(); |
1235 |
RealType zcl = 2.0 * M_PI / box.z(); |
1236 |
RealType rcl = 2.0 * M_PI / boxMax; |
1237 |
RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z()); |
1238 |
|
1239 |
if(dampingAlpha_ < 1.0e-12) return; |
1240 |
|
1241 |
RealType ralph = -0.25/pow(dampingAlpha_,2); |
1242 |
|
1243 |
// Calculate and store exponential factors |
1244 |
|
1245 |
vector<vector<RealType> > elc; |
1246 |
vector<vector<RealType> > emc; |
1247 |
vector<vector<RealType> > enc; |
1248 |
vector<vector<RealType> > els; |
1249 |
vector<vector<RealType> > ems; |
1250 |
vector<vector<RealType> > ens; |
1251 |
|
1252 |
|
1253 |
int nMax = info_->getNAtoms(); |
1254 |
|
1255 |
elc.resize(kLimit+1); |
1256 |
emc.resize(kLimit+1); |
1257 |
enc.resize(kLimit+1); |
1258 |
els.resize(kLimit+1); |
1259 |
ems.resize(kLimit+1); |
1260 |
ens.resize(kLimit+1); |
1261 |
|
1262 |
for (int j = 0; j < kLimit+1; j++) { |
1263 |
elc[j].resize(nMax); |
1264 |
emc[j].resize(nMax); |
1265 |
enc[j].resize(nMax); |
1266 |
els[j].resize(nMax); |
1267 |
ems[j].resize(nMax); |
1268 |
ens[j].resize(nMax); |
1269 |
} |
1270 |
|
1271 |
Vector3d t( 2.0 * M_PI ); |
1272 |
t.Vdiv(t, box); |
1273 |
|
1274 |
|
1275 |
SimInfo::MoleculeIterator mi; |
1276 |
Molecule::AtomIterator ai; |
1277 |
int i; |
1278 |
Vector3d r; |
1279 |
Vector3d tt; |
1280 |
|
1281 |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1282 |
mol = info_->nextMolecule(mi)) { |
1283 |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1284 |
atom = mol->nextAtom(ai)) { |
1285 |
|
1286 |
i = atom->getLocalIndex(); |
1287 |
r = atom->getPos(); |
1288 |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r); |
1289 |
|
1290 |
tt.Vmul(t, r); |
1291 |
|
1292 |
elc[1][i] = 1.0; |
1293 |
emc[1][i] = 1.0; |
1294 |
enc[1][i] = 1.0; |
1295 |
els[1][i] = 0.0; |
1296 |
ems[1][i] = 0.0; |
1297 |
ens[1][i] = 0.0; |
1298 |
|
1299 |
elc[2][i] = cos(tt.x()); |
1300 |
emc[2][i] = cos(tt.y()); |
1301 |
enc[2][i] = cos(tt.z()); |
1302 |
els[2][i] = sin(tt.x()); |
1303 |
ems[2][i] = sin(tt.y()); |
1304 |
ens[2][i] = sin(tt.z()); |
1305 |
|
1306 |
for(int l = 3; l <= kLimit; l++) { |
1307 |
elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i]; |
1308 |
emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i]; |
1309 |
enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i]; |
1310 |
els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i]; |
1311 |
ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i]; |
1312 |
ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i]; |
1313 |
} |
1314 |
} |
1315 |
} |
1316 |
|
1317 |
// Calculate and store AK coefficients: |
1318 |
|
1319 |
RealType eksq = 1.0; |
1320 |
RealType expf = 0.0; |
1321 |
if (ralph < 0.0) expf = exp(ralph*rcl*rcl); |
1322 |
for (i = 1; i <= kSqLim; i++) { |
1323 |
RealType rksq = float(i)*rcl*rcl; |
1324 |
eksq = expf*eksq; |
1325 |
AK[i] = eConverter * eksq/rksq; |
1326 |
} |
1327 |
|
1328 |
/* |
1329 |
* Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz) |
1330 |
* the values of ll, mm and nn are selected so that the symmetry of |
1331 |
* reciprocal lattice is taken into account i.e. the following |
1332 |
* rules apply. |
1333 |
* |
1334 |
* ll ranges over the values 0 to kMax only. |
1335 |
* |
1336 |
* mm ranges over 0 to kMax when ll=0 and over |
1337 |
* -kMax to kMax otherwise. |
1338 |
* nn ranges over 1 to kMax when ll=mm=0 and over |
1339 |
* -kMax to kMax otherwise. |
1340 |
* |
1341 |
* Hence the result of the summation must be doubled at the end. |
1342 |
*/ |
1343 |
|
1344 |
std::vector<RealType> clm(nMax, 0.0); |
1345 |
std::vector<RealType> slm(nMax, 0.0); |
1346 |
std::vector<RealType> ckr(nMax, 0.0); |
1347 |
std::vector<RealType> skr(nMax, 0.0); |
1348 |
std::vector<RealType> ckc(nMax, 0.0); |
1349 |
std::vector<RealType> cks(nMax, 0.0); |
1350 |
std::vector<RealType> dkc(nMax, 0.0); |
1351 |
std::vector<RealType> dks(nMax, 0.0); |
1352 |
std::vector<RealType> qkc(nMax, 0.0); |
1353 |
std::vector<RealType> qks(nMax, 0.0); |
1354 |
std::vector<Vector3d> dxk(nMax, V3Zero); |
1355 |
std::vector<Vector3d> qxk(nMax, V3Zero); |
1356 |
RealType rl, rm, rn; |
1357 |
Vector3d kVec; |
1358 |
Vector3d Qk; |
1359 |
Mat3x3d k2; |
1360 |
RealType ckcs, ckss, dkcs, dkss, qkcs, qkss; |
1361 |
int atid; |
1362 |
ElectrostaticAtomData data; |
1363 |
RealType C, dk, qk; |
1364 |
Vector3d D; |
1365 |
Mat3x3d Q; |
1366 |
|
1367 |
int mMin = kLimit; |
1368 |
int nMin = kLimit + 1; |
1369 |
for (int l = 1; l <= kLimit; l++) { |
1370 |
int ll = l - 1; |
1371 |
rl = xcl * float(ll); |
1372 |
for (int mmm = mMin; mmm <= kLim2; mmm++) { |
1373 |
int mm = mmm - kLimit; |
1374 |
int m = abs(mm) + 1; |
1375 |
rm = ycl * float(mm); |
1376 |
// Set temporary products of exponential terms |
1377 |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1378 |
mol = info_->nextMolecule(mi)) { |
1379 |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1380 |
atom = mol->nextAtom(ai)) { |
1381 |
|
1382 |
i = atom->getLocalIndex(); |
1383 |
if(mm < 0) { |
1384 |
clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i]; |
1385 |
slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i]; |
1386 |
} else { |
1387 |
clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i]; |
1388 |
slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i]; |
1389 |
} |
1390 |
} |
1391 |
} |
1392 |
for (int nnn = nMin; nnn <= kLim2; nnn++) { |
1393 |
int nn = nnn - kLimit; |
1394 |
int n = abs(nn) + 1; |
1395 |
rn = zcl * float(nn); |
1396 |
// Test on magnitude of k vector: |
1397 |
int kk=ll*ll + mm*mm + nn*nn; |
1398 |
if(kk <= kSqLim) { |
1399 |
kVec = Vector3d(rl, rm, rn); |
1400 |
k2 = outProduct(kVec, kVec); |
1401 |
// Calculate exp(ikr) terms |
1402 |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1403 |
mol = info_->nextMolecule(mi)) { |
1404 |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1405 |
atom = mol->nextAtom(ai)) { |
1406 |
i = atom->getLocalIndex(); |
1407 |
|
1408 |
if (nn < 0) { |
1409 |
ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i]; |
1410 |
skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i]; |
1411 |
|
1412 |
} else { |
1413 |
ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i]; |
1414 |
skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i]; |
1415 |
} |
1416 |
} |
1417 |
} |
1418 |
|
1419 |
// Calculate scalar and vector products for each site: |
1420 |
|
1421 |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1422 |
mol = info_->nextMolecule(mi)) { |
1423 |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1424 |
atom = mol->nextAtom(ai)) { |
1425 |
i = atom->getLocalIndex(); |
1426 |
int atid = atom->getAtomType()->getIdent(); |
1427 |
data = ElectrostaticMap[Etids[atid]]; |
1428 |
|
1429 |
if (data.is_Charge) { |
1430 |
C = data.fixedCharge; |
1431 |
if (atom->isFluctuatingCharge()) C += atom->getFlucQPos(); |
1432 |
ckc[i] = C * ckr[i]; |
1433 |
cks[i] = C * skr[i]; |
1434 |
} |
1435 |
|
1436 |
if (data.is_Dipole) { |
1437 |
D = atom->getDipole() * mPoleConverter; |
1438 |
dk = dot(D, kVec); |
1439 |
dxk[i] = cross(D, kVec); |
1440 |
dkc[i] = dk * ckr[i]; |
1441 |
dks[i] = dk * skr[i]; |
1442 |
} |
1443 |
if (data.is_Quadrupole) { |
1444 |
Q = atom->getQuadrupole(); |
1445 |
Q *= mPoleConverter; |
1446 |
Qk = Q * kVec; |
1447 |
qk = dot(kVec, Qk); |
1448 |
qxk[i] = cross(kVec, Qk); |
1449 |
qkc[i] = qk * ckr[i]; |
1450 |
qks[i] = qk * skr[i]; |
1451 |
} |
1452 |
} |
1453 |
} |
1454 |
|
1455 |
// calculate vector sums |
1456 |
|
1457 |
ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0); |
1458 |
ckss = std::accumulate(cks.begin(),cks.end(),0.0); |
1459 |
dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0); |
1460 |
dkss = std::accumulate(dks.begin(),dks.end(),0.0); |
1461 |
qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0); |
1462 |
qkss = std::accumulate(qks.begin(),qks.end(),0.0); |
1463 |
|
1464 |
#ifdef IS_MPI |
1465 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE, |
1466 |
MPI::SUM); |
1467 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE, |
1468 |
MPI::SUM); |
1469 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE, |
1470 |
MPI::SUM); |
1471 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE, |
1472 |
MPI::SUM); |
1473 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE, |
1474 |
MPI::SUM); |
1475 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE, |
1476 |
MPI::SUM); |
1477 |
#endif |
1478 |
|
1479 |
// Accumulate potential energy and virial contribution: |
1480 |
|
1481 |
kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss) |
1482 |
+ (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs)); |
1483 |
|
1484 |
kVir += 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss |
1485 |
+4.0*(ckss*dkcs-ckcs*dkss) |
1486 |
+3.0*(dkcs*dkcs+dkss*dkss) |
1487 |
-6.0*(ckss*qkss+ckcs*qkcs) |
1488 |
+8.0*(dkss*qkcs-dkcs*qkss) |
1489 |
+5.0*(qkss*qkss+qkcs*qkcs)); |
1490 |
|
1491 |
// Calculate force and torque for each site: |
1492 |
|
1493 |
for (Molecule* mol = info_->beginMolecule(mi); mol != NULL; |
1494 |
mol = info_->nextMolecule(mi)) { |
1495 |
for(Atom* atom = mol->beginAtom(ai); atom != NULL; |
1496 |
atom = mol->nextAtom(ai)) { |
1497 |
|
1498 |
i = atom->getLocalIndex(); |
1499 |
atid = atom->getAtomType()->getIdent(); |
1500 |
data = ElectrostaticMap[Etids[atid]]; |
1501 |
|
1502 |
RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs) |
1503 |
- (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss)); |
1504 |
RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs) |
1505 |
-ckr[i]*(ckss+dkcs-qkss)); |
1506 |
RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs) |
1507 |
+skr[i]*(ckss+dkcs-qkss)); |
1508 |
|
1509 |
atom->addFrc( 4.0 * rvol * qfrc * kVec ); |
1510 |
|
1511 |
if (data.is_Dipole) { |
1512 |
atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] ); |
1513 |
} |
1514 |
if (data.is_Quadrupole) { |
1515 |
atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] ); |
1516 |
} |
1517 |
} |
1518 |
} |
1519 |
} |
1520 |
} |
1521 |
nMin = 1; |
1522 |
} |
1523 |
mMin = 1; |
1524 |
} |
1525 |
pot += kPot; |
1526 |
} |
1527 |
} |