ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
Revision: 1915
Committed: Mon Jul 29 17:55:17 2013 UTC (11 years, 9 months ago) by gezelter
File size: 54013 byte(s)
Log Message:
Added Legendre Correlation function (as a function of Z), working on architecture for Ewald
Fixed some bugs in FlucQ


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include <numeric>
48 #include "nonbonded/Electrostatic.hpp"
49 #include "utils/simError.h"
50 #include "types/NonBondedInteractionType.hpp"
51 #include "types/FixedChargeAdapter.hpp"
52 #include "types/FluctuatingChargeAdapter.hpp"
53 #include "types/MultipoleAdapter.hpp"
54 #include "io/Globals.hpp"
55 #include "nonbonded/SlaterIntegrals.hpp"
56 #include "utils/PhysicalConstants.hpp"
57 #include "math/erfc.hpp"
58 #include "math/SquareMatrix.hpp"
59 #include "primitives/Molecule.hpp"
60
61
62 namespace OpenMD {
63
64 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
65 forceField_(NULL), info_(NULL),
66 haveCutoffRadius_(false),
67 haveDampingAlpha_(false),
68 haveDielectric_(false),
69 haveElectroSplines_(false)
70 {}
71
72 void Electrostatic::initialize() {
73
74 Globals* simParams_ = info_->getSimParams();
75
76 summationMap_["HARD"] = esm_HARD;
77 summationMap_["NONE"] = esm_HARD;
78 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
79 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
80 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
81 summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED;
82 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
83 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
84 summationMap_["EWALD_PME"] = esm_EWALD_PME;
85 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
86 screeningMap_["DAMPED"] = DAMPED;
87 screeningMap_["UNDAMPED"] = UNDAMPED;
88
89 // these prefactors convert the multipole interactions into kcal / mol
90 // all were computed assuming distances are measured in angstroms
91 // Charge-Charge, assuming charges are measured in electrons
92 pre11_ = 332.0637778;
93 // Charge-Dipole, assuming charges are measured in electrons, and
94 // dipoles are measured in debyes
95 pre12_ = 69.13373;
96 // Dipole-Dipole, assuming dipoles are measured in Debye
97 pre22_ = 14.39325;
98 // Charge-Quadrupole, assuming charges are measured in electrons, and
99 // quadrupoles are measured in 10^-26 esu cm^2
100 // This unit is also known affectionately as an esu centibarn.
101 pre14_ = 69.13373;
102 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
103 // quadrupoles in esu centibarns:
104 pre24_ = 14.39325;
105 // Quadrupole-Quadrupole, assuming esu centibarns:
106 pre44_ = 14.39325;
107
108 // conversions for the simulation box dipole moment
109 chargeToC_ = 1.60217733e-19;
110 angstromToM_ = 1.0e-10;
111 debyeToCm_ = 3.33564095198e-30;
112
113 // Default number of points for electrostatic splines
114 np_ = 100;
115
116 // variables to handle different summation methods for long-range
117 // electrostatics:
118 summationMethod_ = esm_HARD;
119 screeningMethod_ = UNDAMPED;
120 dielectric_ = 1.0;
121
122 // check the summation method:
123 if (simParams_->haveElectrostaticSummationMethod()) {
124 string myMethod = simParams_->getElectrostaticSummationMethod();
125 toUpper(myMethod);
126 map<string, ElectrostaticSummationMethod>::iterator i;
127 i = summationMap_.find(myMethod);
128 if ( i != summationMap_.end() ) {
129 summationMethod_ = (*i).second;
130 } else {
131 // throw error
132 sprintf( painCave.errMsg,
133 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
134 "\t(Input file specified %s .)\n"
135 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
136 "\t\"shifted_potential\", \"shifted_force\",\n"
137 "\t\"taylor_shifted\", or \"reaction_field\".\n",
138 myMethod.c_str() );
139 painCave.isFatal = 1;
140 simError();
141 }
142 } else {
143 // set ElectrostaticSummationMethod to the cutoffMethod:
144 if (simParams_->haveCutoffMethod()){
145 string myMethod = simParams_->getCutoffMethod();
146 toUpper(myMethod);
147 map<string, ElectrostaticSummationMethod>::iterator i;
148 i = summationMap_.find(myMethod);
149 if ( i != summationMap_.end() ) {
150 summationMethod_ = (*i).second;
151 }
152 }
153 }
154
155 if (summationMethod_ == esm_REACTION_FIELD) {
156 if (!simParams_->haveDielectric()) {
157 // throw warning
158 sprintf( painCave.errMsg,
159 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
160 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
161 painCave.isFatal = 0;
162 painCave.severity = OPENMD_INFO;
163 simError();
164 } else {
165 dielectric_ = simParams_->getDielectric();
166 }
167 haveDielectric_ = true;
168 }
169
170 if (simParams_->haveElectrostaticScreeningMethod()) {
171 string myScreen = simParams_->getElectrostaticScreeningMethod();
172 toUpper(myScreen);
173 map<string, ElectrostaticScreeningMethod>::iterator i;
174 i = screeningMap_.find(myScreen);
175 if ( i != screeningMap_.end()) {
176 screeningMethod_ = (*i).second;
177 } else {
178 sprintf( painCave.errMsg,
179 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
180 "\t(Input file specified %s .)\n"
181 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
182 "or \"damped\".\n", myScreen.c_str() );
183 painCave.isFatal = 1;
184 simError();
185 }
186 }
187
188 // check to make sure a cutoff value has been set:
189 if (!haveCutoffRadius_) {
190 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
191 "Cutoff value!\n");
192 painCave.severity = OPENMD_ERROR;
193 painCave.isFatal = 1;
194 simError();
195 }
196
197 if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
198 if (!simParams_->haveDampingAlpha()) {
199 // first set a cutoff dependent alpha value
200 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
201 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
202 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
203 // throw warning
204 sprintf( painCave.errMsg,
205 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
206 "\tinput file. A default value of %f (1/ang) will be used for the\n"
207 "\tcutoff of %f (ang).\n",
208 dampingAlpha_, cutoffRadius_);
209 painCave.severity = OPENMD_INFO;
210 painCave.isFatal = 0;
211 simError();
212 } else {
213 dampingAlpha_ = simParams_->getDampingAlpha();
214 }
215 haveDampingAlpha_ = true;
216 }
217
218
219 Etypes.clear();
220 Etids.clear();
221 FQtypes.clear();
222 FQtids.clear();
223 ElectrostaticMap.clear();
224 Jij.clear();
225 nElectro_ = 0;
226 nFlucq_ = 0;
227
228 Etids.resize( forceField_->getNAtomType(), -1);
229 FQtids.resize( forceField_->getNAtomType(), -1);
230
231 set<AtomType*>::iterator at;
232 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
233 if ((*at)->isElectrostatic()) nElectro_++;
234 if ((*at)->isFluctuatingCharge()) nFlucq_++;
235 }
236
237 Jij.resize(nFlucq_);
238
239 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
240 if ((*at)->isElectrostatic()) addType(*at);
241 }
242
243 if (summationMethod_ == esm_REACTION_FIELD) {
244 preRF_ = (dielectric_ - 1.0) /
245 ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
246 }
247
248 RealType b0c, b1c, b2c, b3c, b4c, b5c;
249 RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
250 RealType a2, expTerm, invArootPi;
251
252 RealType r = cutoffRadius_;
253 RealType r2 = r * r;
254 RealType ric = 1.0 / r;
255 RealType ric2 = ric * ric;
256
257 if (screeningMethod_ == DAMPED) {
258 a2 = dampingAlpha_ * dampingAlpha_;
259 invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
260 expTerm = exp(-a2 * r2);
261 // values of Smith's B_l functions at the cutoff radius:
262 b0c = erfc(dampingAlpha_ * r) / r;
263 b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
264 b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
265 b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
266 b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
267 b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
268 // Half the Smith self piece:
269 selfMult1_ = - a2 * invArootPi;
270 selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
271 selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
272 } else {
273 a2 = 0.0;
274 b0c = 1.0 / r;
275 b1c = ( b0c) / r2;
276 b2c = (3.0 * b1c) / r2;
277 b3c = (5.0 * b2c) / r2;
278 b4c = (7.0 * b3c) / r2;
279 b5c = (9.0 * b4c) / r2;
280 selfMult1_ = 0.0;
281 selfMult2_ = 0.0;
282 selfMult4_ = 0.0;
283 }
284
285 // higher derivatives of B_0 at the cutoff radius:
286 db0c_1 = -r * b1c;
287 db0c_2 = -b1c + r2 * b2c;
288 db0c_3 = 3.0*r*b2c - r2*r*b3c;
289 db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
290 db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
291
292 if (summationMethod_ != esm_EWALD_FULL) {
293 selfMult1_ -= b0c;
294 selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0;
295 selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
296 }
297
298 // working variables for the splines:
299 RealType ri, ri2;
300 RealType b0, b1, b2, b3, b4, b5;
301 RealType db0_1, db0_2, db0_3, db0_4, db0_5;
302 RealType f, fc, f0;
303 RealType g, gc, g0, g1, g2, g3, g4;
304 RealType h, hc, h1, h2, h3, h4;
305 RealType s, sc, s2, s3, s4;
306 RealType t, tc, t3, t4;
307 RealType u, uc, u4;
308
309 // working variables for Taylor expansion:
310 RealType rmRc, rmRc2, rmRc3, rmRc4;
311
312 // Approximate using splines using a maximum of 0.1 Angstroms
313 // between points.
314 int nptest = int((cutoffRadius_ + 2.0) / 0.1);
315 np_ = (np_ > nptest) ? np_ : nptest;
316
317 // Add a 2 angstrom safety window to deal with cutoffGroups that
318 // have charged atoms longer than the cutoffRadius away from each
319 // other. Splining is almost certainly the best choice here.
320 // Direct calls to erfc would be preferrable if it is a very fast
321 // implementation.
322
323 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
324
325 // Storage vectors for the computed functions
326 vector<RealType> rv;
327 vector<RealType> v01v;
328 vector<RealType> v11v;
329 vector<RealType> v21v, v22v;
330 vector<RealType> v31v, v32v;
331 vector<RealType> v41v, v42v, v43v;
332
333 for (int i = 1; i < np_ + 1; i++) {
334 r = RealType(i) * dx;
335 rv.push_back(r);
336
337 ri = 1.0 / r;
338 ri2 = ri * ri;
339
340 r2 = r * r;
341 expTerm = exp(-a2 * r2);
342
343 // Taylor expansion factors (no need for factorials this way):
344 rmRc = r - cutoffRadius_;
345 rmRc2 = rmRc * rmRc / 2.0;
346 rmRc3 = rmRc2 * rmRc / 3.0;
347 rmRc4 = rmRc3 * rmRc / 4.0;
348
349 // values of Smith's B_l functions at r:
350 if (screeningMethod_ == DAMPED) {
351 b0 = erfc(dampingAlpha_ * r) * ri;
352 b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
353 b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
354 b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
355 b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
356 b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
357 } else {
358 b0 = ri;
359 b1 = ( b0) * ri2;
360 b2 = (3.0 * b1) * ri2;
361 b3 = (5.0 * b2) * ri2;
362 b4 = (7.0 * b3) * ri2;
363 b5 = (9.0 * b4) * ri2;
364 }
365
366 // higher derivatives of B_0 at r:
367 db0_1 = -r * b1;
368 db0_2 = -b1 + r2 * b2;
369 db0_3 = 3.0*r*b2 - r2*r*b3;
370 db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
371 db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
372
373 f = b0;
374 fc = b0c;
375 f0 = f - fc - rmRc*db0c_1;
376
377 g = db0_1;
378 gc = db0c_1;
379 g0 = g - gc;
380 g1 = g0 - rmRc *db0c_2;
381 g2 = g1 - rmRc2*db0c_3;
382 g3 = g2 - rmRc3*db0c_4;
383 g4 = g3 - rmRc4*db0c_5;
384
385 h = db0_2;
386 hc = db0c_2;
387 h1 = h - hc;
388 h2 = h1 - rmRc *db0c_3;
389 h3 = h2 - rmRc2*db0c_4;
390 h4 = h3 - rmRc3*db0c_5;
391
392 s = db0_3;
393 sc = db0c_3;
394 s2 = s - sc;
395 s3 = s2 - rmRc *db0c_4;
396 s4 = s3 - rmRc2*db0c_5;
397
398 t = db0_4;
399 tc = db0c_4;
400 t3 = t - tc;
401 t4 = t3 - rmRc *db0c_5;
402
403 u = db0_5;
404 uc = db0c_5;
405 u4 = u - uc;
406
407 // in what follows below, the various v functions are used for
408 // potentials and torques, while the w functions show up in the
409 // forces.
410
411 switch (summationMethod_) {
412 case esm_SHIFTED_FORCE:
413
414 v01 = f - fc - rmRc*gc;
415 v11 = g - gc - rmRc*hc;
416 v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
417 v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
418 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
419 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
420 - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
421 v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
422 - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
423 v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
424 - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
425
426 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
427 - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
428 - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
429
430 dv01 = g - gc;
431 dv11 = h - hc;
432 dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
433 dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);
434 dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
435 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
436 - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
437 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
438 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
439 - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
440 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
441 - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
442
443 break;
444
445 case esm_TAYLOR_SHIFTED:
446
447 v01 = f0;
448 v11 = g1;
449 v21 = g2 * ri;
450 v22 = h2 - v21;
451 v31 = (h3 - g3 * ri) * ri;
452 v32 = s3 - 3.0*v31;
453 v41 = (h4 - g4 * ri) * ri2;
454 v42 = s4 * ri - 3.0*v41;
455 v43 = t4 - 6.0*v42 - 3.0*v41;
456
457 dv01 = g0;
458 dv11 = h1;
459 dv21 = (h2 - g2*ri)*ri;
460 dv22 = (s2 - (h2 - g2*ri)*ri);
461 dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
462 dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
463 dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
464 dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
465 dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
466
467 break;
468
469 case esm_SHIFTED_POTENTIAL:
470
471 v01 = f - fc;
472 v11 = g - gc;
473 v21 = g*ri - gc*ric;
474 v22 = h - g*ri - (hc - gc*ric);
475 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
476 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
477 v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
478 v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
479 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
480 - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
481
482 dv01 = g;
483 dv11 = h;
484 dv21 = (h - g*ri)*ri;
485 dv22 = (s - (h - g*ri)*ri);
486 dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
487 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
488 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
489 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
490 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
491
492 break;
493
494 case esm_SWITCHING_FUNCTION:
495 case esm_HARD:
496 case esm_EWALD_FULL:
497
498 v01 = f;
499 v11 = g;
500 v21 = g*ri;
501 v22 = h - g*ri;
502 v31 = (h-g*ri)*ri;
503 v32 = (s - 3.0*(h-g*ri)*ri);
504 v41 = (h - g*ri)*ri2;
505 v42 = (s-3.0*(h-g*ri)*ri)*ri;
506 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
507
508 dv01 = g;
509 dv11 = h;
510 dv21 = (h - g*ri)*ri;
511 dv22 = (s - (h - g*ri)*ri);
512 dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
513 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
514 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
515 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
516 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
517
518 break;
519
520 case esm_REACTION_FIELD:
521
522 // following DL_POLY's lead for shifting the image charge potential:
523 f = b0 + preRF_ * r2;
524 fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
525
526 g = db0_1 + preRF_ * 2.0 * r;
527 gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
528
529 h = db0_2 + preRF_ * 2.0;
530 hc = db0c_2 + preRF_ * 2.0;
531
532 v01 = f - fc;
533 v11 = g - gc;
534 v21 = g*ri - gc*ric;
535 v22 = h - g*ri - (hc - gc*ric);
536 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
537 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
538 v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
539 v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
540 v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
541 - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
542
543 dv01 = g;
544 dv11 = h;
545 dv21 = (h - g*ri)*ri;
546 dv22 = (s - (h - g*ri)*ri);
547 dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
548 dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
549 dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
550 dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
551 dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
552
553 break;
554
555 case esm_EWALD_PME:
556 case esm_EWALD_SPME:
557 default :
558 map<string, ElectrostaticSummationMethod>::iterator i;
559 std::string meth;
560 for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
561 if ((*i).second == summationMethod_) meth = (*i).first;
562 }
563 sprintf( painCave.errMsg,
564 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
565 "\thas not been implemented yet. Please select one of:\n"
566 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
567 meth.c_str() );
568 painCave.isFatal = 1;
569 simError();
570 break;
571 }
572
573 // Add these computed values to the storage vectors for spline creation:
574 v01v.push_back(v01);
575 v11v.push_back(v11);
576 v21v.push_back(v21);
577 v22v.push_back(v22);
578 v31v.push_back(v31);
579 v32v.push_back(v32);
580 v41v.push_back(v41);
581 v42v.push_back(v42);
582 v43v.push_back(v43);
583 }
584
585 // construct the spline structures and fill them with the values we've
586 // computed:
587
588 v01s = new CubicSpline();
589 v01s->addPoints(rv, v01v);
590 v11s = new CubicSpline();
591 v11s->addPoints(rv, v11v);
592 v21s = new CubicSpline();
593 v21s->addPoints(rv, v21v);
594 v22s = new CubicSpline();
595 v22s->addPoints(rv, v22v);
596 v31s = new CubicSpline();
597 v31s->addPoints(rv, v31v);
598 v32s = new CubicSpline();
599 v32s->addPoints(rv, v32v);
600 v41s = new CubicSpline();
601 v41s->addPoints(rv, v41v);
602 v42s = new CubicSpline();
603 v42s->addPoints(rv, v42v);
604 v43s = new CubicSpline();
605 v43s->addPoints(rv, v43v);
606
607 haveElectroSplines_ = true;
608
609 initialized_ = true;
610 }
611
612 void Electrostatic::addType(AtomType* atomType){
613
614 ElectrostaticAtomData electrostaticAtomData;
615 electrostaticAtomData.is_Charge = false;
616 electrostaticAtomData.is_Dipole = false;
617 electrostaticAtomData.is_Quadrupole = false;
618 electrostaticAtomData.is_Fluctuating = false;
619
620 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
621
622 if (fca.isFixedCharge()) {
623 electrostaticAtomData.is_Charge = true;
624 electrostaticAtomData.fixedCharge = fca.getCharge();
625 }
626
627 MultipoleAdapter ma = MultipoleAdapter(atomType);
628 if (ma.isMultipole()) {
629 if (ma.isDipole()) {
630 electrostaticAtomData.is_Dipole = true;
631 electrostaticAtomData.dipole = ma.getDipole();
632 }
633 if (ma.isQuadrupole()) {
634 electrostaticAtomData.is_Quadrupole = true;
635 electrostaticAtomData.quadrupole = ma.getQuadrupole();
636 }
637 }
638
639 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
640
641 if (fqa.isFluctuatingCharge()) {
642 electrostaticAtomData.is_Fluctuating = true;
643 electrostaticAtomData.electronegativity = fqa.getElectronegativity();
644 electrostaticAtomData.hardness = fqa.getHardness();
645 electrostaticAtomData.slaterN = fqa.getSlaterN();
646 electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
647 }
648
649 int atid = atomType->getIdent();
650 int etid = Etypes.size();
651 int fqtid = FQtypes.size();
652
653 pair<set<int>::iterator,bool> ret;
654 ret = Etypes.insert( atid );
655 if (ret.second == false) {
656 sprintf( painCave.errMsg,
657 "Electrostatic already had a previous entry with ident %d\n",
658 atid);
659 painCave.severity = OPENMD_INFO;
660 painCave.isFatal = 0;
661 simError();
662 }
663
664 Etids[ atid ] = etid;
665 ElectrostaticMap.push_back(electrostaticAtomData);
666
667 if (electrostaticAtomData.is_Fluctuating) {
668 ret = FQtypes.insert( atid );
669 if (ret.second == false) {
670 sprintf( painCave.errMsg,
671 "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
672 atid );
673 painCave.severity = OPENMD_INFO;
674 painCave.isFatal = 0;
675 simError();
676 }
677 FQtids[atid] = fqtid;
678 Jij[fqtid].resize(nFlucq_);
679
680 // Now, iterate over all known fluctuating and add to the coulomb integral map:
681
682 std::set<int>::iterator it;
683 for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {
684 int etid2 = Etids[ (*it) ];
685 int fqtid2 = FQtids[ (*it) ];
686 ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
687 RealType a = electrostaticAtomData.slaterZeta;
688 RealType b = eaData2.slaterZeta;
689 int m = electrostaticAtomData.slaterN;
690 int n = eaData2.slaterN;
691
692 // Create the spline of the coulombic integral for s-type
693 // Slater orbitals. Add a 2 angstrom safety window to deal
694 // with cutoffGroups that have charged atoms longer than the
695 // cutoffRadius away from each other.
696
697 RealType rval;
698 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
699 vector<RealType> rvals;
700 vector<RealType> Jvals;
701 // don't start at i = 0, as rval = 0 is undefined for the
702 // slater overlap integrals.
703 for (int i = 1; i < np_+1; i++) {
704 rval = RealType(i) * dr;
705 rvals.push_back(rval);
706 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
707 PhysicalConstants::angstromToBohr ) *
708 PhysicalConstants::hartreeToKcal );
709 }
710
711 CubicSpline* J = new CubicSpline();
712 J->addPoints(rvals, Jvals);
713 Jij[fqtid][fqtid2] = J;
714 Jij[fqtid2].resize( nFlucq_ );
715 Jij[fqtid2][fqtid] = J;
716 }
717 }
718 return;
719 }
720
721 void Electrostatic::setCutoffRadius( RealType rCut ) {
722 cutoffRadius_ = rCut;
723 haveCutoffRadius_ = true;
724 }
725
726 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
727 summationMethod_ = esm;
728 }
729 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
730 screeningMethod_ = sm;
731 }
732 void Electrostatic::setDampingAlpha( RealType alpha ) {
733 dampingAlpha_ = alpha;
734 haveDampingAlpha_ = true;
735 }
736 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
737 dielectric_ = dielectric;
738 haveDielectric_ = true;
739 }
740
741 void Electrostatic::calcForce(InteractionData &idat) {
742
743 if (!initialized_) initialize();
744
745 data1 = ElectrostaticMap[Etids[idat.atid1]];
746 data2 = ElectrostaticMap[Etids[idat.atid2]];
747
748 U = 0.0; // Potential
749 F.zero(); // Force
750 Ta.zero(); // Torque on site a
751 Tb.zero(); // Torque on site b
752 Ea.zero(); // Electric field at site a
753 Eb.zero(); // Electric field at site b
754 dUdCa = 0.0; // fluctuating charge force at site a
755 dUdCb = 0.0; // fluctuating charge force at site a
756
757 // Indirect interactions mediated by the reaction field.
758 indirect_Pot = 0.0; // Potential
759 indirect_F.zero(); // Force
760 indirect_Ta.zero(); // Torque on site a
761 indirect_Tb.zero(); // Torque on site b
762
763 // Excluded potential that is still computed for fluctuating charges
764 excluded_Pot= 0.0;
765
766
767 // some variables we'll need independent of electrostatic type:
768
769 ri = 1.0 / *(idat.rij);
770 rhat = *(idat.d) * ri;
771
772 // logicals
773
774 a_is_Charge = data1.is_Charge;
775 a_is_Dipole = data1.is_Dipole;
776 a_is_Quadrupole = data1.is_Quadrupole;
777 a_is_Fluctuating = data1.is_Fluctuating;
778
779 b_is_Charge = data2.is_Charge;
780 b_is_Dipole = data2.is_Dipole;
781 b_is_Quadrupole = data2.is_Quadrupole;
782 b_is_Fluctuating = data2.is_Fluctuating;
783
784 // Obtain all of the required radial function values from the
785 // spline structures:
786
787 // needed for fields (and forces):
788 if (a_is_Charge || b_is_Charge) {
789 v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
790 }
791 if (a_is_Dipole || b_is_Dipole) {
792 v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
793 v11or = ri * v11;
794 }
795 if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) {
796 v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
797 v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
798 v22or = ri * v22;
799 }
800
801 // needed for potentials (and forces and torques):
802 if ((a_is_Dipole && b_is_Quadrupole) ||
803 (b_is_Dipole && a_is_Quadrupole)) {
804 v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
805 v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
806 v31or = v31 * ri;
807 v32or = v32 * ri;
808 }
809 if (a_is_Quadrupole && b_is_Quadrupole) {
810 v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
811 v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
812 v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
813 v42or = v42 * ri;
814 v43or = v43 * ri;
815 }
816
817 // calculate the single-site contributions (fields, etc).
818
819 if (a_is_Charge) {
820 C_a = data1.fixedCharge;
821
822 if (a_is_Fluctuating) {
823 C_a += *(idat.flucQ1);
824 }
825
826 if (idat.excluded) {
827 *(idat.skippedCharge2) += C_a;
828 } else {
829 // only do the field if we're not excluded:
830 Eb -= C_a * pre11_ * dv01 * rhat;
831 }
832 }
833
834 if (a_is_Dipole) {
835 D_a = *(idat.dipole1);
836 rdDa = dot(rhat, D_a);
837 rxDa = cross(rhat, D_a);
838 if (!idat.excluded)
839 Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
840 }
841
842 if (a_is_Quadrupole) {
843 Q_a = *(idat.quadrupole1);
844 trQa = Q_a.trace();
845 Qar = Q_a * rhat;
846 rQa = rhat * Q_a;
847 rdQar = dot(rhat, Qar);
848 rxQar = cross(rhat, Qar);
849 if (!idat.excluded)
850 Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
851 + rdQar * rhat * (dv22 - 2.0*v22or));
852 }
853
854 if (b_is_Charge) {
855 C_b = data2.fixedCharge;
856
857 if (b_is_Fluctuating)
858 C_b += *(idat.flucQ2);
859
860 if (idat.excluded) {
861 *(idat.skippedCharge1) += C_b;
862 } else {
863 // only do the field if we're not excluded:
864 Ea += C_b * pre11_ * dv01 * rhat;
865 }
866 }
867
868 if (b_is_Dipole) {
869 D_b = *(idat.dipole2);
870 rdDb = dot(rhat, D_b);
871 rxDb = cross(rhat, D_b);
872 if (!idat.excluded)
873 Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
874 }
875
876 if (b_is_Quadrupole) {
877 Q_b = *(idat.quadrupole2);
878 trQb = Q_b.trace();
879 Qbr = Q_b * rhat;
880 rQb = rhat * Q_b;
881 rdQbr = dot(rhat, Qbr);
882 rxQbr = cross(rhat, Qbr);
883 if (!idat.excluded)
884 Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
885 + rdQbr * rhat * (dv22 - 2.0*v22or));
886 }
887
888 if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
889 J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
890 }
891
892 if (a_is_Charge) {
893
894 if (b_is_Charge) {
895 pref = pre11_ * *(idat.electroMult);
896 U += C_a * C_b * pref * v01;
897 F += C_a * C_b * pref * dv01 * rhat;
898
899 // If this is an excluded pair, there are still indirect
900 // interactions via the reaction field we must worry about:
901
902 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
903 rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
904 indirect_Pot += rfContrib;
905 indirect_F += rfContrib * 2.0 * ri * rhat;
906 }
907
908 // Fluctuating charge forces are handled via Coulomb integrals
909 // for excluded pairs (i.e. those connected via bonds) and
910 // with the standard charge-charge interaction otherwise.
911
912 if (idat.excluded) {
913 if (a_is_Fluctuating || b_is_Fluctuating) {
914 coulInt = J->getValueAt( *(idat.rij) );
915 if (a_is_Fluctuating) dUdCa += coulInt * C_b;
916 if (b_is_Fluctuating) dUdCb += coulInt * C_a;
917 excluded_Pot += C_a * C_b * coulInt;
918 }
919 } else {
920 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
921 if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
922 }
923 }
924
925 if (b_is_Dipole) {
926 pref = pre12_ * *(idat.electroMult);
927 U += C_a * pref * v11 * rdDb;
928 F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
929 Tb += C_a * pref * v11 * rxDb;
930
931 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
932
933 // Even if we excluded this pair from direct interactions, we
934 // still have the reaction-field-mediated charge-dipole
935 // interaction:
936
937 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
938 rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
939 indirect_Pot += rfContrib * rdDb;
940 indirect_F += rfContrib * D_b / (*idat.rij);
941 indirect_Tb += C_a * pref * preRF_ * rxDb;
942 }
943 }
944
945 if (b_is_Quadrupole) {
946 pref = pre14_ * *(idat.electroMult);
947 U += C_a * pref * (v21 * trQb + v22 * rdQbr);
948 F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
949 F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
950 Tb += C_a * pref * 2.0 * rxQbr * v22;
951
952 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
953 }
954 }
955
956 if (a_is_Dipole) {
957
958 if (b_is_Charge) {
959 pref = pre12_ * *(idat.electroMult);
960
961 U -= C_b * pref * v11 * rdDa;
962 F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
963 Ta -= C_b * pref * v11 * rxDa;
964
965 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
966
967 // Even if we excluded this pair from direct interactions,
968 // we still have the reaction-field-mediated charge-dipole
969 // interaction:
970 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
971 rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
972 indirect_Pot -= rfContrib * rdDa;
973 indirect_F -= rfContrib * D_a / (*idat.rij);
974 indirect_Ta -= C_b * pref * preRF_ * rxDa;
975 }
976 }
977
978 if (b_is_Dipole) {
979 pref = pre22_ * *(idat.electroMult);
980 DadDb = dot(D_a, D_b);
981 DaxDb = cross(D_a, D_b);
982
983 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
984 F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
985 F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
986 Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
987 Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
988
989 // Even if we excluded this pair from direct interactions, we
990 // still have the reaction-field-mediated dipole-dipole
991 // interaction:
992 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
993 rfContrib = -pref * preRF_ * 2.0;
994 indirect_Pot += rfContrib * DadDb;
995 indirect_Ta += rfContrib * DaxDb;
996 indirect_Tb -= rfContrib * DaxDb;
997 }
998 }
999
1000 if (b_is_Quadrupole) {
1001 pref = pre24_ * *(idat.electroMult);
1002 DadQb = D_a * Q_b;
1003 DadQbr = dot(D_a, Qbr);
1004 DaxQbr = cross(D_a, Qbr);
1005
1006 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1007 F -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1008 F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1009 F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1010 F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1011 Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1012 Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1013 - 2.0*rdDa*rxQbr*v32);
1014 }
1015 }
1016
1017 if (a_is_Quadrupole) {
1018 if (b_is_Charge) {
1019 pref = pre14_ * *(idat.electroMult);
1020 U += C_b * pref * (v21 * trQa + v22 * rdQar);
1021 F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1022 F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1023 Ta += C_b * pref * 2.0 * rxQar * v22;
1024
1025 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1026 }
1027 if (b_is_Dipole) {
1028 pref = pre24_ * *(idat.electroMult);
1029 DbdQa = D_b * Q_a;
1030 DbdQar = dot(D_b, Qar);
1031 DbxQar = cross(D_b, Qar);
1032
1033 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1034 F += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1035 F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1036 F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1037 F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1038 Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1039 + 2.0*rdDb*rxQar*v32);
1040 Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1041 }
1042 if (b_is_Quadrupole) {
1043 pref = pre44_ * *(idat.electroMult); // yes
1044 QaQb = Q_a * Q_b;
1045 trQaQb = QaQb.trace();
1046 rQaQb = rhat * QaQb;
1047 QaQbr = QaQb * rhat;
1048 QaxQb = cross(Q_a, Q_b);
1049 rQaQbr = dot(rQa, Qbr);
1050 rQaxQbr = cross(rQa, Qbr);
1051
1052 U += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1053 U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42;
1054 U += pref * (rdQar * rdQbr) * v43;
1055
1056 F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1057 F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1058 F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1059
1060 F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1061 F += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1062 F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1063
1064 Ta += pref * (- 4.0 * QaxQb * v41);
1065 Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1066 + 4.0 * cross(rhat, QaQbr)
1067 - 4.0 * rQaxQbr) * v42;
1068 Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1069
1070
1071 Tb += pref * (+ 4.0 * QaxQb * v41);
1072 Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1073 - 4.0 * cross(rQaQb, rhat)
1074 + 4.0 * rQaxQbr) * v42;
1075 // Possible replacement for line 2 above:
1076 // + 4.0 * cross(rhat, QbQar)
1077
1078 Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1079
1080 }
1081 }
1082
1083 if (idat.doElectricField) {
1084 *(idat.eField1) += Ea * *(idat.electroMult);
1085 *(idat.eField2) += Eb * *(idat.electroMult);
1086 }
1087
1088 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1089 if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1090
1091 if (!idat.excluded) {
1092
1093 *(idat.vpair) += U;
1094 (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1095 *(idat.f1) += F * *(idat.sw);
1096
1097 if (a_is_Dipole || a_is_Quadrupole)
1098 *(idat.t1) += Ta * *(idat.sw);
1099
1100 if (b_is_Dipole || b_is_Quadrupole)
1101 *(idat.t2) += Tb * *(idat.sw);
1102
1103 } else {
1104
1105 // only accumulate the forces and torques resulting from the
1106 // indirect reaction field terms.
1107
1108 *(idat.vpair) += indirect_Pot;
1109 (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1110 (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1111 *(idat.f1) += *(idat.sw) * indirect_F;
1112
1113 if (a_is_Dipole || a_is_Quadrupole)
1114 *(idat.t1) += *(idat.sw) * indirect_Ta;
1115
1116 if (b_is_Dipole || b_is_Quadrupole)
1117 *(idat.t2) += *(idat.sw) * indirect_Tb;
1118 }
1119 return;
1120 }
1121
1122 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1123
1124 if (!initialized_) initialize();
1125
1126 ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1127
1128 // logicals
1129 bool i_is_Charge = data.is_Charge;
1130 bool i_is_Dipole = data.is_Dipole;
1131 bool i_is_Quadrupole = data.is_Quadrupole;
1132 bool i_is_Fluctuating = data.is_Fluctuating;
1133 RealType C_a = data.fixedCharge;
1134 RealType self(0.0), preVal, DdD, trQ, trQQ;
1135
1136 if (i_is_Dipole) {
1137 DdD = data.dipole.lengthSquare();
1138 }
1139
1140 if (i_is_Fluctuating) {
1141 C_a += *(sdat.flucQ);
1142 // dVdFQ is really a force, so this is negative the derivative
1143 *(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1144 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1145 (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1146 }
1147
1148 switch (summationMethod_) {
1149 case esm_REACTION_FIELD:
1150
1151 if (i_is_Charge) {
1152 // Self potential [see Wang and Hermans, "Reaction Field
1153 // Molecular Dynamics Simulation with Friedman’s Image Charge
1154 // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1155 preVal = pre11_ * preRF_ * C_a * C_a;
1156 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1157 }
1158
1159 if (i_is_Dipole) {
1160 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1161 }
1162
1163 break;
1164
1165 case esm_SHIFTED_FORCE:
1166 case esm_SHIFTED_POTENTIAL:
1167 case esm_TAYLOR_SHIFTED:
1168 if (i_is_Charge)
1169 self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));
1170 if (i_is_Dipole)
1171 self += selfMult2_ * pre22_ * DdD;
1172 if (i_is_Quadrupole) {
1173 trQ = data.quadrupole.trace();
1174 trQQ = (data.quadrupole * data.quadrupole).trace();
1175 self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1176 if (i_is_Charge)
1177 self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1178 }
1179 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1180 break;
1181 default:
1182 break;
1183 }
1184 }
1185
1186 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1187 // This seems to work moderately well as a default. There's no
1188 // inherent scale for 1/r interactions that we can standardize.
1189 // 12 angstroms seems to be a reasonably good guess for most
1190 // cases.
1191 return 12.0;
1192 }
1193
1194
1195 void Electrostatic::ReciprocalSpaceSum () {
1196
1197 RealType kPot = 0.0;
1198 RealType kVir = 0.0;
1199
1200 const RealType mPoleConverter = 0.20819434; // converts from the
1201 // internal units of
1202 // Debye (for dipoles)
1203 // or Debye-angstroms
1204 // (for quadrupoles) to
1205 // electron angstroms or
1206 // electron-angstroms^2
1207
1208 const RealType eConverter = 332.0637778; // convert the
1209 // Charge-Charge
1210 // electrostatic
1211 // interactions into kcal /
1212 // mol assuming distances
1213 // are measured in
1214 // angstroms.
1215
1216 Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1217 Vector3d box = hmat.diagonals();
1218 RealType boxMax = box.max();
1219
1220 //int kMax = int(pow(dampingAlpha_,2)*cutoffRadius_ * boxMax / M_PI);
1221 const int kMax = 5;
1222 int kSqMax = kMax*kMax + 2;
1223
1224 int kLimit = kMax+1;
1225 int kLim2 = 2*kMax+1;
1226 int kSqLim = kSqMax;
1227
1228 vector<RealType> AK(kSqLim+1, 0.0);
1229 RealType xcl = 2.0 * M_PI / box.x();
1230 RealType ycl = 2.0 * M_PI / box.y();
1231 RealType zcl = 2.0 * M_PI / box.z();
1232 RealType rcl = 2.0 * M_PI / boxMax;
1233 RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1234
1235 if(dampingAlpha_ < 1.0e-12) return;
1236
1237 RealType ralph = -0.25/pow(dampingAlpha_,2);
1238
1239 // Calculate and store exponential factors
1240
1241 vector<vector<Vector3d> > eCos;
1242 vector<vector<Vector3d> > eSin;
1243
1244 int nMax = info_->getNAtoms();
1245
1246 eCos.resize(kLimit+1);
1247 eSin.resize(kLimit+1);
1248 for (int j = 0; j < kLimit+1; j++) {
1249 eCos[j].resize(nMax);
1250 eSin[j].resize(nMax);
1251 }
1252
1253 Vector3d t( 2.0 * M_PI );
1254 t.Vdiv(t, box);
1255
1256 SimInfo::MoleculeIterator mi;
1257 Molecule::AtomIterator ai;
1258 int i;
1259 Vector3d r;
1260 Vector3d tt;
1261 Vector3d w;
1262 Vector3d u;
1263
1264 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1265 mol = info_->nextMolecule(mi)) {
1266 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1267 atom = mol->nextAtom(ai)) {
1268
1269 i = atom->getLocalIndex();
1270 r = atom->getPos();
1271 info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1272
1273 tt.Vmul(t, r);
1274
1275 eCos[1][i] = Vector3d(1.0, 1.0, 1.0);
1276 eSin[1][i] = Vector3d(0.0, 0.0, 0.0);
1277 eCos[2][i] = Vector3d(cos(tt.x()), cos(tt.y()), cos(tt.z()));
1278 eSin[2][i] = Vector3d(sin(tt.x()), sin(tt.y()), sin(tt.z()));
1279 u = 2.0 * eCos[1][i];
1280 eCos[3][i].Vmul(u, eCos[2][i]);
1281 eSin[3][i].Vmul(u, eSin[2][i]);
1282
1283 for(int l = 3; l <= kLimit; l++) {
1284 w.Vmul(u, eCos[l-1][i]);
1285 eCos[l][i] = w - eCos[l-2][i];
1286 w.Vmul(u, eSin[l-1][i]);
1287 eSin[l][i] = w - eSin[l-2][i];
1288 }
1289 }
1290 }
1291
1292 // Calculate and store AK coefficients:
1293
1294 RealType eksq = 1.0;
1295 RealType expf = 0.0;
1296 if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1297 for (i = 1; i <= kSqLim; i++) {
1298 RealType rksq = float(i)*rcl*rcl;
1299 eksq = expf*eksq;
1300 AK[i] = eConverter * eksq/rksq;
1301 }
1302
1303 /*
1304 * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1305 * the values of ll, mm and nn are selected so that the symmetry of
1306 * reciprocal lattice is taken into account i.e. the following
1307 * rules apply.
1308 *
1309 * ll ranges over the values 0 to kMax only.
1310 *
1311 * mm ranges over 0 to kMax when ll=0 and over
1312 * -kMax to kMax otherwise.
1313 * nn ranges over 1 to kMax when ll=mm=0 and over
1314 * -kMax to kMax otherwise.
1315 *
1316 * Hence the result of the summation must be doubled at the end.
1317 */
1318
1319 std::vector<RealType> clm(nMax, 0.0);
1320 std::vector<RealType> slm(nMax, 0.0);
1321 std::vector<RealType> ckr(nMax, 0.0);
1322 std::vector<RealType> skr(nMax, 0.0);
1323 std::vector<RealType> ckc(nMax, 0.0);
1324 std::vector<RealType> cks(nMax, 0.0);
1325 std::vector<RealType> dkc(nMax, 0.0);
1326 std::vector<RealType> dks(nMax, 0.0);
1327 std::vector<RealType> qkc(nMax, 0.0);
1328 std::vector<RealType> qks(nMax, 0.0);
1329 std::vector<Vector3d> dxk(nMax, V3Zero);
1330 std::vector<Vector3d> qxk(nMax, V3Zero);
1331
1332 int mMin = kLimit;
1333 int nMin = kLimit + 1;
1334 for (int l = 1; l <= kLimit; l++) {
1335 int ll =l - 1;
1336 RealType rl = xcl * float(ll);
1337 for (int mmm = mMin; mmm <= kLim2; mmm++) {
1338 int mm = mmm - kLimit;
1339 int m = abs(mm) + 1;
1340 RealType rm = ycl * float(mm);
1341 // Set temporary products of exponential terms
1342 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1343 mol = info_->nextMolecule(mi)) {
1344 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1345 atom = mol->nextAtom(ai)) {
1346
1347 i = atom->getLocalIndex();
1348 if(mm < 0) {
1349 clm[i] = eCos[l][i].x()*eCos[m][i].y()
1350 + eSin[l][i].x()*eSin[m][i].y();
1351 slm[i] = eCos[l][i].x()*eCos[m][i].y()
1352 - eSin[m][i].y()*eCos[l][i].x();
1353 } else {
1354 clm[i] = eCos[l][i].x()*eCos[m][i].y()
1355 - eSin[l][i].x()*eSin[m][i].y();
1356 slm[i] = eSin[l][i].x()*eCos[m][i].y()
1357 + eSin[m][i].y()*eCos[l][i].x();
1358 }
1359 }
1360 }
1361 for (int nnn = nMin; nnn <= kLim2; nnn++) {
1362 int nn = nnn - kLimit;
1363 int n = abs(nn) + 1;
1364 RealType rn = zcl * float(nn);
1365 // Test on magnitude of k vector:
1366 int kk=ll*ll + mm*mm + nn*nn;
1367 if(kk <= kSqLim) {
1368 Vector3d kVec = Vector3d(rl, rm, rn);
1369 Mat3x3d k2 = outProduct(kVec, kVec);
1370 // Calculate exp(ikr) terms
1371 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1372 mol = info_->nextMolecule(mi)) {
1373 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1374 atom = mol->nextAtom(ai)) {
1375 i = atom->getLocalIndex();
1376
1377 if (nn < 0) {
1378 ckr[i]=clm[i]*eCos[n][i].z()+slm[i]*eSin[n][i].z();
1379 skr[i]=slm[i]*eCos[n][i].z()-clm[i]*eSin[n][i].z();
1380 } else {
1381 ckr[i]=clm[i]*eCos[n][i].z()-slm[i]*eSin[n][i].z();
1382 skr[i]=slm[i]*eCos[n][i].z()+clm[i]*eSin[n][i].z();
1383 }
1384 }
1385 }
1386
1387 // Calculate scalar and vector products for each site:
1388
1389 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1390 mol = info_->nextMolecule(mi)) {
1391 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1392 atom = mol->nextAtom(ai)) {
1393 i = atom->getGlobalIndex();
1394 int atid = atom->getAtomType()->getIdent();
1395 ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]];
1396
1397 if (data.is_Charge) {
1398 RealType C = data.fixedCharge;
1399 if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1400 ckc[i] = C * ckr[i];
1401 cks[i] = C * cks[i];
1402 }
1403
1404 if (data.is_Dipole) {
1405 Vector3d D = atom->getDipole() * mPoleConverter;
1406 RealType dk = dot(kVec, D);
1407 dxk[i] = cross(kVec, D);
1408 dkc[i] = dk * ckr[i];
1409 dks[i] = dk * skr[i];
1410 }
1411 if (data.is_Quadrupole) {
1412 Mat3x3d Q = atom->getQuadrupole();
1413 Q *= mPoleConverter;
1414 RealType qk = -( Q * k2 ).trace();
1415 qxk[i] = -2.0 * cross(k2, Q);
1416 qkc[i] = qk * ckr[i];
1417 qks[i] = qk * skr[i];
1418 }
1419 }
1420 }
1421
1422 // calculate vector sums
1423
1424 RealType ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1425 RealType ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1426 RealType dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1427 RealType dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1428 RealType qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1429 RealType qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1430
1431 #ifdef IS_MPI
1432 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckcs, 1, MPI::REALTYPE,
1433 MPI::SUM);
1434 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &ckss, 1, MPI::REALTYPE,
1435 MPI::SUM);
1436 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkcs, 1, MPI::REALTYPE,
1437 MPI::SUM);
1438 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &dkss, 1, MPI::REALTYPE,
1439 MPI::SUM);
1440 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkcs, 1, MPI::REALTYPE,
1441 MPI::SUM);
1442 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &qkss, 1, MPI::REALTYPE,
1443 MPI::SUM);
1444 #endif
1445
1446 // Accumulate potential energy and virial contribution:
1447
1448 //cerr << "l, m, n = " << l << " " << m << " " << n << "\n";
1449 cerr << "kVec = " << kVec << "\n";
1450 cerr << "ckss = " << ckss << " ckcs = " << ckcs << "\n";
1451 kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1452 + (ckcs-dkss-qkcs)*(ckcs-dkss-qkss));
1453 //cerr << "kspace pot = " << kPot << "\n";
1454 kVir -= 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss
1455 +4.0*(ckss*dkcs-ckcs*dkss)
1456 +3.0*(dkcs*dkcs+dkss*dkss)
1457 -6.0*(ckss*qkss+ckcs*qkcs)
1458 +8.0*(dkss*qkcs-dkcs*qkss)
1459 +5.0*(qkss*qkss+qkcs*qkcs));
1460
1461 // Calculate force and torque for each site:
1462
1463 for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1464 mol = info_->nextMolecule(mi)) {
1465 for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1466 atom = mol->nextAtom(ai)) {
1467
1468 i = atom->getLocalIndex();
1469 int atid = atom->getAtomType()->getIdent();
1470 ElectrostaticAtomData data = ElectrostaticMap[Etids[atid]];
1471
1472 RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1473 - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1474 RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1475 -ckr[i]*(ckss+dkcs-qkss));
1476 RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)+
1477 skr[i]*(ckss+dkcs-qkss));
1478
1479
1480 atom->addFrc( 4.0 * rvol * qfrc * kVec );
1481
1482 if (data.is_Dipole) {
1483 atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1484 }
1485 if (data.is_Quadrupole) {
1486 atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1487 }
1488 }
1489 }
1490 }
1491 }
1492 }
1493 }
1494 }
1495 }

Properties

Name Value
svn:eol-style native