1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Electrostatic.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
#include "types/FixedChargeAdapter.hpp" |
51 |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
#include "types/MultipoleAdapter.hpp" |
53 |
#include "io/Globals.hpp" |
54 |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
#include "utils/PhysicalConstants.hpp" |
56 |
#include "math/erfc.hpp" |
57 |
#include "math/SquareMatrix.hpp" |
58 |
|
59 |
namespace OpenMD { |
60 |
|
61 |
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
62 |
forceField_(NULL), info_(NULL), |
63 |
haveCutoffRadius_(false), |
64 |
haveDampingAlpha_(false), |
65 |
haveDielectric_(false), |
66 |
haveElectroSplines_(false) |
67 |
{} |
68 |
|
69 |
void Electrostatic::initialize() { |
70 |
|
71 |
Globals* simParams_ = info_->getSimParams(); |
72 |
|
73 |
summationMap_["HARD"] = esm_HARD; |
74 |
summationMap_["NONE"] = esm_HARD; |
75 |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
76 |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
77 |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
78 |
summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED; |
79 |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
80 |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
81 |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
82 |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
83 |
screeningMap_["DAMPED"] = DAMPED; |
84 |
screeningMap_["UNDAMPED"] = UNDAMPED; |
85 |
|
86 |
// these prefactors convert the multipole interactions into kcal / mol |
87 |
// all were computed assuming distances are measured in angstroms |
88 |
// Charge-Charge, assuming charges are measured in electrons |
89 |
pre11_ = 332.0637778; |
90 |
// Charge-Dipole, assuming charges are measured in electrons, and |
91 |
// dipoles are measured in debyes |
92 |
pre12_ = 69.13373; |
93 |
// Dipole-Dipole, assuming dipoles are measured in Debye |
94 |
pre22_ = 14.39325; |
95 |
// Charge-Quadrupole, assuming charges are measured in electrons, and |
96 |
// quadrupoles are measured in 10^-26 esu cm^2 |
97 |
// This unit is also known affectionately as an esu centibarn. |
98 |
pre14_ = 69.13373; |
99 |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
100 |
// quadrupoles in esu centibarns: |
101 |
pre24_ = 14.39325; |
102 |
// Quadrupole-Quadrupole, assuming esu centibarns: |
103 |
pre44_ = 14.39325; |
104 |
|
105 |
// conversions for the simulation box dipole moment |
106 |
chargeToC_ = 1.60217733e-19; |
107 |
angstromToM_ = 1.0e-10; |
108 |
debyeToCm_ = 3.33564095198e-30; |
109 |
|
110 |
// Default number of points for electrostatic splines |
111 |
np_ = 100; |
112 |
|
113 |
// variables to handle different summation methods for long-range |
114 |
// electrostatics: |
115 |
summationMethod_ = esm_HARD; |
116 |
screeningMethod_ = UNDAMPED; |
117 |
dielectric_ = 1.0; |
118 |
|
119 |
// check the summation method: |
120 |
if (simParams_->haveElectrostaticSummationMethod()) { |
121 |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
122 |
toUpper(myMethod); |
123 |
map<string, ElectrostaticSummationMethod>::iterator i; |
124 |
i = summationMap_.find(myMethod); |
125 |
if ( i != summationMap_.end() ) { |
126 |
summationMethod_ = (*i).second; |
127 |
} else { |
128 |
// throw error |
129 |
sprintf( painCave.errMsg, |
130 |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
131 |
"\t(Input file specified %s .)\n" |
132 |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
133 |
"\t\"shifted_potential\", \"shifted_force\",\n" |
134 |
"\t\"taylor_shifted\", or \"reaction_field\".\n", |
135 |
myMethod.c_str() ); |
136 |
painCave.isFatal = 1; |
137 |
simError(); |
138 |
} |
139 |
} else { |
140 |
// set ElectrostaticSummationMethod to the cutoffMethod: |
141 |
if (simParams_->haveCutoffMethod()){ |
142 |
string myMethod = simParams_->getCutoffMethod(); |
143 |
toUpper(myMethod); |
144 |
map<string, ElectrostaticSummationMethod>::iterator i; |
145 |
i = summationMap_.find(myMethod); |
146 |
if ( i != summationMap_.end() ) { |
147 |
summationMethod_ = (*i).second; |
148 |
} |
149 |
} |
150 |
} |
151 |
|
152 |
if (summationMethod_ == esm_REACTION_FIELD) { |
153 |
if (!simParams_->haveDielectric()) { |
154 |
// throw warning |
155 |
sprintf( painCave.errMsg, |
156 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
157 |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
158 |
painCave.isFatal = 0; |
159 |
painCave.severity = OPENMD_INFO; |
160 |
simError(); |
161 |
} else { |
162 |
dielectric_ = simParams_->getDielectric(); |
163 |
} |
164 |
haveDielectric_ = true; |
165 |
} |
166 |
|
167 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
168 |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
169 |
toUpper(myScreen); |
170 |
map<string, ElectrostaticScreeningMethod>::iterator i; |
171 |
i = screeningMap_.find(myScreen); |
172 |
if ( i != screeningMap_.end()) { |
173 |
screeningMethod_ = (*i).second; |
174 |
} else { |
175 |
sprintf( painCave.errMsg, |
176 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
177 |
"\t(Input file specified %s .)\n" |
178 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
179 |
"or \"damped\".\n", myScreen.c_str() ); |
180 |
painCave.isFatal = 1; |
181 |
simError(); |
182 |
} |
183 |
} |
184 |
|
185 |
// check to make sure a cutoff value has been set: |
186 |
if (!haveCutoffRadius_) { |
187 |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
188 |
"Cutoff value!\n"); |
189 |
painCave.severity = OPENMD_ERROR; |
190 |
painCave.isFatal = 1; |
191 |
simError(); |
192 |
} |
193 |
|
194 |
if (screeningMethod_ == DAMPED) { |
195 |
if (!simParams_->haveDampingAlpha()) { |
196 |
// first set a cutoff dependent alpha value |
197 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
198 |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
199 |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
200 |
|
201 |
// throw warning |
202 |
sprintf( painCave.errMsg, |
203 |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
204 |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
205 |
"\tcutoff of %f (ang).\n", |
206 |
dampingAlpha_, cutoffRadius_); |
207 |
painCave.severity = OPENMD_INFO; |
208 |
painCave.isFatal = 0; |
209 |
simError(); |
210 |
} else { |
211 |
dampingAlpha_ = simParams_->getDampingAlpha(); |
212 |
} |
213 |
haveDampingAlpha_ = true; |
214 |
} |
215 |
|
216 |
Etypes.clear(); |
217 |
Etids.clear(); |
218 |
FQtypes.clear(); |
219 |
FQtids.clear(); |
220 |
ElectrostaticMap.clear(); |
221 |
Jij.clear(); |
222 |
nElectro_ = 0; |
223 |
nFlucq_ = 0; |
224 |
|
225 |
Etids.resize( forceField_->getNAtomType(), -1); |
226 |
FQtids.resize( forceField_->getNAtomType(), -1); |
227 |
|
228 |
set<AtomType*>::iterator at; |
229 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
230 |
if ((*at)->isElectrostatic()) nElectro_++; |
231 |
if ((*at)->isFluctuatingCharge()) nFlucq_++; |
232 |
} |
233 |
|
234 |
Jij.resize(nFlucq_); |
235 |
|
236 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
237 |
if ((*at)->isElectrostatic()) addType(*at); |
238 |
} |
239 |
|
240 |
if (summationMethod_ == esm_REACTION_FIELD) { |
241 |
preRF_ = (dielectric_ - 1.0) / |
242 |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
243 |
} |
244 |
|
245 |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
246 |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
247 |
RealType a2, expTerm, invArootPi; |
248 |
|
249 |
RealType r = cutoffRadius_; |
250 |
RealType r2 = r * r; |
251 |
RealType ric = 1.0 / r; |
252 |
RealType ric2 = ric * ric; |
253 |
|
254 |
if (screeningMethod_ == DAMPED) { |
255 |
a2 = dampingAlpha_ * dampingAlpha_; |
256 |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
257 |
expTerm = exp(-a2 * r2); |
258 |
// values of Smith's B_l functions at the cutoff radius: |
259 |
b0c = erfc(dampingAlpha_ * r) / r; |
260 |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
261 |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
262 |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
263 |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
264 |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
265 |
//selfMult1_ = - 2.0 * a2 * invArootPi; |
266 |
//selfMult2_ = - 4.0 * a2 * a2 * invArootPi / 3.0; |
267 |
//selfMult4_ = - 8.0 * a2 * a2 * a2 * invArootPi / 5.0; |
268 |
// Half the Smith self piece: |
269 |
selfMult1_ = - a2 * invArootPi; |
270 |
selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0; |
271 |
selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0; |
272 |
} else { |
273 |
a2 = 0.0; |
274 |
b0c = 1.0 / r; |
275 |
b1c = ( b0c) / r2; |
276 |
b2c = (3.0 * b1c) / r2; |
277 |
b3c = (5.0 * b2c) / r2; |
278 |
b4c = (7.0 * b3c) / r2; |
279 |
b5c = (9.0 * b4c) / r2; |
280 |
selfMult1_ = 0.0; |
281 |
selfMult2_ = 0.0; |
282 |
selfMult4_ = 0.0; |
283 |
} |
284 |
|
285 |
// higher derivatives of B_0 at the cutoff radius: |
286 |
db0c_1 = -r * b1c; |
287 |
db0c_2 = -b1c + r2 * b2c; |
288 |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
289 |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
290 |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
291 |
|
292 |
selfMult1_ -= b0c; |
293 |
selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0; |
294 |
selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0; |
295 |
|
296 |
// working variables for the splines: |
297 |
RealType ri, ri2; |
298 |
RealType b0, b1, b2, b3, b4, b5; |
299 |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
300 |
RealType f, fc, f0; |
301 |
RealType g, gc, g0, g1, g2, g3, g4; |
302 |
RealType h, hc, h1, h2, h3, h4; |
303 |
RealType s, sc, s2, s3, s4; |
304 |
RealType t, tc, t3, t4; |
305 |
RealType u, uc, u4; |
306 |
|
307 |
// working variables for Taylor expansion: |
308 |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
309 |
|
310 |
// Approximate using splines using a maximum of 0.1 Angstroms |
311 |
// between points. |
312 |
int nptest = int((cutoffRadius_ + 2.0) / 0.1); |
313 |
np_ = (np_ > nptest) ? np_ : nptest; |
314 |
|
315 |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
316 |
// have charged atoms longer than the cutoffRadius away from each |
317 |
// other. Splining is almost certainly the best choice here. |
318 |
// Direct calls to erfc would be preferrable if it is a very fast |
319 |
// implementation. |
320 |
|
321 |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
322 |
|
323 |
// Storage vectors for the computed functions |
324 |
vector<RealType> rv; |
325 |
vector<RealType> v01v; |
326 |
vector<RealType> v11v; |
327 |
vector<RealType> v21v, v22v; |
328 |
vector<RealType> v31v, v32v; |
329 |
vector<RealType> v41v, v42v, v43v; |
330 |
|
331 |
/* |
332 |
vector<RealType> dv01v; |
333 |
vector<RealType> dv11v; |
334 |
vector<RealType> dv21v, dv22v; |
335 |
vector<RealType> dv31v, dv32v; |
336 |
vector<RealType> dv41v, dv42v, dv43v; |
337 |
*/ |
338 |
|
339 |
for (int i = 1; i < np_ + 1; i++) { |
340 |
r = RealType(i) * dx; |
341 |
rv.push_back(r); |
342 |
|
343 |
ri = 1.0 / r; |
344 |
ri2 = ri * ri; |
345 |
|
346 |
r2 = r * r; |
347 |
expTerm = exp(-a2 * r2); |
348 |
|
349 |
// Taylor expansion factors (no need for factorials this way): |
350 |
rmRc = r - cutoffRadius_; |
351 |
rmRc2 = rmRc * rmRc / 2.0; |
352 |
rmRc3 = rmRc2 * rmRc / 3.0; |
353 |
rmRc4 = rmRc3 * rmRc / 4.0; |
354 |
|
355 |
// values of Smith's B_l functions at r: |
356 |
if (screeningMethod_ == DAMPED) { |
357 |
b0 = erfc(dampingAlpha_ * r) * ri; |
358 |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
359 |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
360 |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
361 |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
362 |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
363 |
} else { |
364 |
b0 = ri; |
365 |
b1 = ( b0) * ri2; |
366 |
b2 = (3.0 * b1) * ri2; |
367 |
b3 = (5.0 * b2) * ri2; |
368 |
b4 = (7.0 * b3) * ri2; |
369 |
b5 = (9.0 * b4) * ri2; |
370 |
} |
371 |
|
372 |
// higher derivatives of B_0 at r: |
373 |
db0_1 = -r * b1; |
374 |
db0_2 = -b1 + r2 * b2; |
375 |
db0_3 = 3.0*r*b2 - r2*r*b3; |
376 |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
377 |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
378 |
|
379 |
f = b0; |
380 |
fc = b0c; |
381 |
f0 = f - fc - rmRc*db0c_1; |
382 |
|
383 |
g = db0_1; |
384 |
gc = db0c_1; |
385 |
g0 = g - gc; |
386 |
g1 = g0 - rmRc *db0c_2; |
387 |
g2 = g1 - rmRc2*db0c_3; |
388 |
g3 = g2 - rmRc3*db0c_4; |
389 |
g4 = g3 - rmRc4*db0c_5; |
390 |
|
391 |
h = db0_2; |
392 |
hc = db0c_2; |
393 |
h1 = h - hc; |
394 |
h2 = h1 - rmRc *db0c_3; |
395 |
h3 = h2 - rmRc2*db0c_4; |
396 |
h4 = h3 - rmRc3*db0c_5; |
397 |
|
398 |
s = db0_3; |
399 |
sc = db0c_3; |
400 |
s2 = s - sc; |
401 |
s3 = s2 - rmRc *db0c_4; |
402 |
s4 = s3 - rmRc2*db0c_5; |
403 |
|
404 |
t = db0_4; |
405 |
tc = db0c_4; |
406 |
t3 = t - tc; |
407 |
t4 = t3 - rmRc *db0c_5; |
408 |
|
409 |
u = db0_5; |
410 |
uc = db0c_5; |
411 |
u4 = u - uc; |
412 |
|
413 |
// in what follows below, the various v functions are used for |
414 |
// potentials and torques, while the w functions show up in the |
415 |
// forces. |
416 |
|
417 |
switch (summationMethod_) { |
418 |
case esm_SHIFTED_FORCE: |
419 |
|
420 |
v01 = f - fc - rmRc*gc; |
421 |
v11 = g - gc - rmRc*hc; |
422 |
v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric; |
423 |
v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric); |
424 |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric; |
425 |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric) |
426 |
- rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
427 |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2 |
428 |
- rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2; |
429 |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric |
430 |
- rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric; |
431 |
|
432 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
433 |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric) |
434 |
- rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
435 |
|
436 |
dv01 = g - gc; |
437 |
dv11 = h - hc; |
438 |
dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric; |
439 |
dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric); |
440 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric; |
441 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri) |
442 |
- (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
443 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2; |
444 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri |
445 |
- (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric; |
446 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri) |
447 |
- (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
448 |
|
449 |
break; |
450 |
|
451 |
case esm_TAYLOR_SHIFTED: |
452 |
|
453 |
v01 = f0; |
454 |
v11 = g1; |
455 |
v21 = g2 * ri; |
456 |
v22 = h2 - v21; |
457 |
v31 = (h3 - g3 * ri) * ri; |
458 |
v32 = s3 - 3.0*v31; |
459 |
v41 = (h4 - g4 * ri) * ri2; |
460 |
v42 = s4 * ri - 3.0*v41; |
461 |
v43 = t4 - 6.0*v42 - 3.0*v41; |
462 |
|
463 |
dv01 = g0; |
464 |
dv11 = h1; |
465 |
dv21 = (h2 - g2*ri)*ri; |
466 |
dv22 = (s2 - (h2 - g2*ri)*ri); |
467 |
dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri; |
468 |
dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri); |
469 |
dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2; |
470 |
dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri; |
471 |
dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri); |
472 |
|
473 |
break; |
474 |
|
475 |
case esm_SHIFTED_POTENTIAL: |
476 |
|
477 |
v01 = f - fc; |
478 |
v11 = g - gc; |
479 |
v21 = g*ri - gc*ric; |
480 |
v22 = h - g*ri - (hc - gc*ric); |
481 |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
482 |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
483 |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
484 |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
485 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
486 |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
487 |
|
488 |
dv01 = g; |
489 |
dv11 = h; |
490 |
dv21 = (h - g*ri)*ri; |
491 |
dv22 = (s - (h - g*ri)*ri); |
492 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
493 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
494 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
495 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
496 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
497 |
|
498 |
break; |
499 |
|
500 |
case esm_SWITCHING_FUNCTION: |
501 |
case esm_HARD: |
502 |
|
503 |
v01 = f; |
504 |
v11 = g; |
505 |
v21 = g*ri; |
506 |
v22 = h - g*ri; |
507 |
v31 = (h-g*ri)*ri; |
508 |
v32 = (s - 3.0*(h-g*ri)*ri); |
509 |
v41 = (h - g*ri)*ri2; |
510 |
v42 = (s-3.0*(h-g*ri)*ri)*ri; |
511 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri); |
512 |
|
513 |
dv01 = g; |
514 |
dv11 = h; |
515 |
dv21 = (h - g*ri)*ri; |
516 |
dv22 = (s - (h - g*ri)*ri); |
517 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
518 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
519 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
520 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
521 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
522 |
|
523 |
break; |
524 |
|
525 |
case esm_REACTION_FIELD: |
526 |
|
527 |
// following DL_POLY's lead for shifting the image charge potential: |
528 |
f = b0 + preRF_ * r2; |
529 |
fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_; |
530 |
|
531 |
g = db0_1 + preRF_ * 2.0 * r; |
532 |
gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_; |
533 |
|
534 |
h = db0_2 + preRF_ * 2.0; |
535 |
hc = db0c_2 + preRF_ * 2.0; |
536 |
|
537 |
v01 = f - fc; |
538 |
v11 = g - gc; |
539 |
v21 = g*ri - gc*ric; |
540 |
v22 = h - g*ri - (hc - gc*ric); |
541 |
v31 = (h-g*ri)*ri - (hc-gc*ric)*ric; |
542 |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
543 |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
544 |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
545 |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
546 |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
547 |
|
548 |
dv01 = g; |
549 |
dv11 = h; |
550 |
dv21 = (h - g*ri)*ri; |
551 |
dv22 = (s - (h - g*ri)*ri); |
552 |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
553 |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
554 |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
555 |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
556 |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
557 |
|
558 |
break; |
559 |
|
560 |
case esm_EWALD_FULL: |
561 |
case esm_EWALD_PME: |
562 |
case esm_EWALD_SPME: |
563 |
default : |
564 |
map<string, ElectrostaticSummationMethod>::iterator i; |
565 |
std::string meth; |
566 |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
567 |
if ((*i).second == summationMethod_) meth = (*i).first; |
568 |
} |
569 |
sprintf( painCave.errMsg, |
570 |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
571 |
"\thas not been implemented yet. Please select one of:\n" |
572 |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
573 |
meth.c_str() ); |
574 |
painCave.isFatal = 1; |
575 |
simError(); |
576 |
break; |
577 |
} |
578 |
|
579 |
// Add these computed values to the storage vectors for spline creation: |
580 |
v01v.push_back(v01); |
581 |
v11v.push_back(v11); |
582 |
v21v.push_back(v21); |
583 |
v22v.push_back(v22); |
584 |
v31v.push_back(v31); |
585 |
v32v.push_back(v32); |
586 |
v41v.push_back(v41); |
587 |
v42v.push_back(v42); |
588 |
v43v.push_back(v43); |
589 |
/* |
590 |
dv01v.push_back(dv01); |
591 |
dv11v.push_back(dv11); |
592 |
dv21v.push_back(dv21); |
593 |
dv22v.push_back(dv22); |
594 |
dv31v.push_back(dv31); |
595 |
dv32v.push_back(dv32); |
596 |
dv41v.push_back(dv41); |
597 |
dv42v.push_back(dv42); |
598 |
dv43v.push_back(dv43); |
599 |
*/ |
600 |
} |
601 |
|
602 |
// construct the spline structures and fill them with the values we've |
603 |
// computed: |
604 |
|
605 |
v01s = new CubicSpline(); |
606 |
v01s->addPoints(rv, v01v); |
607 |
v11s = new CubicSpline(); |
608 |
v11s->addPoints(rv, v11v); |
609 |
v21s = new CubicSpline(); |
610 |
v21s->addPoints(rv, v21v); |
611 |
v22s = new CubicSpline(); |
612 |
v22s->addPoints(rv, v22v); |
613 |
v31s = new CubicSpline(); |
614 |
v31s->addPoints(rv, v31v); |
615 |
v32s = new CubicSpline(); |
616 |
v32s->addPoints(rv, v32v); |
617 |
v41s = new CubicSpline(); |
618 |
v41s->addPoints(rv, v41v); |
619 |
v42s = new CubicSpline(); |
620 |
v42s->addPoints(rv, v42v); |
621 |
v43s = new CubicSpline(); |
622 |
v43s->addPoints(rv, v43v); |
623 |
|
624 |
/* |
625 |
dv01s = new CubicSpline(); |
626 |
dv01s->addPoints(rv, dv01v); |
627 |
dv11s = new CubicSpline(); |
628 |
dv11s->addPoints(rv, dv11v); |
629 |
dv21s = new CubicSpline(); |
630 |
dv21s->addPoints(rv, dv21v); |
631 |
dv22s = new CubicSpline(); |
632 |
dv22s->addPoints(rv, dv22v); |
633 |
dv31s = new CubicSpline(); |
634 |
dv31s->addPoints(rv, dv31v); |
635 |
dv32s = new CubicSpline(); |
636 |
dv32s->addPoints(rv, dv32v); |
637 |
dv41s = new CubicSpline(); |
638 |
dv41s->addPoints(rv, dv41v); |
639 |
dv42s = new CubicSpline(); |
640 |
dv42s->addPoints(rv, dv42v); |
641 |
dv43s = new CubicSpline(); |
642 |
dv43s->addPoints(rv, dv43v); |
643 |
*/ |
644 |
|
645 |
haveElectroSplines_ = true; |
646 |
|
647 |
initialized_ = true; |
648 |
} |
649 |
|
650 |
void Electrostatic::addType(AtomType* atomType){ |
651 |
|
652 |
ElectrostaticAtomData electrostaticAtomData; |
653 |
electrostaticAtomData.is_Charge = false; |
654 |
electrostaticAtomData.is_Dipole = false; |
655 |
electrostaticAtomData.is_Quadrupole = false; |
656 |
electrostaticAtomData.is_Fluctuating = false; |
657 |
|
658 |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
659 |
|
660 |
if (fca.isFixedCharge()) { |
661 |
electrostaticAtomData.is_Charge = true; |
662 |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
663 |
} |
664 |
|
665 |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
666 |
if (ma.isMultipole()) { |
667 |
if (ma.isDipole()) { |
668 |
electrostaticAtomData.is_Dipole = true; |
669 |
electrostaticAtomData.dipole = ma.getDipole(); |
670 |
} |
671 |
if (ma.isQuadrupole()) { |
672 |
electrostaticAtomData.is_Quadrupole = true; |
673 |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
674 |
} |
675 |
} |
676 |
|
677 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
678 |
|
679 |
if (fqa.isFluctuatingCharge()) { |
680 |
electrostaticAtomData.is_Fluctuating = true; |
681 |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
682 |
electrostaticAtomData.hardness = fqa.getHardness(); |
683 |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
684 |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
685 |
} |
686 |
|
687 |
int atid = atomType->getIdent(); |
688 |
int etid = Etypes.size(); |
689 |
int fqtid = FQtypes.size(); |
690 |
|
691 |
pair<set<int>::iterator,bool> ret; |
692 |
ret = Etypes.insert( atid ); |
693 |
if (ret.second == false) { |
694 |
sprintf( painCave.errMsg, |
695 |
"Electrostatic already had a previous entry with ident %d\n", |
696 |
atid); |
697 |
painCave.severity = OPENMD_INFO; |
698 |
painCave.isFatal = 0; |
699 |
simError(); |
700 |
} |
701 |
|
702 |
Etids[ atid ] = etid; |
703 |
ElectrostaticMap.push_back(electrostaticAtomData); |
704 |
|
705 |
if (electrostaticAtomData.is_Fluctuating) { |
706 |
ret = FQtypes.insert( atid ); |
707 |
if (ret.second == false) { |
708 |
sprintf( painCave.errMsg, |
709 |
"Electrostatic already had a previous fluctuating charge entry with ident %d\n", |
710 |
atid ); |
711 |
painCave.severity = OPENMD_INFO; |
712 |
painCave.isFatal = 0; |
713 |
simError(); |
714 |
} |
715 |
FQtids[atid] = fqtid; |
716 |
Jij[fqtid].resize(nFlucq_); |
717 |
|
718 |
// Now, iterate over all known fluctuating and add to the coulomb integral map: |
719 |
|
720 |
std::set<int>::iterator it; |
721 |
for( it = FQtypes.begin(); it != FQtypes.end(); ++it) { |
722 |
int etid2 = Etids[ (*it) ]; |
723 |
int fqtid2 = FQtids[ (*it) ]; |
724 |
ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ]; |
725 |
RealType a = electrostaticAtomData.slaterZeta; |
726 |
RealType b = eaData2.slaterZeta; |
727 |
int m = electrostaticAtomData.slaterN; |
728 |
int n = eaData2.slaterN; |
729 |
|
730 |
// Create the spline of the coulombic integral for s-type |
731 |
// Slater orbitals. Add a 2 angstrom safety window to deal |
732 |
// with cutoffGroups that have charged atoms longer than the |
733 |
// cutoffRadius away from each other. |
734 |
|
735 |
RealType rval; |
736 |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
737 |
vector<RealType> rvals; |
738 |
vector<RealType> Jvals; |
739 |
// don't start at i = 0, as rval = 0 is undefined for the |
740 |
// slater overlap integrals. |
741 |
for (int i = 1; i < np_+1; i++) { |
742 |
rval = RealType(i) * dr; |
743 |
rvals.push_back(rval); |
744 |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
745 |
PhysicalConstants::angstromToBohr ) * |
746 |
PhysicalConstants::hartreeToKcal ); |
747 |
} |
748 |
|
749 |
CubicSpline* J = new CubicSpline(); |
750 |
J->addPoints(rvals, Jvals); |
751 |
Jij[fqtid][fqtid2] = J; |
752 |
Jij[fqtid2].resize( nFlucq_ ); |
753 |
Jij[fqtid2][fqtid] = J; |
754 |
} |
755 |
} |
756 |
return; |
757 |
} |
758 |
|
759 |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
760 |
cutoffRadius_ = rCut; |
761 |
haveCutoffRadius_ = true; |
762 |
} |
763 |
|
764 |
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
765 |
summationMethod_ = esm; |
766 |
} |
767 |
void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) { |
768 |
screeningMethod_ = sm; |
769 |
} |
770 |
void Electrostatic::setDampingAlpha( RealType alpha ) { |
771 |
dampingAlpha_ = alpha; |
772 |
haveDampingAlpha_ = true; |
773 |
} |
774 |
void Electrostatic::setReactionFieldDielectric( RealType dielectric ){ |
775 |
dielectric_ = dielectric; |
776 |
haveDielectric_ = true; |
777 |
} |
778 |
|
779 |
void Electrostatic::calcForce(InteractionData &idat) { |
780 |
|
781 |
if (!initialized_) initialize(); |
782 |
|
783 |
data1 = ElectrostaticMap[Etids[idat.atid1]]; |
784 |
data2 = ElectrostaticMap[Etids[idat.atid2]]; |
785 |
|
786 |
U = 0.0; // Potential |
787 |
F.zero(); // Force |
788 |
Ta.zero(); // Torque on site a |
789 |
Tb.zero(); // Torque on site b |
790 |
Ea.zero(); // Electric field at site a |
791 |
Eb.zero(); // Electric field at site b |
792 |
dUdCa = 0.0; // fluctuating charge force at site a |
793 |
dUdCb = 0.0; // fluctuating charge force at site a |
794 |
|
795 |
// Indirect interactions mediated by the reaction field. |
796 |
indirect_Pot = 0.0; // Potential |
797 |
indirect_F.zero(); // Force |
798 |
indirect_Ta.zero(); // Torque on site a |
799 |
indirect_Tb.zero(); // Torque on site b |
800 |
|
801 |
// Excluded potential that is still computed for fluctuating charges |
802 |
excluded_Pot= 0.0; |
803 |
|
804 |
|
805 |
// some variables we'll need independent of electrostatic type: |
806 |
|
807 |
ri = 1.0 / *(idat.rij); |
808 |
rhat = *(idat.d) * ri; |
809 |
|
810 |
// logicals |
811 |
|
812 |
a_is_Charge = data1.is_Charge; |
813 |
a_is_Dipole = data1.is_Dipole; |
814 |
a_is_Quadrupole = data1.is_Quadrupole; |
815 |
a_is_Fluctuating = data1.is_Fluctuating; |
816 |
|
817 |
b_is_Charge = data2.is_Charge; |
818 |
b_is_Dipole = data2.is_Dipole; |
819 |
b_is_Quadrupole = data2.is_Quadrupole; |
820 |
b_is_Fluctuating = data2.is_Fluctuating; |
821 |
|
822 |
// Obtain all of the required radial function values from the |
823 |
// spline structures: |
824 |
|
825 |
// needed for fields (and forces): |
826 |
if (a_is_Charge || b_is_Charge) { |
827 |
v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01); |
828 |
} |
829 |
if (a_is_Dipole || b_is_Dipole) { |
830 |
v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11); |
831 |
v11or = ri * v11; |
832 |
} |
833 |
if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) { |
834 |
v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21); |
835 |
v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22); |
836 |
v22or = ri * v22; |
837 |
} |
838 |
|
839 |
// needed for potentials (and forces and torques): |
840 |
if ((a_is_Dipole && b_is_Quadrupole) || |
841 |
(b_is_Dipole && a_is_Quadrupole)) { |
842 |
v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31); |
843 |
v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32); |
844 |
v31or = v31 * ri; |
845 |
v32or = v32 * ri; |
846 |
} |
847 |
if (a_is_Quadrupole && b_is_Quadrupole) { |
848 |
v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41); |
849 |
v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42); |
850 |
v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43); |
851 |
v42or = v42 * ri; |
852 |
v43or = v43 * ri; |
853 |
} |
854 |
|
855 |
// calculate the single-site contributions (fields, etc). |
856 |
|
857 |
if (a_is_Charge) { |
858 |
C_a = data1.fixedCharge; |
859 |
|
860 |
if (a_is_Fluctuating) { |
861 |
C_a += *(idat.flucQ1); |
862 |
} |
863 |
|
864 |
if (idat.excluded) { |
865 |
*(idat.skippedCharge2) += C_a; |
866 |
} else { |
867 |
// only do the field if we're not excluded: |
868 |
Eb -= C_a * pre11_ * dv01 * rhat; |
869 |
} |
870 |
} |
871 |
|
872 |
if (a_is_Dipole) { |
873 |
D_a = *(idat.dipole1); |
874 |
rdDa = dot(rhat, D_a); |
875 |
rxDa = cross(rhat, D_a); |
876 |
if (!idat.excluded) |
877 |
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
878 |
} |
879 |
|
880 |
if (a_is_Quadrupole) { |
881 |
Q_a = *(idat.quadrupole1); |
882 |
trQa = Q_a.trace(); |
883 |
Qar = Q_a * rhat; |
884 |
rQa = rhat * Q_a; |
885 |
rdQar = dot(rhat, Qar); |
886 |
rxQar = cross(rhat, Qar); |
887 |
if (!idat.excluded) |
888 |
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
889 |
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
890 |
} |
891 |
|
892 |
if (b_is_Charge) { |
893 |
C_b = data2.fixedCharge; |
894 |
|
895 |
if (b_is_Fluctuating) |
896 |
C_b += *(idat.flucQ2); |
897 |
|
898 |
if (idat.excluded) { |
899 |
*(idat.skippedCharge1) += C_b; |
900 |
} else { |
901 |
// only do the field if we're not excluded: |
902 |
Ea += C_b * pre11_ * dv01 * rhat; |
903 |
} |
904 |
} |
905 |
|
906 |
if (b_is_Dipole) { |
907 |
D_b = *(idat.dipole2); |
908 |
rdDb = dot(rhat, D_b); |
909 |
rxDb = cross(rhat, D_b); |
910 |
if (!idat.excluded) |
911 |
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
912 |
} |
913 |
|
914 |
if (b_is_Quadrupole) { |
915 |
Q_b = *(idat.quadrupole2); |
916 |
trQb = Q_b.trace(); |
917 |
Qbr = Q_b * rhat; |
918 |
rQb = rhat * Q_b; |
919 |
rdQbr = dot(rhat, Qbr); |
920 |
rxQbr = cross(rhat, Qbr); |
921 |
if (!idat.excluded) |
922 |
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
923 |
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
924 |
} |
925 |
|
926 |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
927 |
J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]]; |
928 |
} |
929 |
|
930 |
if (a_is_Charge) { |
931 |
|
932 |
if (b_is_Charge) { |
933 |
pref = pre11_ * *(idat.electroMult); |
934 |
U += C_a * C_b * pref * v01; |
935 |
F += C_a * C_b * pref * dv01 * rhat; |
936 |
|
937 |
// If this is an excluded pair, there are still indirect |
938 |
// interactions via the reaction field we must worry about: |
939 |
|
940 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
941 |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
942 |
indirect_Pot += rfContrib; |
943 |
indirect_F += rfContrib * 2.0 * ri * rhat; |
944 |
} |
945 |
|
946 |
// Fluctuating charge forces are handled via Coulomb integrals |
947 |
// for excluded pairs (i.e. those connected via bonds) and |
948 |
// with the standard charge-charge interaction otherwise. |
949 |
|
950 |
if (idat.excluded) { |
951 |
if (a_is_Fluctuating || b_is_Fluctuating) { |
952 |
coulInt = J->getValueAt( *(idat.rij) ); |
953 |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
954 |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
955 |
excluded_Pot += C_a * C_b * coulInt; |
956 |
} |
957 |
} else { |
958 |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
959 |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
960 |
} |
961 |
} |
962 |
|
963 |
if (b_is_Dipole) { |
964 |
pref = pre12_ * *(idat.electroMult); |
965 |
U += C_a * pref * v11 * rdDb; |
966 |
F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b); |
967 |
Tb += C_a * pref * v11 * rxDb; |
968 |
|
969 |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
970 |
|
971 |
// Even if we excluded this pair from direct interactions, we |
972 |
// still have the reaction-field-mediated charge-dipole |
973 |
// interaction: |
974 |
|
975 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
976 |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
977 |
indirect_Pot += rfContrib * rdDb; |
978 |
indirect_F += rfContrib * D_b / (*idat.rij); |
979 |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
980 |
} |
981 |
} |
982 |
|
983 |
if (b_is_Quadrupole) { |
984 |
pref = pre14_ * *(idat.electroMult); |
985 |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
986 |
F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or); |
987 |
F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or); |
988 |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
989 |
|
990 |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
991 |
} |
992 |
} |
993 |
|
994 |
if (a_is_Dipole) { |
995 |
|
996 |
if (b_is_Charge) { |
997 |
pref = pre12_ * *(idat.electroMult); |
998 |
|
999 |
U -= C_b * pref * v11 * rdDa; |
1000 |
F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
1001 |
Ta -= C_b * pref * v11 * rxDa; |
1002 |
|
1003 |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
1004 |
|
1005 |
// Even if we excluded this pair from direct interactions, |
1006 |
// we still have the reaction-field-mediated charge-dipole |
1007 |
// interaction: |
1008 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
1009 |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
1010 |
indirect_Pot -= rfContrib * rdDa; |
1011 |
indirect_F -= rfContrib * D_a / (*idat.rij); |
1012 |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
1013 |
} |
1014 |
} |
1015 |
|
1016 |
if (b_is_Dipole) { |
1017 |
pref = pre22_ * *(idat.electroMult); |
1018 |
DadDb = dot(D_a, D_b); |
1019 |
DaxDb = cross(D_a, D_b); |
1020 |
|
1021 |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
1022 |
F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b)); |
1023 |
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
1024 |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
1025 |
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
1026 |
|
1027 |
// Even if we excluded this pair from direct interactions, we |
1028 |
// still have the reaction-field-mediated dipole-dipole |
1029 |
// interaction: |
1030 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
1031 |
rfContrib = -pref * preRF_ * 2.0; |
1032 |
indirect_Pot += rfContrib * DadDb; |
1033 |
indirect_Ta += rfContrib * DaxDb; |
1034 |
indirect_Tb -= rfContrib * DaxDb; |
1035 |
} |
1036 |
} |
1037 |
|
1038 |
if (b_is_Quadrupole) { |
1039 |
pref = pre24_ * *(idat.electroMult); |
1040 |
DadQb = D_a * Q_b; |
1041 |
DadQbr = dot(D_a, Qbr); |
1042 |
DaxQbr = cross(D_a, Qbr); |
1043 |
|
1044 |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
1045 |
F -= pref * (trQb*D_a + 2.0*DadQb) * v31or; |
1046 |
F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat; |
1047 |
F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or; |
1048 |
F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or)); |
1049 |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
1050 |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
1051 |
- 2.0*rdDa*rxQbr*v32); |
1052 |
} |
1053 |
} |
1054 |
|
1055 |
if (a_is_Quadrupole) { |
1056 |
if (b_is_Charge) { |
1057 |
pref = pre14_ * *(idat.electroMult); |
1058 |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
1059 |
F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or); |
1060 |
F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or); |
1061 |
Ta += C_b * pref * 2.0 * rxQar * v22; |
1062 |
|
1063 |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
1064 |
} |
1065 |
if (b_is_Dipole) { |
1066 |
pref = pre24_ * *(idat.electroMult); |
1067 |
DbdQa = D_b * Q_a; |
1068 |
DbdQar = dot(D_b, Qar); |
1069 |
DbxQar = cross(D_b, Qar); |
1070 |
|
1071 |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
1072 |
F += pref * (trQa*D_b + 2.0*DbdQa) * v31or; |
1073 |
F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat; |
1074 |
F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or; |
1075 |
F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or)); |
1076 |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
1077 |
+ 2.0*rdDb*rxQar*v32); |
1078 |
Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
1079 |
} |
1080 |
if (b_is_Quadrupole) { |
1081 |
pref = pre44_ * *(idat.electroMult); // yes |
1082 |
QaQb = Q_a * Q_b; |
1083 |
trQaQb = QaQb.trace(); |
1084 |
rQaQb = rhat * QaQb; |
1085 |
QaQbr = QaQb * rhat; |
1086 |
QaxQb = cross(Q_a, Q_b); |
1087 |
rQaQbr = dot(rQa, Qbr); |
1088 |
rQaxQbr = cross(rQa, Qbr); |
1089 |
|
1090 |
U += pref * (trQa * trQb + 2.0 * trQaQb) * v41; |
1091 |
U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42; |
1092 |
U += pref * (rdQar * rdQbr) * v43; |
1093 |
|
1094 |
F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41; |
1095 |
F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or); |
1096 |
F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or); |
1097 |
|
1098 |
F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or; |
1099 |
F += pref * 4.0 * (rQaQb + QaQbr) * v42or; |
1100 |
F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or; |
1101 |
|
1102 |
Ta += pref * (- 4.0 * QaxQb * v41); |
1103 |
Ta += pref * (- 2.0 * trQb * cross(rQa, rhat) |
1104 |
+ 4.0 * cross(rhat, QaQbr) |
1105 |
- 4.0 * rQaxQbr) * v42; |
1106 |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
1107 |
|
1108 |
|
1109 |
Tb += pref * (+ 4.0 * QaxQb * v41); |
1110 |
Tb += pref * (- 2.0 * trQa * cross(rQb, rhat) |
1111 |
- 4.0 * cross(rQaQb, rhat) |
1112 |
+ 4.0 * rQaxQbr) * v42; |
1113 |
// Possible replacement for line 2 above: |
1114 |
// + 4.0 * cross(rhat, QbQar) |
1115 |
|
1116 |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1117 |
|
1118 |
} |
1119 |
} |
1120 |
|
1121 |
if (idat.doElectricField) { |
1122 |
*(idat.eField1) += Ea * *(idat.electroMult); |
1123 |
*(idat.eField2) += Eb * *(idat.electroMult); |
1124 |
} |
1125 |
|
1126 |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1127 |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1128 |
|
1129 |
if (!idat.excluded) { |
1130 |
|
1131 |
*(idat.vpair) += U; |
1132 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
1133 |
*(idat.f1) += F * *(idat.sw); |
1134 |
|
1135 |
if (a_is_Dipole || a_is_Quadrupole) |
1136 |
*(idat.t1) += Ta * *(idat.sw); |
1137 |
|
1138 |
if (b_is_Dipole || b_is_Quadrupole) |
1139 |
*(idat.t2) += Tb * *(idat.sw); |
1140 |
|
1141 |
} else { |
1142 |
|
1143 |
// only accumulate the forces and torques resulting from the |
1144 |
// indirect reaction field terms. |
1145 |
|
1146 |
*(idat.vpair) += indirect_Pot; |
1147 |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
1148 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
1149 |
*(idat.f1) += *(idat.sw) * indirect_F; |
1150 |
|
1151 |
if (a_is_Dipole || a_is_Quadrupole) |
1152 |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
1153 |
|
1154 |
if (b_is_Dipole || b_is_Quadrupole) |
1155 |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
1156 |
} |
1157 |
return; |
1158 |
} |
1159 |
|
1160 |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1161 |
|
1162 |
if (!initialized_) initialize(); |
1163 |
|
1164 |
ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]]; |
1165 |
|
1166 |
// logicals |
1167 |
bool i_is_Charge = data.is_Charge; |
1168 |
bool i_is_Dipole = data.is_Dipole; |
1169 |
bool i_is_Quadrupole = data.is_Quadrupole; |
1170 |
bool i_is_Fluctuating = data.is_Fluctuating; |
1171 |
RealType C_a = data.fixedCharge; |
1172 |
RealType self(0.0), preVal, DdD, trQ, trQQ; |
1173 |
|
1174 |
if (i_is_Dipole) { |
1175 |
DdD = data.dipole.lengthSquare(); |
1176 |
} |
1177 |
|
1178 |
if (i_is_Fluctuating) { |
1179 |
C_a += *(sdat.flucQ); |
1180 |
// dVdFQ is really a force, so this is negative the derivative |
1181 |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1182 |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1183 |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1184 |
} |
1185 |
|
1186 |
switch (summationMethod_) { |
1187 |
case esm_REACTION_FIELD: |
1188 |
|
1189 |
if (i_is_Charge) { |
1190 |
// Self potential [see Wang and Hermans, "Reaction Field |
1191 |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
1192 |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
1193 |
preVal = pre11_ * preRF_ * C_a * C_a; |
1194 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
1195 |
} |
1196 |
|
1197 |
if (i_is_Dipole) { |
1198 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD; |
1199 |
} |
1200 |
|
1201 |
break; |
1202 |
|
1203 |
case esm_SHIFTED_FORCE: |
1204 |
case esm_SHIFTED_POTENTIAL: |
1205 |
if (i_is_Charge) |
1206 |
self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge)); |
1207 |
if (i_is_Dipole) |
1208 |
self += selfMult2_ * pre22_ * DdD; |
1209 |
if (i_is_Quadrupole) { |
1210 |
trQ = data.quadrupole.trace(); |
1211 |
trQQ = (data.quadrupole * data.quadrupole).trace(); |
1212 |
self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ); |
1213 |
if (i_is_Charge) |
1214 |
self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ; |
1215 |
} |
1216 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1217 |
break; |
1218 |
default: |
1219 |
break; |
1220 |
} |
1221 |
} |
1222 |
|
1223 |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1224 |
// This seems to work moderately well as a default. There's no |
1225 |
// inherent scale for 1/r interactions that we can standardize. |
1226 |
// 12 angstroms seems to be a reasonably good guess for most |
1227 |
// cases. |
1228 |
return 12.0; |
1229 |
} |
1230 |
} |