ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
Revision: 1993
Committed: Tue Apr 29 17:32:31 2014 UTC (11 years ago) by gezelter
File size: 55022 byte(s)
Log Message:
Added sitePotentials for the Choi et al. potential-frequency maps for nitriles

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43 gezelter 1938 #ifdef IS_MPI
44     #include <mpi.h>
45     #endif
46    
47 gezelter 1502 #include <stdio.h>
48     #include <string.h>
49    
50     #include <cmath>
51 gezelter 1915 #include <numeric>
52 gezelter 1502 #include "nonbonded/Electrostatic.hpp"
53     #include "utils/simError.h"
54     #include "types/NonBondedInteractionType.hpp"
55 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
56 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
57 gezelter 1710 #include "types/MultipoleAdapter.hpp"
58 gezelter 1535 #include "io/Globals.hpp"
59 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
60     #include "utils/PhysicalConstants.hpp"
61 gezelter 1767 #include "math/erfc.hpp"
62 gezelter 1879 #include "math/SquareMatrix.hpp"
63 gezelter 1915 #include "primitives/Molecule.hpp"
64 gezelter 1969 #include "flucq/FluctuatingChargeForces.hpp"
65 gezelter 1502
66     namespace OpenMD {
67    
68     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
69 gezelter 1587 forceField_(NULL), info_(NULL),
70     haveCutoffRadius_(false),
71     haveDampingAlpha_(false),
72     haveDielectric_(false),
73 gezelter 1879 haveElectroSplines_(false)
74 gezelter 1969 {
75     flucQ_ = new FluctuatingChargeForces(info_);
76     }
77 gezelter 1502
78 gezelter 1969 void Electrostatic::setForceField(ForceField *ff) {
79     forceField_ = ff;
80     flucQ_->setForceField(forceField_);
81     }
82    
83     void Electrostatic::setSimulatedAtomTypes(set<AtomType*> &simtypes) {
84     simTypes_ = simtypes;
85     flucQ_->setSimulatedAtomTypes(simTypes_);
86     }
87    
88 gezelter 1502 void Electrostatic::initialize() {
89 gezelter 1587
90 gezelter 1584 Globals* simParams_ = info_->getSimParams();
91 gezelter 1535
92 gezelter 1528 summationMap_["HARD"] = esm_HARD;
93 gezelter 1616 summationMap_["NONE"] = esm_HARD;
94 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
95     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
96     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
97 gezelter 1879 summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED;
98 gezelter 1528 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
99     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
100     summationMap_["EWALD_PME"] = esm_EWALD_PME;
101     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
102     screeningMap_["DAMPED"] = DAMPED;
103     screeningMap_["UNDAMPED"] = UNDAMPED;
104    
105 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
106     // all were computed assuming distances are measured in angstroms
107     // Charge-Charge, assuming charges are measured in electrons
108     pre11_ = 332.0637778;
109     // Charge-Dipole, assuming charges are measured in electrons, and
110     // dipoles are measured in debyes
111     pre12_ = 69.13373;
112 gezelter 1879 // Dipole-Dipole, assuming dipoles are measured in Debye
113 gezelter 1502 pre22_ = 14.39325;
114     // Charge-Quadrupole, assuming charges are measured in electrons, and
115     // quadrupoles are measured in 10^-26 esu cm^2
116 gezelter 1879 // This unit is also known affectionately as an esu centibarn.
117 gezelter 1502 pre14_ = 69.13373;
118 gezelter 1879 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
119     // quadrupoles in esu centibarns:
120     pre24_ = 14.39325;
121     // Quadrupole-Quadrupole, assuming esu centibarns:
122     pre44_ = 14.39325;
123    
124 gezelter 1502 // conversions for the simulation box dipole moment
125     chargeToC_ = 1.60217733e-19;
126     angstromToM_ = 1.0e-10;
127     debyeToCm_ = 3.33564095198e-30;
128    
129 gezelter 1879 // Default number of points for electrostatic splines
130 gezelter 1502 np_ = 100;
131    
132     // variables to handle different summation methods for long-range
133     // electrostatics:
134 gezelter 1528 summationMethod_ = esm_HARD;
135 gezelter 1502 screeningMethod_ = UNDAMPED;
136     dielectric_ = 1.0;
137    
138 gezelter 1528 // check the summation method:
139     if (simParams_->haveElectrostaticSummationMethod()) {
140     string myMethod = simParams_->getElectrostaticSummationMethod();
141     toUpper(myMethod);
142     map<string, ElectrostaticSummationMethod>::iterator i;
143     i = summationMap_.find(myMethod);
144     if ( i != summationMap_.end() ) {
145     summationMethod_ = (*i).second;
146     } else {
147     // throw error
148     sprintf( painCave.errMsg,
149 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
150 gezelter 1528 "\t(Input file specified %s .)\n"
151 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
152 gezelter 1879 "\t\"shifted_potential\", \"shifted_force\",\n"
153     "\t\"taylor_shifted\", or \"reaction_field\".\n",
154     myMethod.c_str() );
155 gezelter 1528 painCave.isFatal = 1;
156     simError();
157     }
158     } else {
159     // set ElectrostaticSummationMethod to the cutoffMethod:
160     if (simParams_->haveCutoffMethod()){
161     string myMethod = simParams_->getCutoffMethod();
162     toUpper(myMethod);
163     map<string, ElectrostaticSummationMethod>::iterator i;
164     i = summationMap_.find(myMethod);
165     if ( i != summationMap_.end() ) {
166     summationMethod_ = (*i).second;
167     }
168     }
169     }
170    
171     if (summationMethod_ == esm_REACTION_FIELD) {
172     if (!simParams_->haveDielectric()) {
173     // throw warning
174     sprintf( painCave.errMsg,
175     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
176     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
177     painCave.isFatal = 0;
178     painCave.severity = OPENMD_INFO;
179     simError();
180     } else {
181     dielectric_ = simParams_->getDielectric();
182     }
183     haveDielectric_ = true;
184     }
185    
186     if (simParams_->haveElectrostaticScreeningMethod()) {
187     string myScreen = simParams_->getElectrostaticScreeningMethod();
188     toUpper(myScreen);
189     map<string, ElectrostaticScreeningMethod>::iterator i;
190     i = screeningMap_.find(myScreen);
191     if ( i != screeningMap_.end()) {
192     screeningMethod_ = (*i).second;
193     } else {
194     sprintf( painCave.errMsg,
195     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
196     "\t(Input file specified %s .)\n"
197     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
198     "or \"damped\".\n", myScreen.c_str() );
199     painCave.isFatal = 1;
200     simError();
201     }
202     }
203    
204     // check to make sure a cutoff value has been set:
205     if (!haveCutoffRadius_) {
206     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
207     "Cutoff value!\n");
208     painCave.severity = OPENMD_ERROR;
209     painCave.isFatal = 1;
210     simError();
211     }
212    
213 gezelter 1915 if (screeningMethod_ == DAMPED || summationMethod_ == esm_EWALD_FULL) {
214 gezelter 1528 if (!simParams_->haveDampingAlpha()) {
215     // first set a cutoff dependent alpha value
216     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
217     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
218 gezelter 1915 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
219 gezelter 1528 // throw warning
220     sprintf( painCave.errMsg,
221 gezelter 1750 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
222     "\tinput file. A default value of %f (1/ang) will be used for the\n"
223     "\tcutoff of %f (ang).\n",
224 gezelter 1528 dampingAlpha_, cutoffRadius_);
225     painCave.severity = OPENMD_INFO;
226     painCave.isFatal = 0;
227     simError();
228     } else {
229     dampingAlpha_ = simParams_->getDampingAlpha();
230     }
231     haveDampingAlpha_ = true;
232     }
233    
234 gezelter 1915
235 gezelter 1895 Etypes.clear();
236     Etids.clear();
237     FQtypes.clear();
238     FQtids.clear();
239     ElectrostaticMap.clear();
240     Jij.clear();
241     nElectro_ = 0;
242     nFlucq_ = 0;
243    
244     Etids.resize( forceField_->getNAtomType(), -1);
245     FQtids.resize( forceField_->getNAtomType(), -1);
246    
247     set<AtomType*>::iterator at;
248     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
249     if ((*at)->isElectrostatic()) nElectro_++;
250     if ((*at)->isFluctuatingCharge()) nFlucq_++;
251     }
252 gezelter 1528
253 gezelter 1895 Jij.resize(nFlucq_);
254    
255     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
256     if ((*at)->isElectrostatic()) addType(*at);
257 gezelter 1879 }
258    
259     if (summationMethod_ == esm_REACTION_FIELD) {
260     preRF_ = (dielectric_ - 1.0) /
261     ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
262 gezelter 1502 }
263    
264 gezelter 1879 RealType b0c, b1c, b2c, b3c, b4c, b5c;
265     RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
266     RealType a2, expTerm, invArootPi;
267    
268     RealType r = cutoffRadius_;
269     RealType r2 = r * r;
270     RealType ric = 1.0 / r;
271     RealType ric2 = ric * ric;
272 gezelter 1502
273 gezelter 1879 if (screeningMethod_ == DAMPED) {
274     a2 = dampingAlpha_ * dampingAlpha_;
275     invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
276     expTerm = exp(-a2 * r2);
277     // values of Smith's B_l functions at the cutoff radius:
278     b0c = erfc(dampingAlpha_ * r) / r;
279     b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
280     b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
281     b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
282     b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
283     b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
284 gezelter 1900 // Half the Smith self piece:
285     selfMult1_ = - a2 * invArootPi;
286     selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
287     selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
288 gezelter 1502 } else {
289 gezelter 1879 a2 = 0.0;
290     b0c = 1.0 / r;
291     b1c = ( b0c) / r2;
292     b2c = (3.0 * b1c) / r2;
293     b3c = (5.0 * b2c) / r2;
294     b4c = (7.0 * b3c) / r2;
295     b5c = (9.0 * b4c) / r2;
296 gezelter 1900 selfMult1_ = 0.0;
297     selfMult2_ = 0.0;
298     selfMult4_ = 0.0;
299 gezelter 1502 }
300 gezelter 1879
301     // higher derivatives of B_0 at the cutoff radius:
302     db0c_1 = -r * b1c;
303     db0c_2 = -b1c + r2 * b2c;
304     db0c_3 = 3.0*r*b2c - r2*r*b3c;
305     db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
306 gezelter 1900 db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
307 gezelter 1879
308 gezelter 1922 if (summationMethod_ != esm_EWALD_FULL) {
309 gezelter 1915 selfMult1_ -= b0c;
310     selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0;
311     selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
312     }
313    
314 gezelter 1879 // working variables for the splines:
315     RealType ri, ri2;
316     RealType b0, b1, b2, b3, b4, b5;
317     RealType db0_1, db0_2, db0_3, db0_4, db0_5;
318     RealType f, fc, f0;
319     RealType g, gc, g0, g1, g2, g3, g4;
320     RealType h, hc, h1, h2, h3, h4;
321     RealType s, sc, s2, s3, s4;
322     RealType t, tc, t3, t4;
323     RealType u, uc, u4;
324    
325     // working variables for Taylor expansion:
326     RealType rmRc, rmRc2, rmRc3, rmRc4;
327    
328     // Approximate using splines using a maximum of 0.1 Angstroms
329     // between points.
330     int nptest = int((cutoffRadius_ + 2.0) / 0.1);
331     np_ = (np_ > nptest) ? np_ : nptest;
332    
333 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
334     // have charged atoms longer than the cutoffRadius away from each
335 gezelter 1879 // other. Splining is almost certainly the best choice here.
336     // Direct calls to erfc would be preferrable if it is a very fast
337     // implementation.
338 gezelter 1613
339 gezelter 1879 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
340    
341     // Storage vectors for the computed functions
342     vector<RealType> rv;
343     vector<RealType> v01v;
344     vector<RealType> v11v;
345     vector<RealType> v21v, v22v;
346     vector<RealType> v31v, v32v;
347     vector<RealType> v41v, v42v, v43v;
348    
349     for (int i = 1; i < np_ + 1; i++) {
350     r = RealType(i) * dx;
351     rv.push_back(r);
352    
353     ri = 1.0 / r;
354     ri2 = ri * ri;
355    
356     r2 = r * r;
357     expTerm = exp(-a2 * r2);
358    
359     // Taylor expansion factors (no need for factorials this way):
360     rmRc = r - cutoffRadius_;
361     rmRc2 = rmRc * rmRc / 2.0;
362     rmRc3 = rmRc2 * rmRc / 3.0;
363     rmRc4 = rmRc3 * rmRc / 4.0;
364    
365     // values of Smith's B_l functions at r:
366     if (screeningMethod_ == DAMPED) {
367     b0 = erfc(dampingAlpha_ * r) * ri;
368     b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
369     b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
370     b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
371     b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
372     b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
373     } else {
374     b0 = ri;
375     b1 = ( b0) * ri2;
376     b2 = (3.0 * b1) * ri2;
377     b3 = (5.0 * b2) * ri2;
378     b4 = (7.0 * b3) * ri2;
379     b5 = (9.0 * b4) * ri2;
380     }
381    
382     // higher derivatives of B_0 at r:
383     db0_1 = -r * b1;
384     db0_2 = -b1 + r2 * b2;
385     db0_3 = 3.0*r*b2 - r2*r*b3;
386     db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
387     db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
388    
389     f = b0;
390     fc = b0c;
391     f0 = f - fc - rmRc*db0c_1;
392    
393     g = db0_1;
394     gc = db0c_1;
395     g0 = g - gc;
396     g1 = g0 - rmRc *db0c_2;
397     g2 = g1 - rmRc2*db0c_3;
398     g3 = g2 - rmRc3*db0c_4;
399     g4 = g3 - rmRc4*db0c_5;
400    
401     h = db0_2;
402     hc = db0c_2;
403     h1 = h - hc;
404     h2 = h1 - rmRc *db0c_3;
405     h3 = h2 - rmRc2*db0c_4;
406     h4 = h3 - rmRc3*db0c_5;
407    
408     s = db0_3;
409     sc = db0c_3;
410     s2 = s - sc;
411     s3 = s2 - rmRc *db0c_4;
412     s4 = s3 - rmRc2*db0c_5;
413    
414     t = db0_4;
415     tc = db0c_4;
416     t3 = t - tc;
417     t4 = t3 - rmRc *db0c_5;
418    
419     u = db0_5;
420     uc = db0c_5;
421     u4 = u - uc;
422    
423     // in what follows below, the various v functions are used for
424     // potentials and torques, while the w functions show up in the
425     // forces.
426    
427     switch (summationMethod_) {
428     case esm_SHIFTED_FORCE:
429    
430     v01 = f - fc - rmRc*gc;
431     v11 = g - gc - rmRc*hc;
432     v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
433     v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
434 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
435 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
436     - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
437     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
438     - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
439     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
440     - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
441    
442     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
443     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
444     - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
445    
446     dv01 = g - gc;
447     dv11 = h - hc;
448     dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
449     dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);
450     dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
451     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
452     - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
453     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
454     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
455     - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
456     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
457     - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
458    
459     break;
460    
461     case esm_TAYLOR_SHIFTED:
462    
463     v01 = f0;
464     v11 = g1;
465     v21 = g2 * ri;
466     v22 = h2 - v21;
467     v31 = (h3 - g3 * ri) * ri;
468     v32 = s3 - 3.0*v31;
469     v41 = (h4 - g4 * ri) * ri2;
470     v42 = s4 * ri - 3.0*v41;
471     v43 = t4 - 6.0*v42 - 3.0*v41;
472    
473     dv01 = g0;
474     dv11 = h1;
475     dv21 = (h2 - g2*ri)*ri;
476     dv22 = (s2 - (h2 - g2*ri)*ri);
477     dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
478     dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
479     dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
480     dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
481     dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
482    
483     break;
484    
485     case esm_SHIFTED_POTENTIAL:
486    
487     v01 = f - fc;
488     v11 = g - gc;
489     v21 = g*ri - gc*ric;
490     v22 = h - g*ri - (hc - gc*ric);
491 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
492 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
493     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
494     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
495     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
496     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
497    
498     dv01 = g;
499     dv11 = h;
500     dv21 = (h - g*ri)*ri;
501     dv22 = (s - (h - g*ri)*ri);
502     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
503     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
504     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
505     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
506     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
507    
508     break;
509    
510     case esm_SWITCHING_FUNCTION:
511     case esm_HARD:
512 gezelter 1915 case esm_EWALD_FULL:
513 gezelter 1879
514     v01 = f;
515     v11 = g;
516     v21 = g*ri;
517     v22 = h - g*ri;
518     v31 = (h-g*ri)*ri;
519     v32 = (s - 3.0*(h-g*ri)*ri);
520     v41 = (h - g*ri)*ri2;
521     v42 = (s-3.0*(h-g*ri)*ri)*ri;
522     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
523    
524     dv01 = g;
525     dv11 = h;
526     dv21 = (h - g*ri)*ri;
527     dv22 = (s - (h - g*ri)*ri);
528     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
529     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
530     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
531     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
532     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
533    
534     break;
535    
536     case esm_REACTION_FIELD:
537    
538     // following DL_POLY's lead for shifting the image charge potential:
539     f = b0 + preRF_ * r2;
540     fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
541    
542     g = db0_1 + preRF_ * 2.0 * r;
543     gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
544    
545     h = db0_2 + preRF_ * 2.0;
546     hc = db0c_2 + preRF_ * 2.0;
547    
548     v01 = f - fc;
549     v11 = g - gc;
550     v21 = g*ri - gc*ric;
551     v22 = h - g*ri - (hc - gc*ric);
552 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
553 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
554     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
555     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
556     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
557     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
558    
559     dv01 = g;
560     dv11 = h;
561     dv21 = (h - g*ri)*ri;
562     dv22 = (s - (h - g*ri)*ri);
563     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
564     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
565     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
566     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
567     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
568    
569     break;
570    
571     case esm_EWALD_PME:
572     case esm_EWALD_SPME:
573     default :
574     map<string, ElectrostaticSummationMethod>::iterator i;
575     std::string meth;
576     for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
577     if ((*i).second == summationMethod_) meth = (*i).first;
578     }
579     sprintf( painCave.errMsg,
580     "Electrostatic::initialize: electrostaticSummationMethod %s \n"
581     "\thas not been implemented yet. Please select one of:\n"
582     "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
583     meth.c_str() );
584     painCave.isFatal = 1;
585     simError();
586     break;
587     }
588    
589     // Add these computed values to the storage vectors for spline creation:
590     v01v.push_back(v01);
591     v11v.push_back(v11);
592     v21v.push_back(v21);
593     v22v.push_back(v22);
594     v31v.push_back(v31);
595     v32v.push_back(v32);
596     v41v.push_back(v41);
597     v42v.push_back(v42);
598     v43v.push_back(v43);
599 gezelter 1502 }
600    
601 gezelter 1879 // construct the spline structures and fill them with the values we've
602     // computed:
603    
604     v01s = new CubicSpline();
605     v01s->addPoints(rv, v01v);
606     v11s = new CubicSpline();
607     v11s->addPoints(rv, v11v);
608     v21s = new CubicSpline();
609     v21s->addPoints(rv, v21v);
610     v22s = new CubicSpline();
611     v22s->addPoints(rv, v22v);
612     v31s = new CubicSpline();
613     v31s->addPoints(rv, v31v);
614     v32s = new CubicSpline();
615     v32s->addPoints(rv, v32v);
616     v41s = new CubicSpline();
617     v41s->addPoints(rv, v41v);
618     v42s = new CubicSpline();
619     v42s->addPoints(rv, v42v);
620     v43s = new CubicSpline();
621     v43s->addPoints(rv, v43v);
622    
623     haveElectroSplines_ = true;
624    
625 gezelter 1502 initialized_ = true;
626     }
627    
628     void Electrostatic::addType(AtomType* atomType){
629 gezelter 1895
630 gezelter 1502 ElectrostaticAtomData electrostaticAtomData;
631     electrostaticAtomData.is_Charge = false;
632     electrostaticAtomData.is_Dipole = false;
633     electrostaticAtomData.is_Quadrupole = false;
634 gezelter 1723 electrostaticAtomData.is_Fluctuating = false;
635 gezelter 1502
636 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
637 gezelter 1502
638 gezelter 1710 if (fca.isFixedCharge()) {
639 gezelter 1502 electrostaticAtomData.is_Charge = true;
640 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
641 gezelter 1502 }
642    
643 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
644     if (ma.isMultipole()) {
645     if (ma.isDipole()) {
646 gezelter 1502 electrostaticAtomData.is_Dipole = true;
647 gezelter 1879 electrostaticAtomData.dipole = ma.getDipole();
648 gezelter 1502 }
649 gezelter 1710 if (ma.isQuadrupole()) {
650 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
651 gezelter 1879 electrostaticAtomData.quadrupole = ma.getQuadrupole();
652 gezelter 1502 }
653     }
654    
655 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
656 gezelter 1502
657 gezelter 1718 if (fqa.isFluctuatingCharge()) {
658 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
659     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
660     electrostaticAtomData.hardness = fqa.getHardness();
661     electrostaticAtomData.slaterN = fqa.getSlaterN();
662     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
663 gezelter 1718 }
664    
665 gezelter 1895 int atid = atomType->getIdent();
666     int etid = Etypes.size();
667     int fqtid = FQtypes.size();
668    
669     pair<set<int>::iterator,bool> ret;
670     ret = Etypes.insert( atid );
671 gezelter 1502 if (ret.second == false) {
672     sprintf( painCave.errMsg,
673     "Electrostatic already had a previous entry with ident %d\n",
674 gezelter 1895 atid);
675 gezelter 1502 painCave.severity = OPENMD_INFO;
676     painCave.isFatal = 0;
677     simError();
678     }
679    
680 gezelter 1895 Etids[ atid ] = etid;
681     ElectrostaticMap.push_back(electrostaticAtomData);
682 gezelter 1718
683 gezelter 1895 if (electrostaticAtomData.is_Fluctuating) {
684     ret = FQtypes.insert( atid );
685     if (ret.second == false) {
686     sprintf( painCave.errMsg,
687     "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
688     atid );
689     painCave.severity = OPENMD_INFO;
690     painCave.isFatal = 0;
691     simError();
692     }
693     FQtids[atid] = fqtid;
694     Jij[fqtid].resize(nFlucq_);
695    
696 gezelter 1921 // Now, iterate over all known fluctuating and add to the
697     // coulomb integral map:
698 gezelter 1895
699     std::set<int>::iterator it;
700     for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {
701     int etid2 = Etids[ (*it) ];
702     int fqtid2 = FQtids[ (*it) ];
703     ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
704 gezelter 1718 RealType a = electrostaticAtomData.slaterZeta;
705 gezelter 1720 RealType b = eaData2.slaterZeta;
706 gezelter 1718 int m = electrostaticAtomData.slaterN;
707 gezelter 1720 int n = eaData2.slaterN;
708 gezelter 1895
709 gezelter 1718 // Create the spline of the coulombic integral for s-type
710     // Slater orbitals. Add a 2 angstrom safety window to deal
711     // with cutoffGroups that have charged atoms longer than the
712     // cutoffRadius away from each other.
713 gezelter 1895
714 gezelter 1720 RealType rval;
715 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
716     vector<RealType> rvals;
717 gezelter 1879 vector<RealType> Jvals;
718     // don't start at i = 0, as rval = 0 is undefined for the
719     // slater overlap integrals.
720 gezelter 1761 for (int i = 1; i < np_+1; i++) {
721 gezelter 1718 rval = RealType(i) * dr;
722     rvals.push_back(rval);
723 gezelter 1879 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
724     PhysicalConstants::angstromToBohr ) *
725     PhysicalConstants::hartreeToKcal );
726 gezelter 1718 }
727    
728 gezelter 1879 CubicSpline* J = new CubicSpline();
729     J->addPoints(rvals, Jvals);
730 gezelter 1895 Jij[fqtid][fqtid2] = J;
731     Jij[fqtid2].resize( nFlucq_ );
732     Jij[fqtid2][fqtid] = J;
733     }
734     }
735 gezelter 1502 return;
736     }
737    
738 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
739     cutoffRadius_ = rCut;
740 gezelter 1528 haveCutoffRadius_ = true;
741 gezelter 1502 }
742 gezelter 1584
743 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
744     summationMethod_ = esm;
745     }
746     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
747     screeningMethod_ = sm;
748     }
749     void Electrostatic::setDampingAlpha( RealType alpha ) {
750     dampingAlpha_ = alpha;
751     haveDampingAlpha_ = true;
752     }
753     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
754     dielectric_ = dielectric;
755     haveDielectric_ = true;
756     }
757    
758 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
759 gezelter 1502
760 gezelter 1893 if (!initialized_) initialize();
761    
762 gezelter 1895 data1 = ElectrostaticMap[Etids[idat.atid1]];
763     data2 = ElectrostaticMap[Etids[idat.atid2]];
764 gezelter 1502
765 gezelter 1893 U = 0.0; // Potential
766     F.zero(); // Force
767     Ta.zero(); // Torque on site a
768     Tb.zero(); // Torque on site b
769     Ea.zero(); // Electric field at site a
770     Eb.zero(); // Electric field at site b
771 gezelter 1993 Pa = 0.0; // Site potential at site a
772     Pb = 0.0; // Site potential at site b
773 gezelter 1893 dUdCa = 0.0; // fluctuating charge force at site a
774     dUdCb = 0.0; // fluctuating charge force at site a
775 gezelter 1879
776     // Indirect interactions mediated by the reaction field.
777 gezelter 1893 indirect_Pot = 0.0; // Potential
778     indirect_F.zero(); // Force
779     indirect_Ta.zero(); // Torque on site a
780     indirect_Tb.zero(); // Torque on site b
781 gezelter 1587
782 gezelter 1879 // Excluded potential that is still computed for fluctuating charges
783 gezelter 1893 excluded_Pot= 0.0;
784 gezelter 1879
785 gezelter 1502 // some variables we'll need independent of electrostatic type:
786    
787 gezelter 1879 ri = 1.0 / *(idat.rij);
788 gezelter 1893 rhat = *(idat.d) * ri;
789 gezelter 1879
790 gezelter 1502 // logicals
791    
792 gezelter 1893 a_is_Charge = data1.is_Charge;
793     a_is_Dipole = data1.is_Dipole;
794     a_is_Quadrupole = data1.is_Quadrupole;
795     a_is_Fluctuating = data1.is_Fluctuating;
796 gezelter 1502
797 gezelter 1893 b_is_Charge = data2.is_Charge;
798     b_is_Dipole = data2.is_Dipole;
799     b_is_Quadrupole = data2.is_Quadrupole;
800     b_is_Fluctuating = data2.is_Fluctuating;
801 gezelter 1879
802     // Obtain all of the required radial function values from the
803     // spline structures:
804 gezelter 1502
805 gezelter 1879 // needed for fields (and forces):
806     if (a_is_Charge || b_is_Charge) {
807     v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
808     }
809     if (a_is_Dipole || b_is_Dipole) {
810     v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
811     v11or = ri * v11;
812     }
813     if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) {
814     v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
815     v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
816     v22or = ri * v22;
817     }
818 gezelter 1721
819 gezelter 1879 // needed for potentials (and forces and torques):
820     if ((a_is_Dipole && b_is_Quadrupole) ||
821     (b_is_Dipole && a_is_Quadrupole)) {
822     v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
823     v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
824     v31or = v31 * ri;
825     v32or = v32 * ri;
826     }
827     if (a_is_Quadrupole && b_is_Quadrupole) {
828     v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
829     v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
830     v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
831     v42or = v42 * ri;
832     v43or = v43 * ri;
833     }
834    
835     // calculate the single-site contributions (fields, etc).
836    
837     if (a_is_Charge) {
838     C_a = data1.fixedCharge;
839    
840     if (a_is_Fluctuating) {
841     C_a += *(idat.flucQ1);
842 gezelter 1721 }
843    
844 gezelter 1587 if (idat.excluded) {
845 gezelter 1879 *(idat.skippedCharge2) += C_a;
846     } else {
847 gezelter 1993 // only do the field and site potentials if we're not excluded:
848 gezelter 1879 Eb -= C_a * pre11_ * dv01 * rhat;
849 gezelter 1993 Pb += C_a * pre11_ * v01;
850 gezelter 1587 }
851     }
852 gezelter 1879
853     if (a_is_Dipole) {
854     D_a = *(idat.dipole1);
855     rdDa = dot(rhat, D_a);
856     rxDa = cross(rhat, D_a);
857 gezelter 1993 if (!idat.excluded) {
858 gezelter 1879 Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
859 gezelter 1993 Pb += pre12_ * v11 * rdDa;
860     }
861    
862 gezelter 1502 }
863    
864 gezelter 1879 if (a_is_Quadrupole) {
865     Q_a = *(idat.quadrupole1);
866     trQa = Q_a.trace();
867     Qar = Q_a * rhat;
868     rQa = rhat * Q_a;
869     rdQar = dot(rhat, Qar);
870     rxQar = cross(rhat, Qar);
871 gezelter 1993 if (!idat.excluded) {
872 gezelter 1879 Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
873     + rdQar * rhat * (dv22 - 2.0*v22or));
874 gezelter 1993 Pb += pre14_ * (v21 * trQa + v22 * rdQar);
875     }
876 gezelter 1879 }
877    
878     if (b_is_Charge) {
879     C_b = data2.fixedCharge;
880 gezelter 1502
881 gezelter 1879 if (b_is_Fluctuating)
882     C_b += *(idat.flucQ2);
883    
884 gezelter 1587 if (idat.excluded) {
885 gezelter 1879 *(idat.skippedCharge1) += C_b;
886     } else {
887     // only do the field if we're not excluded:
888     Ea += C_b * pre11_ * dv01 * rhat;
889 gezelter 1993 Pa += C_b * pre11_ * v01;
890    
891 gezelter 1587 }
892     }
893 gezelter 1502
894 gezelter 1879 if (b_is_Dipole) {
895     D_b = *(idat.dipole2);
896     rdDb = dot(rhat, D_b);
897     rxDb = cross(rhat, D_b);
898 gezelter 1993 if (!idat.excluded) {
899 gezelter 1879 Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
900 gezelter 1993 Pa += pre12_ * v11 * rdDb;
901     }
902 gezelter 1502 }
903    
904 gezelter 1879 if (b_is_Quadrupole) {
905     Q_b = *(idat.quadrupole2);
906     trQb = Q_b.trace();
907     Qbr = Q_b * rhat;
908     rQb = rhat * Q_b;
909     rdQbr = dot(rhat, Qbr);
910     rxQbr = cross(rhat, Qbr);
911 gezelter 1993 if (!idat.excluded) {
912 gezelter 1879 Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
913     + rdQbr * rhat * (dv22 - 2.0*v22or));
914 gezelter 1993 Pa += pre14_ * (v21 * trQb + v22 * rdQbr);
915     }
916 gezelter 1721 }
917 gezelter 1932
918    
919     if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
920 gezelter 1895 J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
921 gezelter 1879 }
922 gezelter 1932
923 gezelter 1879 if (a_is_Charge) {
924 gezelter 1502
925 gezelter 1879 if (b_is_Charge) {
926     pref = pre11_ * *(idat.electroMult);
927     U += C_a * C_b * pref * v01;
928     F += C_a * C_b * pref * dv01 * rhat;
929 gezelter 1932
930 gezelter 1879 // If this is an excluded pair, there are still indirect
931     // interactions via the reaction field we must worry about:
932 gezelter 1616
933 gezelter 1879 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
934     rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
935     indirect_Pot += rfContrib;
936     indirect_F += rfContrib * 2.0 * ri * rhat;
937 gezelter 1502 }
938 gezelter 1932
939 gezelter 1879 // Fluctuating charge forces are handled via Coulomb integrals
940 gezelter 1932 // for excluded pairs (i.e. those connected via bonds) and
941     // with the standard charge-charge interaction otherwise.
942 gezelter 1502
943 gezelter 1932 if (idat.excluded) {
944 gezelter 1879 if (a_is_Fluctuating || b_is_Fluctuating) {
945     coulInt = J->getValueAt( *(idat.rij) );
946 gezelter 1932 if (a_is_Fluctuating) dUdCa += C_b * coulInt;
947     if (b_is_Fluctuating) dUdCb += C_a * coulInt;
948     }
949 gezelter 1502 } else {
950 gezelter 1879 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
951 gezelter 1928 if (b_is_Fluctuating) dUdCb += C_a * pref * v01;
952 gezelter 1932 }
953 gezelter 1502 }
954    
955 gezelter 1879 if (b_is_Dipole) {
956     pref = pre12_ * *(idat.electroMult);
957     U += C_a * pref * v11 * rdDb;
958     F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
959     Tb += C_a * pref * v11 * rxDb;
960 gezelter 1502
961 gezelter 1879 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
962 gezelter 1502
963 gezelter 1879 // Even if we excluded this pair from direct interactions, we
964     // still have the reaction-field-mediated charge-dipole
965     // interaction:
966 gezelter 1502
967 gezelter 1879 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
968     rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
969     indirect_Pot += rfContrib * rdDb;
970     indirect_F += rfContrib * D_b / (*idat.rij);
971     indirect_Tb += C_a * pref * preRF_ * rxDb;
972 gezelter 1502 }
973     }
974    
975 gezelter 1879 if (b_is_Quadrupole) {
976     pref = pre14_ * *(idat.electroMult);
977     U += C_a * pref * (v21 * trQb + v22 * rdQbr);
978     F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
979     F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
980     Tb += C_a * pref * 2.0 * rxQbr * v22;
981 gezelter 1502
982 gezelter 1879 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
983 gezelter 1502 }
984     }
985    
986 gezelter 1879 if (a_is_Dipole) {
987 gezelter 1502
988 gezelter 1879 if (b_is_Charge) {
989     pref = pre12_ * *(idat.electroMult);
990 gezelter 1502
991 gezelter 1879 U -= C_b * pref * v11 * rdDa;
992     F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
993     Ta -= C_b * pref * v11 * rxDa;
994 gezelter 1502
995 gezelter 1879 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
996 gezelter 1587
997 gezelter 1879 // Even if we excluded this pair from direct interactions,
998     // we still have the reaction-field-mediated charge-dipole
999     // interaction:
1000     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1001     rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
1002     indirect_Pot -= rfContrib * rdDa;
1003     indirect_F -= rfContrib * D_a / (*idat.rij);
1004     indirect_Ta -= C_b * pref * preRF_ * rxDa;
1005     }
1006     }
1007 gezelter 1587
1008 gezelter 1879 if (b_is_Dipole) {
1009     pref = pre22_ * *(idat.electroMult);
1010     DadDb = dot(D_a, D_b);
1011     DaxDb = cross(D_a, D_b);
1012 gezelter 1502
1013 gezelter 1879 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
1014     F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
1015     F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
1016     Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
1017     Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
1018     // Even if we excluded this pair from direct interactions, we
1019     // still have the reaction-field-mediated dipole-dipole
1020     // interaction:
1021     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1022     rfContrib = -pref * preRF_ * 2.0;
1023     indirect_Pot += rfContrib * DadDb;
1024     indirect_Ta += rfContrib * DaxDb;
1025     indirect_Tb -= rfContrib * DaxDb;
1026 gezelter 1723 }
1027 gezelter 1502 }
1028    
1029 gezelter 1879 if (b_is_Quadrupole) {
1030     pref = pre24_ * *(idat.electroMult);
1031     DadQb = D_a * Q_b;
1032     DadQbr = dot(D_a, Qbr);
1033     DaxQbr = cross(D_a, Qbr);
1034 gezelter 1502
1035 gezelter 1879 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1036     F -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1037     F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1038     F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1039     F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1040     Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1041     Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1042     - 2.0*rdDa*rxQbr*v32);
1043     }
1044     }
1045 gezelter 1502
1046 gezelter 1879 if (a_is_Quadrupole) {
1047     if (b_is_Charge) {
1048     pref = pre14_ * *(idat.electroMult);
1049     U += C_b * pref * (v21 * trQa + v22 * rdQar);
1050     F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1051     F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1052     Ta += C_b * pref * 2.0 * rxQar * v22;
1053 gezelter 1502
1054 gezelter 1879 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1055     }
1056     if (b_is_Dipole) {
1057     pref = pre24_ * *(idat.electroMult);
1058     DbdQa = D_b * Q_a;
1059     DbdQar = dot(D_b, Qar);
1060     DbxQar = cross(D_b, Qar);
1061 gezelter 1502
1062 gezelter 1879 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1063     F += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1064     F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1065     F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1066     F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1067     Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1068     + 2.0*rdDb*rxQar*v32);
1069     Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1070 gezelter 1502 }
1071 gezelter 1879 if (b_is_Quadrupole) {
1072     pref = pre44_ * *(idat.electroMult); // yes
1073     QaQb = Q_a * Q_b;
1074     trQaQb = QaQb.trace();
1075     rQaQb = rhat * QaQb;
1076     QaQbr = QaQb * rhat;
1077 gezelter 1933 QaxQb = mCross(Q_a, Q_b);
1078 gezelter 1879 rQaQbr = dot(rQa, Qbr);
1079     rQaxQbr = cross(rQa, Qbr);
1080    
1081     U += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1082     U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42;
1083     U += pref * (rdQar * rdQbr) * v43;
1084 gezelter 1502
1085 gezelter 1879 F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1086     F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1087     F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1088 gezelter 1502
1089 gezelter 1879 F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1090     F += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1091     F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1092 gezelter 1502
1093 gezelter 1879 Ta += pref * (- 4.0 * QaxQb * v41);
1094     Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1095     + 4.0 * cross(rhat, QaQbr)
1096     - 4.0 * rQaxQbr) * v42;
1097     Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1098 gezelter 1502
1099    
1100 gezelter 1879 Tb += pref * (+ 4.0 * QaxQb * v41);
1101     Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1102     - 4.0 * cross(rQaQb, rhat)
1103     + 4.0 * rQaxQbr) * v42;
1104     // Possible replacement for line 2 above:
1105     // + 4.0 * cross(rhat, QbQar)
1106 gezelter 1502
1107 gezelter 1879 Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1108 gezelter 1502 }
1109     }
1110    
1111 gezelter 1879 if (idat.doElectricField) {
1112     *(idat.eField1) += Ea * *(idat.electroMult);
1113     *(idat.eField2) += Eb * *(idat.electroMult);
1114     }
1115 gezelter 1502
1116 gezelter 1993 if (idat.doSitePotential) {
1117     *(idat.sPot1) += Pa * *(idat.electroMult);
1118     *(idat.sPot2) += Pb * *(idat.electroMult);
1119     }
1120    
1121 gezelter 1879 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1122     if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1123    
1124 gezelter 1587 if (!idat.excluded) {
1125    
1126 gezelter 1879 *(idat.vpair) += U;
1127     (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1128     *(idat.f1) += F * *(idat.sw);
1129 gezelter 1587
1130 gezelter 1879 if (a_is_Dipole || a_is_Quadrupole)
1131     *(idat.t1) += Ta * *(idat.sw);
1132 gezelter 1587
1133 gezelter 1879 if (b_is_Dipole || b_is_Quadrupole)
1134     *(idat.t2) += Tb * *(idat.sw);
1135    
1136 gezelter 1587 } else {
1137    
1138     // only accumulate the forces and torques resulting from the
1139     // indirect reaction field terms.
1140 gezelter 1616
1141 gezelter 1879 *(idat.vpair) += indirect_Pot;
1142     (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1143     (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1144     *(idat.f1) += *(idat.sw) * indirect_F;
1145 gezelter 1761
1146 gezelter 1879 if (a_is_Dipole || a_is_Quadrupole)
1147     *(idat.t1) += *(idat.sw) * indirect_Ta;
1148    
1149     if (b_is_Dipole || b_is_Quadrupole)
1150     *(idat.t2) += *(idat.sw) * indirect_Tb;
1151 gezelter 1502 }
1152     return;
1153 gezelter 1879 }
1154 gezelter 1502
1155 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1156 gezelter 1879
1157 gezelter 1502 if (!initialized_) initialize();
1158 gezelter 1586
1159 gezelter 1895 ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1160 gezelter 1879
1161 gezelter 1502 // logicals
1162     bool i_is_Charge = data.is_Charge;
1163     bool i_is_Dipole = data.is_Dipole;
1164 gezelter 1900 bool i_is_Quadrupole = data.is_Quadrupole;
1165 jmichalk 1734 bool i_is_Fluctuating = data.is_Fluctuating;
1166 gezelter 1879 RealType C_a = data.fixedCharge;
1167 gezelter 1900 RealType self(0.0), preVal, DdD, trQ, trQQ;
1168    
1169     if (i_is_Dipole) {
1170     DdD = data.dipole.lengthSquare();
1171     }
1172    
1173 jmichalk 1734 if (i_is_Fluctuating) {
1174 gezelter 1879 C_a += *(sdat.flucQ);
1175 gezelter 1969
1176     flucQ_->getSelfInteraction(sdat.atid, *(sdat.flucQ),
1177     (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY],
1178     *(sdat.flucQfrc) );
1179    
1180 jmichalk 1734 }
1181 gezelter 1502
1182 gezelter 1879 switch (summationMethod_) {
1183     case esm_REACTION_FIELD:
1184    
1185     if (i_is_Charge) {
1186     // Self potential [see Wang and Hermans, "Reaction Field
1187     // Molecular Dynamics Simulation with Friedman’s Image Charge
1188     // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1189     preVal = pre11_ * preRF_ * C_a * C_a;
1190     (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1191     }
1192    
1193 gezelter 1502 if (i_is_Dipole) {
1194 gezelter 1900 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1195 gezelter 1502 }
1196 gezelter 1879
1197     break;
1198    
1199     case esm_SHIFTED_FORCE:
1200     case esm_SHIFTED_POTENTIAL:
1201 gezelter 1907 case esm_TAYLOR_SHIFTED:
1202 gezelter 1921 case esm_EWALD_FULL:
1203 gezelter 1900 if (i_is_Charge)
1204     self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));
1205     if (i_is_Dipole)
1206     self += selfMult2_ * pre22_ * DdD;
1207     if (i_is_Quadrupole) {
1208     trQ = data.quadrupole.trace();
1209     trQQ = (data.quadrupole * data.quadrupole).trace();
1210     self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1211     if (i_is_Charge)
1212     self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1213 gezelter 1502 }
1214 gezelter 1900 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1215 gezelter 1879 break;
1216     default:
1217     break;
1218 gezelter 1502 }
1219     }
1220 gezelter 1879
1221 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1222 gezelter 1505 // This seems to work moderately well as a default. There's no
1223     // inherent scale for 1/r interactions that we can standardize.
1224     // 12 angstroms seems to be a reasonably good guess for most
1225     // cases.
1226     return 12.0;
1227     }
1228 gezelter 1915
1229    
1230 gezelter 1925 void Electrostatic::ReciprocalSpaceSum(RealType& pot) {
1231 gezelter 1915
1232     RealType kPot = 0.0;
1233     RealType kVir = 0.0;
1234    
1235     const RealType mPoleConverter = 0.20819434; // converts from the
1236     // internal units of
1237     // Debye (for dipoles)
1238     // or Debye-angstroms
1239     // (for quadrupoles) to
1240     // electron angstroms or
1241     // electron-angstroms^2
1242    
1243     const RealType eConverter = 332.0637778; // convert the
1244     // Charge-Charge
1245     // electrostatic
1246     // interactions into kcal /
1247     // mol assuming distances
1248     // are measured in
1249     // angstroms.
1250    
1251     Mat3x3d hmat = info_->getSnapshotManager()->getCurrentSnapshot()->getHmat();
1252     Vector3d box = hmat.diagonals();
1253     RealType boxMax = box.max();
1254    
1255 gezelter 1921 //int kMax = int(2.0 * M_PI / (pow(dampingAlpha_,2)*cutoffRadius_ * boxMax) );
1256 gezelter 1922 int kMax = 7;
1257 gezelter 1915 int kSqMax = kMax*kMax + 2;
1258    
1259     int kLimit = kMax+1;
1260     int kLim2 = 2*kMax+1;
1261     int kSqLim = kSqMax;
1262    
1263     vector<RealType> AK(kSqLim+1, 0.0);
1264     RealType xcl = 2.0 * M_PI / box.x();
1265     RealType ycl = 2.0 * M_PI / box.y();
1266     RealType zcl = 2.0 * M_PI / box.z();
1267     RealType rcl = 2.0 * M_PI / boxMax;
1268     RealType rvol = 2.0 * M_PI /(box.x() * box.y() * box.z());
1269    
1270     if(dampingAlpha_ < 1.0e-12) return;
1271    
1272     RealType ralph = -0.25/pow(dampingAlpha_,2);
1273    
1274     // Calculate and store exponential factors
1275    
1276 gezelter 1925 vector<vector<RealType> > elc;
1277     vector<vector<RealType> > emc;
1278     vector<vector<RealType> > enc;
1279     vector<vector<RealType> > els;
1280     vector<vector<RealType> > ems;
1281     vector<vector<RealType> > ens;
1282 gezelter 1915
1283     int nMax = info_->getNAtoms();
1284    
1285 gezelter 1925 elc.resize(kLimit+1);
1286     emc.resize(kLimit+1);
1287     enc.resize(kLimit+1);
1288     els.resize(kLimit+1);
1289     ems.resize(kLimit+1);
1290     ens.resize(kLimit+1);
1291    
1292 gezelter 1915 for (int j = 0; j < kLimit+1; j++) {
1293 gezelter 1925 elc[j].resize(nMax);
1294     emc[j].resize(nMax);
1295     enc[j].resize(nMax);
1296     els[j].resize(nMax);
1297     ems[j].resize(nMax);
1298     ens[j].resize(nMax);
1299 gezelter 1915 }
1300    
1301     Vector3d t( 2.0 * M_PI );
1302     t.Vdiv(t, box);
1303 gezelter 1922
1304 gezelter 1915 SimInfo::MoleculeIterator mi;
1305     Molecule::AtomIterator ai;
1306     int i;
1307     Vector3d r;
1308     Vector3d tt;
1309    
1310     for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1311     mol = info_->nextMolecule(mi)) {
1312     for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1313     atom = mol->nextAtom(ai)) {
1314    
1315     i = atom->getLocalIndex();
1316     r = atom->getPos();
1317     info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(r);
1318    
1319     tt.Vmul(t, r);
1320 gezelter 1921
1321 gezelter 1925 elc[1][i] = 1.0;
1322     emc[1][i] = 1.0;
1323     enc[1][i] = 1.0;
1324     els[1][i] = 0.0;
1325     ems[1][i] = 0.0;
1326     ens[1][i] = 0.0;
1327 gezelter 1922
1328 gezelter 1925 elc[2][i] = cos(tt.x());
1329     emc[2][i] = cos(tt.y());
1330     enc[2][i] = cos(tt.z());
1331     els[2][i] = sin(tt.x());
1332     ems[2][i] = sin(tt.y());
1333     ens[2][i] = sin(tt.z());
1334 gezelter 1915
1335     for(int l = 3; l <= kLimit; l++) {
1336 gezelter 1925 elc[l][i]=elc[l-1][i]*elc[2][i]-els[l-1][i]*els[2][i];
1337     emc[l][i]=emc[l-1][i]*emc[2][i]-ems[l-1][i]*ems[2][i];
1338     enc[l][i]=enc[l-1][i]*enc[2][i]-ens[l-1][i]*ens[2][i];
1339     els[l][i]=els[l-1][i]*elc[2][i]+elc[l-1][i]*els[2][i];
1340     ems[l][i]=ems[l-1][i]*emc[2][i]+emc[l-1][i]*ems[2][i];
1341     ens[l][i]=ens[l-1][i]*enc[2][i]+enc[l-1][i]*ens[2][i];
1342 gezelter 1915 }
1343     }
1344     }
1345    
1346     // Calculate and store AK coefficients:
1347    
1348     RealType eksq = 1.0;
1349     RealType expf = 0.0;
1350     if (ralph < 0.0) expf = exp(ralph*rcl*rcl);
1351     for (i = 1; i <= kSqLim; i++) {
1352     RealType rksq = float(i)*rcl*rcl;
1353     eksq = expf*eksq;
1354     AK[i] = eConverter * eksq/rksq;
1355     }
1356    
1357     /*
1358     * Loop over all k vectors k = 2 pi (ll/Lx, mm/Ly, nn/Lz)
1359     * the values of ll, mm and nn are selected so that the symmetry of
1360     * reciprocal lattice is taken into account i.e. the following
1361     * rules apply.
1362     *
1363     * ll ranges over the values 0 to kMax only.
1364     *
1365     * mm ranges over 0 to kMax when ll=0 and over
1366     * -kMax to kMax otherwise.
1367     * nn ranges over 1 to kMax when ll=mm=0 and over
1368     * -kMax to kMax otherwise.
1369     *
1370     * Hence the result of the summation must be doubled at the end.
1371     */
1372    
1373     std::vector<RealType> clm(nMax, 0.0);
1374     std::vector<RealType> slm(nMax, 0.0);
1375     std::vector<RealType> ckr(nMax, 0.0);
1376     std::vector<RealType> skr(nMax, 0.0);
1377     std::vector<RealType> ckc(nMax, 0.0);
1378     std::vector<RealType> cks(nMax, 0.0);
1379     std::vector<RealType> dkc(nMax, 0.0);
1380     std::vector<RealType> dks(nMax, 0.0);
1381     std::vector<RealType> qkc(nMax, 0.0);
1382     std::vector<RealType> qks(nMax, 0.0);
1383     std::vector<Vector3d> dxk(nMax, V3Zero);
1384     std::vector<Vector3d> qxk(nMax, V3Zero);
1385 gezelter 1925 RealType rl, rm, rn;
1386     Vector3d kVec;
1387     Vector3d Qk;
1388     Mat3x3d k2;
1389     RealType ckcs, ckss, dkcs, dkss, qkcs, qkss;
1390     int atid;
1391     ElectrostaticAtomData data;
1392     RealType C, dk, qk;
1393     Vector3d D;
1394     Mat3x3d Q;
1395    
1396 gezelter 1915 int mMin = kLimit;
1397     int nMin = kLimit + 1;
1398     for (int l = 1; l <= kLimit; l++) {
1399 gezelter 1922 int ll = l - 1;
1400 gezelter 1925 rl = xcl * float(ll);
1401 gezelter 1915 for (int mmm = mMin; mmm <= kLim2; mmm++) {
1402     int mm = mmm - kLimit;
1403     int m = abs(mm) + 1;
1404 gezelter 1925 rm = ycl * float(mm);
1405 gezelter 1915 // Set temporary products of exponential terms
1406     for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1407     mol = info_->nextMolecule(mi)) {
1408     for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1409     atom = mol->nextAtom(ai)) {
1410    
1411     i = atom->getLocalIndex();
1412     if(mm < 0) {
1413 gezelter 1925 clm[i]=elc[l][i]*emc[m][i]+els[l][i]*ems[m][i];
1414     slm[i]=els[l][i]*emc[m][i]-ems[m][i]*elc[l][i];
1415 gezelter 1915 } else {
1416 gezelter 1925 clm[i]=elc[l][i]*emc[m][i]-els[l][i]*ems[m][i];
1417     slm[i]=els[l][i]*emc[m][i]+ems[m][i]*elc[l][i];
1418 gezelter 1915 }
1419     }
1420     }
1421     for (int nnn = nMin; nnn <= kLim2; nnn++) {
1422     int nn = nnn - kLimit;
1423     int n = abs(nn) + 1;
1424 gezelter 1925 rn = zcl * float(nn);
1425 gezelter 1915 // Test on magnitude of k vector:
1426     int kk=ll*ll + mm*mm + nn*nn;
1427     if(kk <= kSqLim) {
1428 gezelter 1925 kVec = Vector3d(rl, rm, rn);
1429     k2 = outProduct(kVec, kVec);
1430 gezelter 1915 // Calculate exp(ikr) terms
1431     for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1432     mol = info_->nextMolecule(mi)) {
1433     for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1434     atom = mol->nextAtom(ai)) {
1435     i = atom->getLocalIndex();
1436    
1437     if (nn < 0) {
1438 gezelter 1925 ckr[i]=clm[i]*enc[n][i]+slm[i]*ens[n][i];
1439     skr[i]=slm[i]*enc[n][i]-clm[i]*ens[n][i];
1440    
1441 gezelter 1915 } else {
1442 gezelter 1925 ckr[i]=clm[i]*enc[n][i]-slm[i]*ens[n][i];
1443     skr[i]=slm[i]*enc[n][i]+clm[i]*ens[n][i];
1444 gezelter 1915 }
1445     }
1446     }
1447    
1448     // Calculate scalar and vector products for each site:
1449    
1450     for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1451     mol = info_->nextMolecule(mi)) {
1452     for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1453     atom = mol->nextAtom(ai)) {
1454 gezelter 1921 i = atom->getLocalIndex();
1455 gezelter 1915 int atid = atom->getAtomType()->getIdent();
1456 gezelter 1925 data = ElectrostaticMap[Etids[atid]];
1457 gezelter 1915
1458     if (data.is_Charge) {
1459 gezelter 1925 C = data.fixedCharge;
1460 gezelter 1915 if (atom->isFluctuatingCharge()) C += atom->getFlucQPos();
1461     ckc[i] = C * ckr[i];
1462 gezelter 1921 cks[i] = C * skr[i];
1463 gezelter 1915 }
1464    
1465     if (data.is_Dipole) {
1466 gezelter 1925 D = atom->getDipole() * mPoleConverter;
1467     dk = dot(D, kVec);
1468 gezelter 1924 dxk[i] = cross(D, kVec);
1469 gezelter 1915 dkc[i] = dk * ckr[i];
1470     dks[i] = dk * skr[i];
1471     }
1472     if (data.is_Quadrupole) {
1473 gezelter 1931 Q = atom->getQuadrupole() * mPoleConverter;
1474     Qk = Q * kVec;
1475 gezelter 1933 qk = dot(kVec, Qk);
1476 gezelter 1934 qxk[i] = -cross(kVec, Qk);
1477 gezelter 1915 qkc[i] = qk * ckr[i];
1478     qks[i] = qk * skr[i];
1479     }
1480     }
1481     }
1482 gezelter 1921
1483 gezelter 1915 // calculate vector sums
1484    
1485 gezelter 1925 ckcs = std::accumulate(ckc.begin(),ckc.end(),0.0);
1486     ckss = std::accumulate(cks.begin(),cks.end(),0.0);
1487     dkcs = std::accumulate(dkc.begin(),dkc.end(),0.0);
1488     dkss = std::accumulate(dks.begin(),dks.end(),0.0);
1489     qkcs = std::accumulate(qkc.begin(),qkc.end(),0.0);
1490     qkss = std::accumulate(qks.begin(),qks.end(),0.0);
1491 gezelter 1915
1492     #ifdef IS_MPI
1493 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &ckcs, 1, MPI_REALTYPE,
1494     MPI_SUM, MPI_COMM_WORLD);
1495     MPI_Allreduce(MPI_IN_PLACE, &ckss, 1, MPI_REALTYPE,
1496     MPI_SUM, MPI_COMM_WORLD);
1497     MPI_Allreduce(MPI_IN_PLACE, &dkcs, 1, MPI_REALTYPE,
1498     MPI_SUM, MPI_COMM_WORLD);
1499     MPI_Allreduce(MPI_IN_PLACE, &dkss, 1, MPI_REALTYPE,
1500     MPI_SUM, MPI_COMM_WORLD);
1501     MPI_Allreduce(MPI_IN_PLACE, &qkcs, 1, MPI_REALTYPE,
1502     MPI_SUM, MPI_COMM_WORLD);
1503     MPI_Allreduce(MPI_IN_PLACE, &qkss, 1, MPI_REALTYPE,
1504     MPI_SUM, MPI_COMM_WORLD);
1505 gezelter 1915 #endif
1506    
1507 gezelter 1923 // Accumulate potential energy and virial contribution:
1508 gezelter 1921
1509 gezelter 1925 kPot += 2.0 * rvol * AK[kk]*((ckss+dkcs-qkss)*(ckss+dkcs-qkss)
1510     + (ckcs-dkss-qkcs)*(ckcs-dkss-qkcs));
1511 gezelter 1921
1512 gezelter 1925 kVir += 2.0 * rvol * AK[kk]*(ckcs*ckcs+ckss*ckss
1513     +4.0*(ckss*dkcs-ckcs*dkss)
1514     +3.0*(dkcs*dkcs+dkss*dkss)
1515     -6.0*(ckss*qkss+ckcs*qkcs)
1516     +8.0*(dkss*qkcs-dkcs*qkss)
1517     +5.0*(qkss*qkss+qkcs*qkcs));
1518 gezelter 1915
1519     // Calculate force and torque for each site:
1520    
1521     for (Molecule* mol = info_->beginMolecule(mi); mol != NULL;
1522     mol = info_->nextMolecule(mi)) {
1523     for(Atom* atom = mol->beginAtom(ai); atom != NULL;
1524     atom = mol->nextAtom(ai)) {
1525    
1526     i = atom->getLocalIndex();
1527 gezelter 1925 atid = atom->getAtomType()->getIdent();
1528     data = ElectrostaticMap[Etids[atid]];
1529    
1530 gezelter 1915 RealType qfrc = AK[kk]*((cks[i]+dkc[i]-qks[i])*(ckcs-dkss-qkcs)
1531 gezelter 1922 - (ckc[i]-dks[i]-qkc[i])*(ckss+dkcs-qkss));
1532 gezelter 1915 RealType qtrq1 = AK[kk]*(skr[i]*(ckcs-dkss-qkcs)
1533     -ckr[i]*(ckss+dkcs-qkss));
1534 gezelter 1925 RealType qtrq2 = 2.0*AK[kk]*(ckr[i]*(ckcs-dkss-qkcs)
1535 gezelter 1933 +skr[i]*(ckss+dkcs-qkss));
1536 gezelter 1923
1537 gezelter 1915 atom->addFrc( 4.0 * rvol * qfrc * kVec );
1538 gezelter 1973
1539     if (atom->isFluctuatingCharge()) {
1540 gezelter 1981 atom->addFlucQFrc( - 2.0 * rvol * qtrq2 );
1541 gezelter 1973 }
1542    
1543 gezelter 1915 if (data.is_Dipole) {
1544     atom->addTrq( 4.0 * rvol * qtrq1 * dxk[i] );
1545     }
1546     if (data.is_Quadrupole) {
1547     atom->addTrq( 4.0 * rvol * qtrq2 * qxk[i] );
1548     }
1549     }
1550     }
1551     }
1552     }
1553 gezelter 1922 nMin = 1;
1554 gezelter 1915 }
1555 gezelter 1922 mMin = 1;
1556 gezelter 1915 }
1557 gezelter 1925 pot += kPot;
1558 gezelter 1915 }
1559 gezelter 1502 }

Properties

Name Value
svn:eol-style native