ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
Revision: 1900
Committed: Fri Jul 12 17:38:06 2013 UTC (11 years, 11 months ago) by gezelter
File size: 43053 byte(s)
Log Message:
Added self-interaction for shifted multipoles

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Electrostatic.hpp"
48     #include "utils/simError.h"
49     #include "types/NonBondedInteractionType.hpp"
50 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
51 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
52 gezelter 1710 #include "types/MultipoleAdapter.hpp"
53 gezelter 1535 #include "io/Globals.hpp"
54 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
55     #include "utils/PhysicalConstants.hpp"
56 gezelter 1767 #include "math/erfc.hpp"
57 gezelter 1879 #include "math/SquareMatrix.hpp"
58 gezelter 1502
59     namespace OpenMD {
60    
61     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
62 gezelter 1587 forceField_(NULL), info_(NULL),
63     haveCutoffRadius_(false),
64     haveDampingAlpha_(false),
65     haveDielectric_(false),
66 gezelter 1879 haveElectroSplines_(false)
67 gezelter 1587 {}
68 gezelter 1502
69     void Electrostatic::initialize() {
70 gezelter 1587
71 gezelter 1584 Globals* simParams_ = info_->getSimParams();
72 gezelter 1535
73 gezelter 1528 summationMap_["HARD"] = esm_HARD;
74 gezelter 1616 summationMap_["NONE"] = esm_HARD;
75 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
76     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
77     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
78 gezelter 1879 summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED;
79 gezelter 1528 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
80     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
81     summationMap_["EWALD_PME"] = esm_EWALD_PME;
82     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
83     screeningMap_["DAMPED"] = DAMPED;
84     screeningMap_["UNDAMPED"] = UNDAMPED;
85    
86 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
87     // all were computed assuming distances are measured in angstroms
88     // Charge-Charge, assuming charges are measured in electrons
89     pre11_ = 332.0637778;
90     // Charge-Dipole, assuming charges are measured in electrons, and
91     // dipoles are measured in debyes
92     pre12_ = 69.13373;
93 gezelter 1879 // Dipole-Dipole, assuming dipoles are measured in Debye
94 gezelter 1502 pre22_ = 14.39325;
95     // Charge-Quadrupole, assuming charges are measured in electrons, and
96     // quadrupoles are measured in 10^-26 esu cm^2
97 gezelter 1879 // This unit is also known affectionately as an esu centibarn.
98 gezelter 1502 pre14_ = 69.13373;
99 gezelter 1879 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
100     // quadrupoles in esu centibarns:
101     pre24_ = 14.39325;
102     // Quadrupole-Quadrupole, assuming esu centibarns:
103     pre44_ = 14.39325;
104    
105 gezelter 1502 // conversions for the simulation box dipole moment
106     chargeToC_ = 1.60217733e-19;
107     angstromToM_ = 1.0e-10;
108     debyeToCm_ = 3.33564095198e-30;
109    
110 gezelter 1879 // Default number of points for electrostatic splines
111 gezelter 1502 np_ = 100;
112    
113     // variables to handle different summation methods for long-range
114     // electrostatics:
115 gezelter 1528 summationMethod_ = esm_HARD;
116 gezelter 1502 screeningMethod_ = UNDAMPED;
117     dielectric_ = 1.0;
118    
119 gezelter 1528 // check the summation method:
120     if (simParams_->haveElectrostaticSummationMethod()) {
121     string myMethod = simParams_->getElectrostaticSummationMethod();
122     toUpper(myMethod);
123     map<string, ElectrostaticSummationMethod>::iterator i;
124     i = summationMap_.find(myMethod);
125     if ( i != summationMap_.end() ) {
126     summationMethod_ = (*i).second;
127     } else {
128     // throw error
129     sprintf( painCave.errMsg,
130 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
131 gezelter 1528 "\t(Input file specified %s .)\n"
132 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
133 gezelter 1879 "\t\"shifted_potential\", \"shifted_force\",\n"
134     "\t\"taylor_shifted\", or \"reaction_field\".\n",
135     myMethod.c_str() );
136 gezelter 1528 painCave.isFatal = 1;
137     simError();
138     }
139     } else {
140     // set ElectrostaticSummationMethod to the cutoffMethod:
141     if (simParams_->haveCutoffMethod()){
142     string myMethod = simParams_->getCutoffMethod();
143     toUpper(myMethod);
144     map<string, ElectrostaticSummationMethod>::iterator i;
145     i = summationMap_.find(myMethod);
146     if ( i != summationMap_.end() ) {
147     summationMethod_ = (*i).second;
148     }
149     }
150     }
151    
152     if (summationMethod_ == esm_REACTION_FIELD) {
153     if (!simParams_->haveDielectric()) {
154     // throw warning
155     sprintf( painCave.errMsg,
156     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
157     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
158     painCave.isFatal = 0;
159     painCave.severity = OPENMD_INFO;
160     simError();
161     } else {
162     dielectric_ = simParams_->getDielectric();
163     }
164     haveDielectric_ = true;
165     }
166    
167     if (simParams_->haveElectrostaticScreeningMethod()) {
168     string myScreen = simParams_->getElectrostaticScreeningMethod();
169     toUpper(myScreen);
170     map<string, ElectrostaticScreeningMethod>::iterator i;
171     i = screeningMap_.find(myScreen);
172     if ( i != screeningMap_.end()) {
173     screeningMethod_ = (*i).second;
174     } else {
175     sprintf( painCave.errMsg,
176     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
177     "\t(Input file specified %s .)\n"
178     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
179     "or \"damped\".\n", myScreen.c_str() );
180     painCave.isFatal = 1;
181     simError();
182     }
183     }
184    
185     // check to make sure a cutoff value has been set:
186     if (!haveCutoffRadius_) {
187     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
188     "Cutoff value!\n");
189     painCave.severity = OPENMD_ERROR;
190     painCave.isFatal = 1;
191     simError();
192     }
193    
194     if (screeningMethod_ == DAMPED) {
195     if (!simParams_->haveDampingAlpha()) {
196     // first set a cutoff dependent alpha value
197     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
198     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
199     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
200    
201     // throw warning
202     sprintf( painCave.errMsg,
203 gezelter 1750 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
204     "\tinput file. A default value of %f (1/ang) will be used for the\n"
205     "\tcutoff of %f (ang).\n",
206 gezelter 1528 dampingAlpha_, cutoffRadius_);
207     painCave.severity = OPENMD_INFO;
208     painCave.isFatal = 0;
209     simError();
210     } else {
211     dampingAlpha_ = simParams_->getDampingAlpha();
212     }
213     haveDampingAlpha_ = true;
214     }
215    
216 gezelter 1895 Etypes.clear();
217     Etids.clear();
218     FQtypes.clear();
219     FQtids.clear();
220     ElectrostaticMap.clear();
221     Jij.clear();
222     nElectro_ = 0;
223     nFlucq_ = 0;
224    
225     Etids.resize( forceField_->getNAtomType(), -1);
226     FQtids.resize( forceField_->getNAtomType(), -1);
227    
228     set<AtomType*>::iterator at;
229     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
230     if ((*at)->isElectrostatic()) nElectro_++;
231     if ((*at)->isFluctuatingCharge()) nFlucq_++;
232     }
233 gezelter 1528
234 gezelter 1895 Jij.resize(nFlucq_);
235    
236     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
237     if ((*at)->isElectrostatic()) addType(*at);
238 gezelter 1879 }
239    
240     if (summationMethod_ == esm_REACTION_FIELD) {
241     preRF_ = (dielectric_ - 1.0) /
242     ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
243 gezelter 1502 }
244    
245 gezelter 1879 RealType b0c, b1c, b2c, b3c, b4c, b5c;
246     RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
247     RealType a2, expTerm, invArootPi;
248    
249     RealType r = cutoffRadius_;
250     RealType r2 = r * r;
251     RealType ric = 1.0 / r;
252     RealType ric2 = ric * ric;
253 gezelter 1502
254 gezelter 1879 if (screeningMethod_ == DAMPED) {
255     a2 = dampingAlpha_ * dampingAlpha_;
256     invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
257     expTerm = exp(-a2 * r2);
258     // values of Smith's B_l functions at the cutoff radius:
259     b0c = erfc(dampingAlpha_ * r) / r;
260     b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
261     b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
262     b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
263     b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
264     b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
265 gezelter 1900 //selfMult1_ = - 2.0 * a2 * invArootPi;
266     //selfMult2_ = - 4.0 * a2 * a2 * invArootPi / 3.0;
267     //selfMult4_ = - 8.0 * a2 * a2 * a2 * invArootPi / 5.0;
268     // Half the Smith self piece:
269     selfMult1_ = - a2 * invArootPi;
270     selfMult2_ = - 2.0 * a2 * a2 * invArootPi / 3.0;
271     selfMult4_ = - 4.0 * a2 * a2 * a2 * invArootPi / 5.0;
272 gezelter 1502 } else {
273 gezelter 1879 a2 = 0.0;
274     b0c = 1.0 / r;
275     b1c = ( b0c) / r2;
276     b2c = (3.0 * b1c) / r2;
277     b3c = (5.0 * b2c) / r2;
278     b4c = (7.0 * b3c) / r2;
279     b5c = (9.0 * b4c) / r2;
280 gezelter 1900 selfMult1_ = 0.0;
281     selfMult2_ = 0.0;
282     selfMult4_ = 0.0;
283 gezelter 1502 }
284 gezelter 1879
285     // higher derivatives of B_0 at the cutoff radius:
286     db0c_1 = -r * b1c;
287     db0c_2 = -b1c + r2 * b2c;
288     db0c_3 = 3.0*r*b2c - r2*r*b3c;
289     db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
290 gezelter 1900 db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
291 gezelter 1528
292 gezelter 1900 selfMult1_ -= b0c;
293     selfMult2_ += (db0c_2 + 2.0*db0c_1*ric) / 3.0;
294     selfMult4_ -= (db0c_4 + 4.0*db0c_3*ric) / 15.0;
295 gezelter 1879
296     // working variables for the splines:
297     RealType ri, ri2;
298     RealType b0, b1, b2, b3, b4, b5;
299     RealType db0_1, db0_2, db0_3, db0_4, db0_5;
300     RealType f, fc, f0;
301     RealType g, gc, g0, g1, g2, g3, g4;
302     RealType h, hc, h1, h2, h3, h4;
303     RealType s, sc, s2, s3, s4;
304     RealType t, tc, t3, t4;
305     RealType u, uc, u4;
306    
307     // working variables for Taylor expansion:
308     RealType rmRc, rmRc2, rmRc3, rmRc4;
309    
310     // Approximate using splines using a maximum of 0.1 Angstroms
311     // between points.
312     int nptest = int((cutoffRadius_ + 2.0) / 0.1);
313     np_ = (np_ > nptest) ? np_ : nptest;
314    
315 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
316     // have charged atoms longer than the cutoffRadius away from each
317 gezelter 1879 // other. Splining is almost certainly the best choice here.
318     // Direct calls to erfc would be preferrable if it is a very fast
319     // implementation.
320 gezelter 1613
321 gezelter 1879 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
322    
323     // Storage vectors for the computed functions
324     vector<RealType> rv;
325     vector<RealType> v01v;
326     vector<RealType> v11v;
327     vector<RealType> v21v, v22v;
328     vector<RealType> v31v, v32v;
329     vector<RealType> v41v, v42v, v43v;
330    
331     /*
332     vector<RealType> dv01v;
333     vector<RealType> dv11v;
334     vector<RealType> dv21v, dv22v;
335     vector<RealType> dv31v, dv32v;
336     vector<RealType> dv41v, dv42v, dv43v;
337     */
338    
339     for (int i = 1; i < np_ + 1; i++) {
340     r = RealType(i) * dx;
341     rv.push_back(r);
342    
343     ri = 1.0 / r;
344     ri2 = ri * ri;
345    
346     r2 = r * r;
347     expTerm = exp(-a2 * r2);
348    
349     // Taylor expansion factors (no need for factorials this way):
350     rmRc = r - cutoffRadius_;
351     rmRc2 = rmRc * rmRc / 2.0;
352     rmRc3 = rmRc2 * rmRc / 3.0;
353     rmRc4 = rmRc3 * rmRc / 4.0;
354    
355     // values of Smith's B_l functions at r:
356     if (screeningMethod_ == DAMPED) {
357     b0 = erfc(dampingAlpha_ * r) * ri;
358     b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
359     b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
360     b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
361     b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
362     b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
363     } else {
364     b0 = ri;
365     b1 = ( b0) * ri2;
366     b2 = (3.0 * b1) * ri2;
367     b3 = (5.0 * b2) * ri2;
368     b4 = (7.0 * b3) * ri2;
369     b5 = (9.0 * b4) * ri2;
370     }
371    
372     // higher derivatives of B_0 at r:
373     db0_1 = -r * b1;
374     db0_2 = -b1 + r2 * b2;
375     db0_3 = 3.0*r*b2 - r2*r*b3;
376     db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
377     db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
378    
379     f = b0;
380     fc = b0c;
381     f0 = f - fc - rmRc*db0c_1;
382    
383     g = db0_1;
384     gc = db0c_1;
385     g0 = g - gc;
386     g1 = g0 - rmRc *db0c_2;
387     g2 = g1 - rmRc2*db0c_3;
388     g3 = g2 - rmRc3*db0c_4;
389     g4 = g3 - rmRc4*db0c_5;
390    
391     h = db0_2;
392     hc = db0c_2;
393     h1 = h - hc;
394     h2 = h1 - rmRc *db0c_3;
395     h3 = h2 - rmRc2*db0c_4;
396     h4 = h3 - rmRc3*db0c_5;
397    
398     s = db0_3;
399     sc = db0c_3;
400     s2 = s - sc;
401     s3 = s2 - rmRc *db0c_4;
402     s4 = s3 - rmRc2*db0c_5;
403    
404     t = db0_4;
405     tc = db0c_4;
406     t3 = t - tc;
407     t4 = t3 - rmRc *db0c_5;
408    
409     u = db0_5;
410     uc = db0c_5;
411     u4 = u - uc;
412    
413     // in what follows below, the various v functions are used for
414     // potentials and torques, while the w functions show up in the
415     // forces.
416    
417     switch (summationMethod_) {
418     case esm_SHIFTED_FORCE:
419    
420     v01 = f - fc - rmRc*gc;
421     v11 = g - gc - rmRc*hc;
422     v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
423     v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
424 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
425 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
426     - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
427     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
428     - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
429     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
430     - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
431    
432     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
433     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
434     - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
435    
436     dv01 = g - gc;
437     dv11 = h - hc;
438     dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
439     dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);
440     dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
441     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
442     - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
443     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
444     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
445     - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
446     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
447     - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
448    
449     break;
450    
451     case esm_TAYLOR_SHIFTED:
452    
453     v01 = f0;
454     v11 = g1;
455     v21 = g2 * ri;
456     v22 = h2 - v21;
457     v31 = (h3 - g3 * ri) * ri;
458     v32 = s3 - 3.0*v31;
459     v41 = (h4 - g4 * ri) * ri2;
460     v42 = s4 * ri - 3.0*v41;
461     v43 = t4 - 6.0*v42 - 3.0*v41;
462    
463     dv01 = g0;
464     dv11 = h1;
465     dv21 = (h2 - g2*ri)*ri;
466     dv22 = (s2 - (h2 - g2*ri)*ri);
467     dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
468     dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
469     dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
470     dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
471     dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
472    
473     break;
474    
475     case esm_SHIFTED_POTENTIAL:
476    
477     v01 = f - fc;
478     v11 = g - gc;
479     v21 = g*ri - gc*ric;
480     v22 = h - g*ri - (hc - gc*ric);
481 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
482 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
483     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
484     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
485     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
486     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
487    
488     dv01 = g;
489     dv11 = h;
490     dv21 = (h - g*ri)*ri;
491     dv22 = (s - (h - g*ri)*ri);
492     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
493     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
494     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
495     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
496     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
497    
498     break;
499    
500     case esm_SWITCHING_FUNCTION:
501     case esm_HARD:
502    
503     v01 = f;
504     v11 = g;
505     v21 = g*ri;
506     v22 = h - g*ri;
507     v31 = (h-g*ri)*ri;
508     v32 = (s - 3.0*(h-g*ri)*ri);
509     v41 = (h - g*ri)*ri2;
510     v42 = (s-3.0*(h-g*ri)*ri)*ri;
511     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
512    
513     dv01 = g;
514     dv11 = h;
515     dv21 = (h - g*ri)*ri;
516     dv22 = (s - (h - g*ri)*ri);
517     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
518     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
519     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
520     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
521     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
522    
523     break;
524    
525     case esm_REACTION_FIELD:
526    
527     // following DL_POLY's lead for shifting the image charge potential:
528     f = b0 + preRF_ * r2;
529     fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
530    
531     g = db0_1 + preRF_ * 2.0 * r;
532     gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
533    
534     h = db0_2 + preRF_ * 2.0;
535     hc = db0c_2 + preRF_ * 2.0;
536    
537     v01 = f - fc;
538     v11 = g - gc;
539     v21 = g*ri - gc*ric;
540     v22 = h - g*ri - (hc - gc*ric);
541 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
542 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
543     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
544     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
545     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
546     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
547    
548     dv01 = g;
549     dv11 = h;
550     dv21 = (h - g*ri)*ri;
551     dv22 = (s - (h - g*ri)*ri);
552     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
553     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
554     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
555     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
556     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
557    
558     break;
559    
560     case esm_EWALD_FULL:
561     case esm_EWALD_PME:
562     case esm_EWALD_SPME:
563     default :
564     map<string, ElectrostaticSummationMethod>::iterator i;
565     std::string meth;
566     for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
567     if ((*i).second == summationMethod_) meth = (*i).first;
568     }
569     sprintf( painCave.errMsg,
570     "Electrostatic::initialize: electrostaticSummationMethod %s \n"
571     "\thas not been implemented yet. Please select one of:\n"
572     "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
573     meth.c_str() );
574     painCave.isFatal = 1;
575     simError();
576     break;
577     }
578    
579     // Add these computed values to the storage vectors for spline creation:
580     v01v.push_back(v01);
581     v11v.push_back(v11);
582     v21v.push_back(v21);
583     v22v.push_back(v22);
584     v31v.push_back(v31);
585     v32v.push_back(v32);
586     v41v.push_back(v41);
587     v42v.push_back(v42);
588     v43v.push_back(v43);
589     /*
590     dv01v.push_back(dv01);
591     dv11v.push_back(dv11);
592     dv21v.push_back(dv21);
593     dv22v.push_back(dv22);
594     dv31v.push_back(dv31);
595     dv32v.push_back(dv32);
596     dv41v.push_back(dv41);
597     dv42v.push_back(dv42);
598     dv43v.push_back(dv43);
599     */
600 gezelter 1502 }
601    
602 gezelter 1879 // construct the spline structures and fill them with the values we've
603     // computed:
604    
605     v01s = new CubicSpline();
606     v01s->addPoints(rv, v01v);
607     v11s = new CubicSpline();
608     v11s->addPoints(rv, v11v);
609     v21s = new CubicSpline();
610     v21s->addPoints(rv, v21v);
611     v22s = new CubicSpline();
612     v22s->addPoints(rv, v22v);
613     v31s = new CubicSpline();
614     v31s->addPoints(rv, v31v);
615     v32s = new CubicSpline();
616     v32s->addPoints(rv, v32v);
617     v41s = new CubicSpline();
618     v41s->addPoints(rv, v41v);
619     v42s = new CubicSpline();
620     v42s->addPoints(rv, v42v);
621     v43s = new CubicSpline();
622     v43s->addPoints(rv, v43v);
623    
624     /*
625     dv01s = new CubicSpline();
626     dv01s->addPoints(rv, dv01v);
627     dv11s = new CubicSpline();
628     dv11s->addPoints(rv, dv11v);
629     dv21s = new CubicSpline();
630     dv21s->addPoints(rv, dv21v);
631     dv22s = new CubicSpline();
632     dv22s->addPoints(rv, dv22v);
633     dv31s = new CubicSpline();
634     dv31s->addPoints(rv, dv31v);
635     dv32s = new CubicSpline();
636     dv32s->addPoints(rv, dv32v);
637     dv41s = new CubicSpline();
638     dv41s->addPoints(rv, dv41v);
639     dv42s = new CubicSpline();
640     dv42s->addPoints(rv, dv42v);
641     dv43s = new CubicSpline();
642     dv43s->addPoints(rv, dv43v);
643     */
644    
645     haveElectroSplines_ = true;
646    
647 gezelter 1502 initialized_ = true;
648     }
649    
650     void Electrostatic::addType(AtomType* atomType){
651 gezelter 1895
652 gezelter 1502 ElectrostaticAtomData electrostaticAtomData;
653     electrostaticAtomData.is_Charge = false;
654     electrostaticAtomData.is_Dipole = false;
655     electrostaticAtomData.is_Quadrupole = false;
656 gezelter 1723 electrostaticAtomData.is_Fluctuating = false;
657 gezelter 1502
658 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
659 gezelter 1502
660 gezelter 1710 if (fca.isFixedCharge()) {
661 gezelter 1502 electrostaticAtomData.is_Charge = true;
662 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
663 gezelter 1502 }
664    
665 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
666     if (ma.isMultipole()) {
667     if (ma.isDipole()) {
668 gezelter 1502 electrostaticAtomData.is_Dipole = true;
669 gezelter 1879 electrostaticAtomData.dipole = ma.getDipole();
670 gezelter 1502 }
671 gezelter 1710 if (ma.isQuadrupole()) {
672 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
673 gezelter 1879 electrostaticAtomData.quadrupole = ma.getQuadrupole();
674 gezelter 1502 }
675     }
676    
677 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
678 gezelter 1502
679 gezelter 1718 if (fqa.isFluctuatingCharge()) {
680 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
681     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
682     electrostaticAtomData.hardness = fqa.getHardness();
683     electrostaticAtomData.slaterN = fqa.getSlaterN();
684     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
685 gezelter 1718 }
686    
687 gezelter 1895 int atid = atomType->getIdent();
688     int etid = Etypes.size();
689     int fqtid = FQtypes.size();
690    
691     pair<set<int>::iterator,bool> ret;
692     ret = Etypes.insert( atid );
693 gezelter 1502 if (ret.second == false) {
694     sprintf( painCave.errMsg,
695     "Electrostatic already had a previous entry with ident %d\n",
696 gezelter 1895 atid);
697 gezelter 1502 painCave.severity = OPENMD_INFO;
698     painCave.isFatal = 0;
699     simError();
700     }
701    
702 gezelter 1895 Etids[ atid ] = etid;
703     ElectrostaticMap.push_back(electrostaticAtomData);
704 gezelter 1718
705 gezelter 1895 if (electrostaticAtomData.is_Fluctuating) {
706     ret = FQtypes.insert( atid );
707     if (ret.second == false) {
708     sprintf( painCave.errMsg,
709     "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
710     atid );
711     painCave.severity = OPENMD_INFO;
712     painCave.isFatal = 0;
713     simError();
714     }
715     FQtids[atid] = fqtid;
716     Jij[fqtid].resize(nFlucq_);
717    
718     // Now, iterate over all known fluctuating and add to the coulomb integral map:
719    
720     std::set<int>::iterator it;
721     for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {
722     int etid2 = Etids[ (*it) ];
723     int fqtid2 = FQtids[ (*it) ];
724     ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
725 gezelter 1718 RealType a = electrostaticAtomData.slaterZeta;
726 gezelter 1720 RealType b = eaData2.slaterZeta;
727 gezelter 1718 int m = electrostaticAtomData.slaterN;
728 gezelter 1720 int n = eaData2.slaterN;
729 gezelter 1895
730 gezelter 1718 // Create the spline of the coulombic integral for s-type
731     // Slater orbitals. Add a 2 angstrom safety window to deal
732     // with cutoffGroups that have charged atoms longer than the
733     // cutoffRadius away from each other.
734 gezelter 1895
735 gezelter 1720 RealType rval;
736 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
737     vector<RealType> rvals;
738 gezelter 1879 vector<RealType> Jvals;
739     // don't start at i = 0, as rval = 0 is undefined for the
740     // slater overlap integrals.
741 gezelter 1761 for (int i = 1; i < np_+1; i++) {
742 gezelter 1718 rval = RealType(i) * dr;
743     rvals.push_back(rval);
744 gezelter 1879 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
745     PhysicalConstants::angstromToBohr ) *
746     PhysicalConstants::hartreeToKcal );
747 gezelter 1718 }
748    
749 gezelter 1879 CubicSpline* J = new CubicSpline();
750     J->addPoints(rvals, Jvals);
751 gezelter 1895 Jij[fqtid][fqtid2] = J;
752     Jij[fqtid2].resize( nFlucq_ );
753     Jij[fqtid2][fqtid] = J;
754     }
755     }
756 gezelter 1502 return;
757     }
758    
759 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
760     cutoffRadius_ = rCut;
761 gezelter 1528 haveCutoffRadius_ = true;
762 gezelter 1502 }
763 gezelter 1584
764 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
765     summationMethod_ = esm;
766     }
767     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
768     screeningMethod_ = sm;
769     }
770     void Electrostatic::setDampingAlpha( RealType alpha ) {
771     dampingAlpha_ = alpha;
772     haveDampingAlpha_ = true;
773     }
774     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
775     dielectric_ = dielectric;
776     haveDielectric_ = true;
777     }
778    
779 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
780 gezelter 1502
781 gezelter 1893 if (!initialized_) initialize();
782    
783 gezelter 1895 data1 = ElectrostaticMap[Etids[idat.atid1]];
784     data2 = ElectrostaticMap[Etids[idat.atid2]];
785 gezelter 1502
786 gezelter 1893 U = 0.0; // Potential
787     F.zero(); // Force
788     Ta.zero(); // Torque on site a
789     Tb.zero(); // Torque on site b
790     Ea.zero(); // Electric field at site a
791     Eb.zero(); // Electric field at site b
792     dUdCa = 0.0; // fluctuating charge force at site a
793     dUdCb = 0.0; // fluctuating charge force at site a
794 gezelter 1879
795     // Indirect interactions mediated by the reaction field.
796 gezelter 1893 indirect_Pot = 0.0; // Potential
797     indirect_F.zero(); // Force
798     indirect_Ta.zero(); // Torque on site a
799     indirect_Tb.zero(); // Torque on site b
800 gezelter 1587
801 gezelter 1879 // Excluded potential that is still computed for fluctuating charges
802 gezelter 1893 excluded_Pot= 0.0;
803 gezelter 1879
804    
805 gezelter 1502 // some variables we'll need independent of electrostatic type:
806    
807 gezelter 1879 ri = 1.0 / *(idat.rij);
808 gezelter 1893 rhat = *(idat.d) * ri;
809 gezelter 1879
810 gezelter 1502 // logicals
811    
812 gezelter 1893 a_is_Charge = data1.is_Charge;
813     a_is_Dipole = data1.is_Dipole;
814     a_is_Quadrupole = data1.is_Quadrupole;
815     a_is_Fluctuating = data1.is_Fluctuating;
816 gezelter 1502
817 gezelter 1893 b_is_Charge = data2.is_Charge;
818     b_is_Dipole = data2.is_Dipole;
819     b_is_Quadrupole = data2.is_Quadrupole;
820     b_is_Fluctuating = data2.is_Fluctuating;
821 gezelter 1879
822     // Obtain all of the required radial function values from the
823     // spline structures:
824 gezelter 1502
825 gezelter 1879 // needed for fields (and forces):
826     if (a_is_Charge || b_is_Charge) {
827     v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
828     }
829     if (a_is_Dipole || b_is_Dipole) {
830     v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
831     v11or = ri * v11;
832     }
833     if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) {
834     v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
835     v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
836     v22or = ri * v22;
837     }
838 gezelter 1721
839 gezelter 1879 // needed for potentials (and forces and torques):
840     if ((a_is_Dipole && b_is_Quadrupole) ||
841     (b_is_Dipole && a_is_Quadrupole)) {
842     v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
843     v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
844     v31or = v31 * ri;
845     v32or = v32 * ri;
846     }
847     if (a_is_Quadrupole && b_is_Quadrupole) {
848     v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
849     v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
850     v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
851     v42or = v42 * ri;
852     v43or = v43 * ri;
853     }
854    
855     // calculate the single-site contributions (fields, etc).
856    
857     if (a_is_Charge) {
858     C_a = data1.fixedCharge;
859    
860     if (a_is_Fluctuating) {
861     C_a += *(idat.flucQ1);
862 gezelter 1721 }
863    
864 gezelter 1587 if (idat.excluded) {
865 gezelter 1879 *(idat.skippedCharge2) += C_a;
866     } else {
867     // only do the field if we're not excluded:
868     Eb -= C_a * pre11_ * dv01 * rhat;
869 gezelter 1587 }
870     }
871 gezelter 1879
872     if (a_is_Dipole) {
873     D_a = *(idat.dipole1);
874     rdDa = dot(rhat, D_a);
875     rxDa = cross(rhat, D_a);
876     if (!idat.excluded)
877     Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
878 gezelter 1502 }
879    
880 gezelter 1879 if (a_is_Quadrupole) {
881     Q_a = *(idat.quadrupole1);
882     trQa = Q_a.trace();
883     Qar = Q_a * rhat;
884     rQa = rhat * Q_a;
885     rdQar = dot(rhat, Qar);
886     rxQar = cross(rhat, Qar);
887     if (!idat.excluded)
888     Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
889     + rdQar * rhat * (dv22 - 2.0*v22or));
890     }
891    
892     if (b_is_Charge) {
893     C_b = data2.fixedCharge;
894 gezelter 1502
895 gezelter 1879 if (b_is_Fluctuating)
896     C_b += *(idat.flucQ2);
897    
898 gezelter 1587 if (idat.excluded) {
899 gezelter 1879 *(idat.skippedCharge1) += C_b;
900     } else {
901     // only do the field if we're not excluded:
902     Ea += C_b * pre11_ * dv01 * rhat;
903 gezelter 1587 }
904     }
905 gezelter 1502
906 gezelter 1879 if (b_is_Dipole) {
907     D_b = *(idat.dipole2);
908     rdDb = dot(rhat, D_b);
909     rxDb = cross(rhat, D_b);
910     if (!idat.excluded)
911     Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
912 gezelter 1502 }
913    
914 gezelter 1879 if (b_is_Quadrupole) {
915     Q_b = *(idat.quadrupole2);
916     trQb = Q_b.trace();
917     Qbr = Q_b * rhat;
918     rQb = rhat * Q_b;
919     rdQbr = dot(rhat, Qbr);
920     rxQbr = cross(rhat, Qbr);
921     if (!idat.excluded)
922     Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
923     + rdQbr * rhat * (dv22 - 2.0*v22or));
924 gezelter 1721 }
925 gezelter 1502
926 gezelter 1879 if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
927 gezelter 1895 J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
928 gezelter 1879 }
929    
930     if (a_is_Charge) {
931 gezelter 1502
932 gezelter 1879 if (b_is_Charge) {
933     pref = pre11_ * *(idat.electroMult);
934     U += C_a * C_b * pref * v01;
935     F += C_a * C_b * pref * dv01 * rhat;
936    
937     // If this is an excluded pair, there are still indirect
938     // interactions via the reaction field we must worry about:
939 gezelter 1616
940 gezelter 1879 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
941     rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
942     indirect_Pot += rfContrib;
943     indirect_F += rfContrib * 2.0 * ri * rhat;
944 gezelter 1502 }
945    
946 gezelter 1879 // Fluctuating charge forces are handled via Coulomb integrals
947     // for excluded pairs (i.e. those connected via bonds) and
948     // with the standard charge-charge interaction otherwise.
949 gezelter 1502
950 gezelter 1879 if (idat.excluded) {
951     if (a_is_Fluctuating || b_is_Fluctuating) {
952     coulInt = J->getValueAt( *(idat.rij) );
953     if (a_is_Fluctuating) dUdCa += coulInt * C_b;
954     if (b_is_Fluctuating) dUdCb += coulInt * C_a;
955     excluded_Pot += C_a * C_b * coulInt;
956     }
957 gezelter 1502 } else {
958 gezelter 1879 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
959     if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
960 gezelter 1721 }
961 gezelter 1502 }
962    
963 gezelter 1879 if (b_is_Dipole) {
964     pref = pre12_ * *(idat.electroMult);
965     U += C_a * pref * v11 * rdDb;
966     F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
967     Tb += C_a * pref * v11 * rxDb;
968 gezelter 1502
969 gezelter 1879 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
970 gezelter 1502
971 gezelter 1879 // Even if we excluded this pair from direct interactions, we
972     // still have the reaction-field-mediated charge-dipole
973     // interaction:
974 gezelter 1502
975 gezelter 1879 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
976     rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
977     indirect_Pot += rfContrib * rdDb;
978     indirect_F += rfContrib * D_b / (*idat.rij);
979     indirect_Tb += C_a * pref * preRF_ * rxDb;
980 gezelter 1502 }
981     }
982    
983 gezelter 1879 if (b_is_Quadrupole) {
984     pref = pre14_ * *(idat.electroMult);
985     U += C_a * pref * (v21 * trQb + v22 * rdQbr);
986     F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
987     F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
988     Tb += C_a * pref * 2.0 * rxQbr * v22;
989 gezelter 1502
990 gezelter 1879 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
991 gezelter 1502 }
992     }
993    
994 gezelter 1879 if (a_is_Dipole) {
995 gezelter 1502
996 gezelter 1879 if (b_is_Charge) {
997     pref = pre12_ * *(idat.electroMult);
998 gezelter 1502
999 gezelter 1879 U -= C_b * pref * v11 * rdDa;
1000     F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
1001     Ta -= C_b * pref * v11 * rxDa;
1002 gezelter 1502
1003 gezelter 1879 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
1004 gezelter 1587
1005 gezelter 1879 // Even if we excluded this pair from direct interactions,
1006     // we still have the reaction-field-mediated charge-dipole
1007     // interaction:
1008     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1009     rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
1010     indirect_Pot -= rfContrib * rdDa;
1011     indirect_F -= rfContrib * D_a / (*idat.rij);
1012     indirect_Ta -= C_b * pref * preRF_ * rxDa;
1013     }
1014     }
1015 gezelter 1587
1016 gezelter 1879 if (b_is_Dipole) {
1017     pref = pre22_ * *(idat.electroMult);
1018     DadDb = dot(D_a, D_b);
1019     DaxDb = cross(D_a, D_b);
1020 gezelter 1502
1021 gezelter 1879 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
1022     F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
1023     F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
1024     Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
1025     Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
1026 gezelter 1723
1027 gezelter 1879 // Even if we excluded this pair from direct interactions, we
1028     // still have the reaction-field-mediated dipole-dipole
1029     // interaction:
1030     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1031     rfContrib = -pref * preRF_ * 2.0;
1032     indirect_Pot += rfContrib * DadDb;
1033     indirect_Ta += rfContrib * DaxDb;
1034     indirect_Tb -= rfContrib * DaxDb;
1035 gezelter 1723 }
1036 gezelter 1502 }
1037    
1038 gezelter 1879 if (b_is_Quadrupole) {
1039     pref = pre24_ * *(idat.electroMult);
1040     DadQb = D_a * Q_b;
1041     DadQbr = dot(D_a, Qbr);
1042     DaxQbr = cross(D_a, Qbr);
1043 gezelter 1502
1044 gezelter 1879 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1045     F -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1046     F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1047     F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1048     F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1049     Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1050     Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1051     - 2.0*rdDa*rxQbr*v32);
1052     }
1053     }
1054 gezelter 1502
1055 gezelter 1879 if (a_is_Quadrupole) {
1056     if (b_is_Charge) {
1057     pref = pre14_ * *(idat.electroMult);
1058     U += C_b * pref * (v21 * trQa + v22 * rdQar);
1059     F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1060     F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1061     Ta += C_b * pref * 2.0 * rxQar * v22;
1062 gezelter 1502
1063 gezelter 1879 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1064     }
1065     if (b_is_Dipole) {
1066     pref = pre24_ * *(idat.electroMult);
1067     DbdQa = D_b * Q_a;
1068     DbdQar = dot(D_b, Qar);
1069     DbxQar = cross(D_b, Qar);
1070 gezelter 1502
1071 gezelter 1879 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1072     F += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1073     F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1074     F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1075     F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1076     Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1077     + 2.0*rdDb*rxQar*v32);
1078     Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1079 gezelter 1502 }
1080 gezelter 1879 if (b_is_Quadrupole) {
1081     pref = pre44_ * *(idat.electroMult); // yes
1082     QaQb = Q_a * Q_b;
1083     trQaQb = QaQb.trace();
1084     rQaQb = rhat * QaQb;
1085     QaQbr = QaQb * rhat;
1086     QaxQb = cross(Q_a, Q_b);
1087     rQaQbr = dot(rQa, Qbr);
1088     rQaxQbr = cross(rQa, Qbr);
1089    
1090     U += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1091     U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42;
1092     U += pref * (rdQar * rdQbr) * v43;
1093 gezelter 1502
1094 gezelter 1879 F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1095     F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1096     F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1097 gezelter 1502
1098 gezelter 1879 F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1099     F += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1100     F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1101 gezelter 1502
1102 gezelter 1879 Ta += pref * (- 4.0 * QaxQb * v41);
1103     Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1104     + 4.0 * cross(rhat, QaQbr)
1105     - 4.0 * rQaxQbr) * v42;
1106     Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1107 gezelter 1502
1108    
1109 gezelter 1879 Tb += pref * (+ 4.0 * QaxQb * v41);
1110     Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1111     - 4.0 * cross(rQaQb, rhat)
1112     + 4.0 * rQaxQbr) * v42;
1113     // Possible replacement for line 2 above:
1114     // + 4.0 * cross(rhat, QbQar)
1115 gezelter 1502
1116 gezelter 1879 Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1117 gezelter 1502
1118     }
1119     }
1120    
1121 gezelter 1879 if (idat.doElectricField) {
1122     *(idat.eField1) += Ea * *(idat.electroMult);
1123     *(idat.eField2) += Eb * *(idat.electroMult);
1124     }
1125 gezelter 1502
1126 gezelter 1879 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1127     if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1128    
1129 gezelter 1587 if (!idat.excluded) {
1130    
1131 gezelter 1879 *(idat.vpair) += U;
1132     (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1133     *(idat.f1) += F * *(idat.sw);
1134 gezelter 1587
1135 gezelter 1879 if (a_is_Dipole || a_is_Quadrupole)
1136     *(idat.t1) += Ta * *(idat.sw);
1137 gezelter 1587
1138 gezelter 1879 if (b_is_Dipole || b_is_Quadrupole)
1139     *(idat.t2) += Tb * *(idat.sw);
1140    
1141 gezelter 1587 } else {
1142    
1143     // only accumulate the forces and torques resulting from the
1144     // indirect reaction field terms.
1145 gezelter 1616
1146 gezelter 1879 *(idat.vpair) += indirect_Pot;
1147     (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1148     (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1149     *(idat.f1) += *(idat.sw) * indirect_F;
1150 gezelter 1761
1151 gezelter 1879 if (a_is_Dipole || a_is_Quadrupole)
1152     *(idat.t1) += *(idat.sw) * indirect_Ta;
1153    
1154     if (b_is_Dipole || b_is_Quadrupole)
1155     *(idat.t2) += *(idat.sw) * indirect_Tb;
1156 gezelter 1502 }
1157     return;
1158 gezelter 1879 }
1159 gezelter 1502
1160 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1161 gezelter 1879
1162 gezelter 1502 if (!initialized_) initialize();
1163 gezelter 1586
1164 gezelter 1895 ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1165 gezelter 1879
1166 gezelter 1502 // logicals
1167     bool i_is_Charge = data.is_Charge;
1168     bool i_is_Dipole = data.is_Dipole;
1169 gezelter 1900 bool i_is_Quadrupole = data.is_Quadrupole;
1170 jmichalk 1734 bool i_is_Fluctuating = data.is_Fluctuating;
1171 gezelter 1879 RealType C_a = data.fixedCharge;
1172 gezelter 1900 RealType self(0.0), preVal, DdD, trQ, trQQ;
1173    
1174     if (i_is_Dipole) {
1175     DdD = data.dipole.lengthSquare();
1176     }
1177    
1178 jmichalk 1734 if (i_is_Fluctuating) {
1179 gezelter 1879 C_a += *(sdat.flucQ);
1180 jmichalk 1734 // dVdFQ is really a force, so this is negative the derivative
1181     *(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1182 gezelter 1761 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1183     (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1184 jmichalk 1734 }
1185 gezelter 1502
1186 gezelter 1879 switch (summationMethod_) {
1187     case esm_REACTION_FIELD:
1188    
1189     if (i_is_Charge) {
1190     // Self potential [see Wang and Hermans, "Reaction Field
1191     // Molecular Dynamics Simulation with Friedman’s Image Charge
1192     // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1193     preVal = pre11_ * preRF_ * C_a * C_a;
1194     (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1195     }
1196    
1197 gezelter 1502 if (i_is_Dipole) {
1198 gezelter 1900 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DdD;
1199 gezelter 1502 }
1200 gezelter 1879
1201     break;
1202    
1203     case esm_SHIFTED_FORCE:
1204     case esm_SHIFTED_POTENTIAL:
1205 gezelter 1900 if (i_is_Charge)
1206     self += selfMult1_ * pre11_ * C_a * (C_a + *(sdat.skippedCharge));
1207     if (i_is_Dipole)
1208     self += selfMult2_ * pre22_ * DdD;
1209     if (i_is_Quadrupole) {
1210     trQ = data.quadrupole.trace();
1211     trQQ = (data.quadrupole * data.quadrupole).trace();
1212     self += selfMult4_ * pre44_ * (2.0*trQQ + trQ*trQ);
1213     if (i_is_Charge)
1214     self -= selfMult2_ * pre14_ * 2.0 * C_a * trQ;
1215 gezelter 1502 }
1216 gezelter 1900 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1217 gezelter 1879 break;
1218     default:
1219     break;
1220 gezelter 1502 }
1221     }
1222 gezelter 1879
1223 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1224 gezelter 1505 // This seems to work moderately well as a default. There's no
1225     // inherent scale for 1/r interactions that we can standardize.
1226     // 12 angstroms seems to be a reasonably good guess for most
1227     // cases.
1228     return 12.0;
1229     }
1230 gezelter 1502 }

Properties

Name Value
svn:eol-style native