ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/Electrostatic.cpp
Revision: 1895
Committed: Mon Jul 1 21:09:37 2013 UTC (12 years ago) by gezelter
File size: 42197 byte(s)
Log Message:
Speed!

File Contents

# User Rev Content
1 gezelter 1502 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 gezelter 1587 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1502 */
42    
43     #include <stdio.h>
44     #include <string.h>
45    
46     #include <cmath>
47     #include "nonbonded/Electrostatic.hpp"
48     #include "utils/simError.h"
49     #include "types/NonBondedInteractionType.hpp"
50 gezelter 1710 #include "types/FixedChargeAdapter.hpp"
51 gezelter 1720 #include "types/FluctuatingChargeAdapter.hpp"
52 gezelter 1710 #include "types/MultipoleAdapter.hpp"
53 gezelter 1535 #include "io/Globals.hpp"
54 gezelter 1718 #include "nonbonded/SlaterIntegrals.hpp"
55     #include "utils/PhysicalConstants.hpp"
56 gezelter 1767 #include "math/erfc.hpp"
57 gezelter 1879 #include "math/SquareMatrix.hpp"
58 gezelter 1502
59     namespace OpenMD {
60    
61     Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
62 gezelter 1587 forceField_(NULL), info_(NULL),
63     haveCutoffRadius_(false),
64     haveDampingAlpha_(false),
65     haveDielectric_(false),
66 gezelter 1879 haveElectroSplines_(false)
67 gezelter 1587 {}
68 gezelter 1502
69     void Electrostatic::initialize() {
70 gezelter 1587
71 gezelter 1584 Globals* simParams_ = info_->getSimParams();
72 gezelter 1535
73 gezelter 1528 summationMap_["HARD"] = esm_HARD;
74 gezelter 1616 summationMap_["NONE"] = esm_HARD;
75 gezelter 1528 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
76     summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
77     summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
78 gezelter 1879 summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED;
79 gezelter 1528 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
80     summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
81     summationMap_["EWALD_PME"] = esm_EWALD_PME;
82     summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
83     screeningMap_["DAMPED"] = DAMPED;
84     screeningMap_["UNDAMPED"] = UNDAMPED;
85    
86 gezelter 1502 // these prefactors convert the multipole interactions into kcal / mol
87     // all were computed assuming distances are measured in angstroms
88     // Charge-Charge, assuming charges are measured in electrons
89     pre11_ = 332.0637778;
90     // Charge-Dipole, assuming charges are measured in electrons, and
91     // dipoles are measured in debyes
92     pre12_ = 69.13373;
93 gezelter 1879 // Dipole-Dipole, assuming dipoles are measured in Debye
94 gezelter 1502 pre22_ = 14.39325;
95     // Charge-Quadrupole, assuming charges are measured in electrons, and
96     // quadrupoles are measured in 10^-26 esu cm^2
97 gezelter 1879 // This unit is also known affectionately as an esu centibarn.
98 gezelter 1502 pre14_ = 69.13373;
99 gezelter 1879 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
100     // quadrupoles in esu centibarns:
101     pre24_ = 14.39325;
102     // Quadrupole-Quadrupole, assuming esu centibarns:
103     pre44_ = 14.39325;
104    
105 gezelter 1502 // conversions for the simulation box dipole moment
106     chargeToC_ = 1.60217733e-19;
107     angstromToM_ = 1.0e-10;
108     debyeToCm_ = 3.33564095198e-30;
109    
110 gezelter 1879 // Default number of points for electrostatic splines
111 gezelter 1502 np_ = 100;
112    
113     // variables to handle different summation methods for long-range
114     // electrostatics:
115 gezelter 1528 summationMethod_ = esm_HARD;
116 gezelter 1502 screeningMethod_ = UNDAMPED;
117     dielectric_ = 1.0;
118    
119 gezelter 1528 // check the summation method:
120     if (simParams_->haveElectrostaticSummationMethod()) {
121     string myMethod = simParams_->getElectrostaticSummationMethod();
122     toUpper(myMethod);
123     map<string, ElectrostaticSummationMethod>::iterator i;
124     i = summationMap_.find(myMethod);
125     if ( i != summationMap_.end() ) {
126     summationMethod_ = (*i).second;
127     } else {
128     // throw error
129     sprintf( painCave.errMsg,
130 gezelter 1536 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
131 gezelter 1528 "\t(Input file specified %s .)\n"
132 gezelter 1616 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
133 gezelter 1879 "\t\"shifted_potential\", \"shifted_force\",\n"
134     "\t\"taylor_shifted\", or \"reaction_field\".\n",
135     myMethod.c_str() );
136 gezelter 1528 painCave.isFatal = 1;
137     simError();
138     }
139     } else {
140     // set ElectrostaticSummationMethod to the cutoffMethod:
141     if (simParams_->haveCutoffMethod()){
142     string myMethod = simParams_->getCutoffMethod();
143     toUpper(myMethod);
144     map<string, ElectrostaticSummationMethod>::iterator i;
145     i = summationMap_.find(myMethod);
146     if ( i != summationMap_.end() ) {
147     summationMethod_ = (*i).second;
148     }
149     }
150     }
151    
152     if (summationMethod_ == esm_REACTION_FIELD) {
153     if (!simParams_->haveDielectric()) {
154     // throw warning
155     sprintf( painCave.errMsg,
156     "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
157     "\tA default value of %f will be used for the dielectric.\n", dielectric_);
158     painCave.isFatal = 0;
159     painCave.severity = OPENMD_INFO;
160     simError();
161     } else {
162     dielectric_ = simParams_->getDielectric();
163     }
164     haveDielectric_ = true;
165     }
166    
167     if (simParams_->haveElectrostaticScreeningMethod()) {
168     string myScreen = simParams_->getElectrostaticScreeningMethod();
169     toUpper(myScreen);
170     map<string, ElectrostaticScreeningMethod>::iterator i;
171     i = screeningMap_.find(myScreen);
172     if ( i != screeningMap_.end()) {
173     screeningMethod_ = (*i).second;
174     } else {
175     sprintf( painCave.errMsg,
176     "SimInfo error: Unknown electrostaticScreeningMethod.\n"
177     "\t(Input file specified %s .)\n"
178     "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
179     "or \"damped\".\n", myScreen.c_str() );
180     painCave.isFatal = 1;
181     simError();
182     }
183     }
184    
185     // check to make sure a cutoff value has been set:
186     if (!haveCutoffRadius_) {
187     sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
188     "Cutoff value!\n");
189     painCave.severity = OPENMD_ERROR;
190     painCave.isFatal = 1;
191     simError();
192     }
193    
194     if (screeningMethod_ == DAMPED) {
195     if (!simParams_->haveDampingAlpha()) {
196     // first set a cutoff dependent alpha value
197     // we assume alpha depends linearly with rcut from 0 to 20.5 ang
198     dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
199     if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
200    
201     // throw warning
202     sprintf( painCave.errMsg,
203 gezelter 1750 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
204     "\tinput file. A default value of %f (1/ang) will be used for the\n"
205     "\tcutoff of %f (ang).\n",
206 gezelter 1528 dampingAlpha_, cutoffRadius_);
207     painCave.severity = OPENMD_INFO;
208     painCave.isFatal = 0;
209     simError();
210     } else {
211     dampingAlpha_ = simParams_->getDampingAlpha();
212     }
213     haveDampingAlpha_ = true;
214     }
215    
216 gezelter 1895 Etypes.clear();
217     Etids.clear();
218     FQtypes.clear();
219     FQtids.clear();
220     ElectrostaticMap.clear();
221     Jij.clear();
222     nElectro_ = 0;
223     nFlucq_ = 0;
224    
225     Etids.resize( forceField_->getNAtomType(), -1);
226     FQtids.resize( forceField_->getNAtomType(), -1);
227    
228     set<AtomType*>::iterator at;
229     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
230     if ((*at)->isElectrostatic()) nElectro_++;
231     if ((*at)->isFluctuatingCharge()) nFlucq_++;
232     }
233 gezelter 1528
234 gezelter 1895 Jij.resize(nFlucq_);
235    
236     for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
237     if ((*at)->isElectrostatic()) addType(*at);
238 gezelter 1879 }
239    
240     if (summationMethod_ == esm_REACTION_FIELD) {
241     preRF_ = (dielectric_ - 1.0) /
242     ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
243 gezelter 1502 }
244    
245 gezelter 1879 RealType b0c, b1c, b2c, b3c, b4c, b5c;
246     RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
247     RealType a2, expTerm, invArootPi;
248    
249     RealType r = cutoffRadius_;
250     RealType r2 = r * r;
251     RealType ric = 1.0 / r;
252     RealType ric2 = ric * ric;
253 gezelter 1502
254 gezelter 1879 if (screeningMethod_ == DAMPED) {
255     a2 = dampingAlpha_ * dampingAlpha_;
256     invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
257     expTerm = exp(-a2 * r2);
258     // values of Smith's B_l functions at the cutoff radius:
259     b0c = erfc(dampingAlpha_ * r) / r;
260     b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
261     b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
262     b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
263     b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
264     b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
265     selfMult_ = b0c + a2 * invArootPi;
266 gezelter 1502 } else {
267 gezelter 1879 a2 = 0.0;
268     b0c = 1.0 / r;
269     b1c = ( b0c) / r2;
270     b2c = (3.0 * b1c) / r2;
271     b3c = (5.0 * b2c) / r2;
272     b4c = (7.0 * b3c) / r2;
273     b5c = (9.0 * b4c) / r2;
274     selfMult_ = b0c;
275 gezelter 1502 }
276 gezelter 1879
277     // higher derivatives of B_0 at the cutoff radius:
278     db0c_1 = -r * b1c;
279     db0c_2 = -b1c + r2 * b2c;
280     db0c_3 = 3.0*r*b2c - r2*r*b3c;
281     db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
282     db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
283 gezelter 1528
284 gezelter 1879
285     // working variables for the splines:
286     RealType ri, ri2;
287     RealType b0, b1, b2, b3, b4, b5;
288     RealType db0_1, db0_2, db0_3, db0_4, db0_5;
289     RealType f, fc, f0;
290     RealType g, gc, g0, g1, g2, g3, g4;
291     RealType h, hc, h1, h2, h3, h4;
292     RealType s, sc, s2, s3, s4;
293     RealType t, tc, t3, t4;
294     RealType u, uc, u4;
295    
296     // working variables for Taylor expansion:
297     RealType rmRc, rmRc2, rmRc3, rmRc4;
298    
299     // Approximate using splines using a maximum of 0.1 Angstroms
300     // between points.
301     int nptest = int((cutoffRadius_ + 2.0) / 0.1);
302     np_ = (np_ > nptest) ? np_ : nptest;
303    
304 gezelter 1613 // Add a 2 angstrom safety window to deal with cutoffGroups that
305     // have charged atoms longer than the cutoffRadius away from each
306 gezelter 1879 // other. Splining is almost certainly the best choice here.
307     // Direct calls to erfc would be preferrable if it is a very fast
308     // implementation.
309 gezelter 1613
310 gezelter 1879 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
311    
312     // Storage vectors for the computed functions
313     vector<RealType> rv;
314     vector<RealType> v01v;
315     vector<RealType> v11v;
316     vector<RealType> v21v, v22v;
317     vector<RealType> v31v, v32v;
318     vector<RealType> v41v, v42v, v43v;
319    
320     /*
321     vector<RealType> dv01v;
322     vector<RealType> dv11v;
323     vector<RealType> dv21v, dv22v;
324     vector<RealType> dv31v, dv32v;
325     vector<RealType> dv41v, dv42v, dv43v;
326     */
327    
328     for (int i = 1; i < np_ + 1; i++) {
329     r = RealType(i) * dx;
330     rv.push_back(r);
331    
332     ri = 1.0 / r;
333     ri2 = ri * ri;
334    
335     r2 = r * r;
336     expTerm = exp(-a2 * r2);
337    
338     // Taylor expansion factors (no need for factorials this way):
339     rmRc = r - cutoffRadius_;
340     rmRc2 = rmRc * rmRc / 2.0;
341     rmRc3 = rmRc2 * rmRc / 3.0;
342     rmRc4 = rmRc3 * rmRc / 4.0;
343    
344     // values of Smith's B_l functions at r:
345     if (screeningMethod_ == DAMPED) {
346     b0 = erfc(dampingAlpha_ * r) * ri;
347     b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
348     b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
349     b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
350     b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
351     b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
352     } else {
353     b0 = ri;
354     b1 = ( b0) * ri2;
355     b2 = (3.0 * b1) * ri2;
356     b3 = (5.0 * b2) * ri2;
357     b4 = (7.0 * b3) * ri2;
358     b5 = (9.0 * b4) * ri2;
359     }
360    
361     // higher derivatives of B_0 at r:
362     db0_1 = -r * b1;
363     db0_2 = -b1 + r2 * b2;
364     db0_3 = 3.0*r*b2 - r2*r*b3;
365     db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
366     db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
367    
368     f = b0;
369     fc = b0c;
370     f0 = f - fc - rmRc*db0c_1;
371    
372     g = db0_1;
373     gc = db0c_1;
374     g0 = g - gc;
375     g1 = g0 - rmRc *db0c_2;
376     g2 = g1 - rmRc2*db0c_3;
377     g3 = g2 - rmRc3*db0c_4;
378     g4 = g3 - rmRc4*db0c_5;
379    
380     h = db0_2;
381     hc = db0c_2;
382     h1 = h - hc;
383     h2 = h1 - rmRc *db0c_3;
384     h3 = h2 - rmRc2*db0c_4;
385     h4 = h3 - rmRc3*db0c_5;
386    
387     s = db0_3;
388     sc = db0c_3;
389     s2 = s - sc;
390     s3 = s2 - rmRc *db0c_4;
391     s4 = s3 - rmRc2*db0c_5;
392    
393     t = db0_4;
394     tc = db0c_4;
395     t3 = t - tc;
396     t4 = t3 - rmRc *db0c_5;
397    
398     u = db0_5;
399     uc = db0c_5;
400     u4 = u - uc;
401    
402     // in what follows below, the various v functions are used for
403     // potentials and torques, while the w functions show up in the
404     // forces.
405    
406     switch (summationMethod_) {
407     case esm_SHIFTED_FORCE:
408    
409     v01 = f - fc - rmRc*gc;
410     v11 = g - gc - rmRc*hc;
411     v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric;
412     v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric);
413 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric;
414 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric)
415     - rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
416     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2
417     - rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2;
418     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric
419     - rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric;
420    
421     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
422     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric)
423     - rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
424    
425     dv01 = g - gc;
426     dv11 = h - hc;
427     dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric;
428     dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric);
429     dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric;
430     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri)
431     - (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric);
432     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2;
433     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri
434     - (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric;
435     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri)
436     - (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric);
437    
438     break;
439    
440     case esm_TAYLOR_SHIFTED:
441    
442     v01 = f0;
443     v11 = g1;
444     v21 = g2 * ri;
445     v22 = h2 - v21;
446     v31 = (h3 - g3 * ri) * ri;
447     v32 = s3 - 3.0*v31;
448     v41 = (h4 - g4 * ri) * ri2;
449     v42 = s4 * ri - 3.0*v41;
450     v43 = t4 - 6.0*v42 - 3.0*v41;
451    
452     dv01 = g0;
453     dv11 = h1;
454     dv21 = (h2 - g2*ri)*ri;
455     dv22 = (s2 - (h2 - g2*ri)*ri);
456     dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri;
457     dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri);
458     dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2;
459     dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri;
460     dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri);
461    
462     break;
463    
464     case esm_SHIFTED_POTENTIAL:
465    
466     v01 = f - fc;
467     v11 = g - gc;
468     v21 = g*ri - gc*ric;
469     v22 = h - g*ri - (hc - gc*ric);
470 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
471 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
472     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
473     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
474     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
475     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
476    
477     dv01 = g;
478     dv11 = h;
479     dv21 = (h - g*ri)*ri;
480     dv22 = (s - (h - g*ri)*ri);
481     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
482     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
483     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
484     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
485     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
486    
487     break;
488    
489     case esm_SWITCHING_FUNCTION:
490     case esm_HARD:
491    
492     v01 = f;
493     v11 = g;
494     v21 = g*ri;
495     v22 = h - g*ri;
496     v31 = (h-g*ri)*ri;
497     v32 = (s - 3.0*(h-g*ri)*ri);
498     v41 = (h - g*ri)*ri2;
499     v42 = (s-3.0*(h-g*ri)*ri)*ri;
500     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri);
501    
502     dv01 = g;
503     dv11 = h;
504     dv21 = (h - g*ri)*ri;
505     dv22 = (s - (h - g*ri)*ri);
506     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
507     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
508     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
509     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
510     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
511    
512     break;
513    
514     case esm_REACTION_FIELD:
515    
516     // following DL_POLY's lead for shifting the image charge potential:
517     f = b0 + preRF_ * r2;
518     fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_;
519    
520     g = db0_1 + preRF_ * 2.0 * r;
521     gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_;
522    
523     h = db0_2 + preRF_ * 2.0;
524     hc = db0c_2 + preRF_ * 2.0;
525    
526     v01 = f - fc;
527     v11 = g - gc;
528     v21 = g*ri - gc*ric;
529     v22 = h - g*ri - (hc - gc*ric);
530 gezelter 1894 v31 = (h-g*ri)*ri - (hc-gc*ric)*ric;
531 gezelter 1879 v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric);
532     v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2;
533     v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric;
534     v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri)
535     - (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric);
536    
537     dv01 = g;
538     dv11 = h;
539     dv21 = (h - g*ri)*ri;
540     dv22 = (s - (h - g*ri)*ri);
541     dv31 = (s - 2.0*(h-g*ri)*ri)*ri;
542     dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri);
543     dv41 = (s - 3.0*(h - g*ri)*ri)*ri2;
544     dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri;
545     dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri);
546    
547     break;
548    
549     case esm_EWALD_FULL:
550     case esm_EWALD_PME:
551     case esm_EWALD_SPME:
552     default :
553     map<string, ElectrostaticSummationMethod>::iterator i;
554     std::string meth;
555     for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
556     if ((*i).second == summationMethod_) meth = (*i).first;
557     }
558     sprintf( painCave.errMsg,
559     "Electrostatic::initialize: electrostaticSummationMethod %s \n"
560     "\thas not been implemented yet. Please select one of:\n"
561     "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
562     meth.c_str() );
563     painCave.isFatal = 1;
564     simError();
565     break;
566     }
567    
568     // Add these computed values to the storage vectors for spline creation:
569     v01v.push_back(v01);
570     v11v.push_back(v11);
571     v21v.push_back(v21);
572     v22v.push_back(v22);
573     v31v.push_back(v31);
574     v32v.push_back(v32);
575     v41v.push_back(v41);
576     v42v.push_back(v42);
577     v43v.push_back(v43);
578     /*
579     dv01v.push_back(dv01);
580     dv11v.push_back(dv11);
581     dv21v.push_back(dv21);
582     dv22v.push_back(dv22);
583     dv31v.push_back(dv31);
584     dv32v.push_back(dv32);
585     dv41v.push_back(dv41);
586     dv42v.push_back(dv42);
587     dv43v.push_back(dv43);
588     */
589 gezelter 1502 }
590    
591 gezelter 1879 // construct the spline structures and fill them with the values we've
592     // computed:
593    
594     v01s = new CubicSpline();
595     v01s->addPoints(rv, v01v);
596     v11s = new CubicSpline();
597     v11s->addPoints(rv, v11v);
598     v21s = new CubicSpline();
599     v21s->addPoints(rv, v21v);
600     v22s = new CubicSpline();
601     v22s->addPoints(rv, v22v);
602     v31s = new CubicSpline();
603     v31s->addPoints(rv, v31v);
604     v32s = new CubicSpline();
605     v32s->addPoints(rv, v32v);
606     v41s = new CubicSpline();
607     v41s->addPoints(rv, v41v);
608     v42s = new CubicSpline();
609     v42s->addPoints(rv, v42v);
610     v43s = new CubicSpline();
611     v43s->addPoints(rv, v43v);
612    
613     /*
614     dv01s = new CubicSpline();
615     dv01s->addPoints(rv, dv01v);
616     dv11s = new CubicSpline();
617     dv11s->addPoints(rv, dv11v);
618     dv21s = new CubicSpline();
619     dv21s->addPoints(rv, dv21v);
620     dv22s = new CubicSpline();
621     dv22s->addPoints(rv, dv22v);
622     dv31s = new CubicSpline();
623     dv31s->addPoints(rv, dv31v);
624     dv32s = new CubicSpline();
625     dv32s->addPoints(rv, dv32v);
626     dv41s = new CubicSpline();
627     dv41s->addPoints(rv, dv41v);
628     dv42s = new CubicSpline();
629     dv42s->addPoints(rv, dv42v);
630     dv43s = new CubicSpline();
631     dv43s->addPoints(rv, dv43v);
632     */
633    
634     haveElectroSplines_ = true;
635    
636 gezelter 1502 initialized_ = true;
637     }
638    
639     void Electrostatic::addType(AtomType* atomType){
640 gezelter 1895
641 gezelter 1502 ElectrostaticAtomData electrostaticAtomData;
642     electrostaticAtomData.is_Charge = false;
643     electrostaticAtomData.is_Dipole = false;
644     electrostaticAtomData.is_Quadrupole = false;
645 gezelter 1723 electrostaticAtomData.is_Fluctuating = false;
646 gezelter 1502
647 gezelter 1710 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
648 gezelter 1502
649 gezelter 1710 if (fca.isFixedCharge()) {
650 gezelter 1502 electrostaticAtomData.is_Charge = true;
651 gezelter 1720 electrostaticAtomData.fixedCharge = fca.getCharge();
652 gezelter 1502 }
653    
654 gezelter 1710 MultipoleAdapter ma = MultipoleAdapter(atomType);
655     if (ma.isMultipole()) {
656     if (ma.isDipole()) {
657 gezelter 1502 electrostaticAtomData.is_Dipole = true;
658 gezelter 1879 electrostaticAtomData.dipole = ma.getDipole();
659 gezelter 1502 }
660 gezelter 1710 if (ma.isQuadrupole()) {
661 gezelter 1502 electrostaticAtomData.is_Quadrupole = true;
662 gezelter 1879 electrostaticAtomData.quadrupole = ma.getQuadrupole();
663 gezelter 1502 }
664     }
665    
666 gezelter 1718 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
667 gezelter 1502
668 gezelter 1718 if (fqa.isFluctuatingCharge()) {
669 gezelter 1720 electrostaticAtomData.is_Fluctuating = true;
670     electrostaticAtomData.electronegativity = fqa.getElectronegativity();
671     electrostaticAtomData.hardness = fqa.getHardness();
672     electrostaticAtomData.slaterN = fqa.getSlaterN();
673     electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
674 gezelter 1718 }
675    
676 gezelter 1895 int atid = atomType->getIdent();
677     int etid = Etypes.size();
678     int fqtid = FQtypes.size();
679    
680     pair<set<int>::iterator,bool> ret;
681     ret = Etypes.insert( atid );
682 gezelter 1502 if (ret.second == false) {
683     sprintf( painCave.errMsg,
684     "Electrostatic already had a previous entry with ident %d\n",
685 gezelter 1895 atid);
686 gezelter 1502 painCave.severity = OPENMD_INFO;
687     painCave.isFatal = 0;
688     simError();
689     }
690    
691 gezelter 1895 Etids[ atid ] = etid;
692     ElectrostaticMap.push_back(electrostaticAtomData);
693 gezelter 1718
694 gezelter 1895 if (electrostaticAtomData.is_Fluctuating) {
695     ret = FQtypes.insert( atid );
696     if (ret.second == false) {
697     sprintf( painCave.errMsg,
698     "Electrostatic already had a previous fluctuating charge entry with ident %d\n",
699     atid );
700     painCave.severity = OPENMD_INFO;
701     painCave.isFatal = 0;
702     simError();
703     }
704     FQtids[atid] = fqtid;
705     Jij[fqtid].resize(nFlucq_);
706    
707     // Now, iterate over all known fluctuating and add to the coulomb integral map:
708    
709     std::set<int>::iterator it;
710     for( it = FQtypes.begin(); it != FQtypes.end(); ++it) {
711     int etid2 = Etids[ (*it) ];
712     int fqtid2 = FQtids[ (*it) ];
713     ElectrostaticAtomData eaData2 = ElectrostaticMap[ etid2 ];
714 gezelter 1718 RealType a = electrostaticAtomData.slaterZeta;
715 gezelter 1720 RealType b = eaData2.slaterZeta;
716 gezelter 1718 int m = electrostaticAtomData.slaterN;
717 gezelter 1720 int n = eaData2.slaterN;
718 gezelter 1895
719 gezelter 1718 // Create the spline of the coulombic integral for s-type
720     // Slater orbitals. Add a 2 angstrom safety window to deal
721     // with cutoffGroups that have charged atoms longer than the
722     // cutoffRadius away from each other.
723 gezelter 1895
724 gezelter 1720 RealType rval;
725 gezelter 1718 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
726     vector<RealType> rvals;
727 gezelter 1879 vector<RealType> Jvals;
728     // don't start at i = 0, as rval = 0 is undefined for the
729     // slater overlap integrals.
730 gezelter 1761 for (int i = 1; i < np_+1; i++) {
731 gezelter 1718 rval = RealType(i) * dr;
732     rvals.push_back(rval);
733 gezelter 1879 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
734     PhysicalConstants::angstromToBohr ) *
735     PhysicalConstants::hartreeToKcal );
736 gezelter 1718 }
737    
738 gezelter 1879 CubicSpline* J = new CubicSpline();
739     J->addPoints(rvals, Jvals);
740 gezelter 1895 Jij[fqtid][fqtid2] = J;
741     Jij[fqtid2].resize( nFlucq_ );
742     Jij[fqtid2][fqtid] = J;
743     }
744     }
745 gezelter 1502 return;
746     }
747    
748 gezelter 1584 void Electrostatic::setCutoffRadius( RealType rCut ) {
749     cutoffRadius_ = rCut;
750 gezelter 1528 haveCutoffRadius_ = true;
751 gezelter 1502 }
752 gezelter 1584
753 gezelter 1502 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
754     summationMethod_ = esm;
755     }
756     void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
757     screeningMethod_ = sm;
758     }
759     void Electrostatic::setDampingAlpha( RealType alpha ) {
760     dampingAlpha_ = alpha;
761     haveDampingAlpha_ = true;
762     }
763     void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
764     dielectric_ = dielectric;
765     haveDielectric_ = true;
766     }
767    
768 gezelter 1536 void Electrostatic::calcForce(InteractionData &idat) {
769 gezelter 1502
770 gezelter 1893 if (!initialized_) initialize();
771    
772 gezelter 1895 data1 = ElectrostaticMap[Etids[idat.atid1]];
773     data2 = ElectrostaticMap[Etids[idat.atid2]];
774 gezelter 1502
775 gezelter 1893 U = 0.0; // Potential
776     F.zero(); // Force
777     Ta.zero(); // Torque on site a
778     Tb.zero(); // Torque on site b
779     Ea.zero(); // Electric field at site a
780     Eb.zero(); // Electric field at site b
781     dUdCa = 0.0; // fluctuating charge force at site a
782     dUdCb = 0.0; // fluctuating charge force at site a
783 gezelter 1879
784     // Indirect interactions mediated by the reaction field.
785 gezelter 1893 indirect_Pot = 0.0; // Potential
786     indirect_F.zero(); // Force
787     indirect_Ta.zero(); // Torque on site a
788     indirect_Tb.zero(); // Torque on site b
789 gezelter 1587
790 gezelter 1879 // Excluded potential that is still computed for fluctuating charges
791 gezelter 1893 excluded_Pot= 0.0;
792 gezelter 1879
793    
794 gezelter 1502 // some variables we'll need independent of electrostatic type:
795    
796 gezelter 1879 ri = 1.0 / *(idat.rij);
797 gezelter 1893 rhat = *(idat.d) * ri;
798 gezelter 1879
799 gezelter 1502 // logicals
800    
801 gezelter 1893 a_is_Charge = data1.is_Charge;
802     a_is_Dipole = data1.is_Dipole;
803     a_is_Quadrupole = data1.is_Quadrupole;
804     a_is_Fluctuating = data1.is_Fluctuating;
805 gezelter 1502
806 gezelter 1893 b_is_Charge = data2.is_Charge;
807     b_is_Dipole = data2.is_Dipole;
808     b_is_Quadrupole = data2.is_Quadrupole;
809     b_is_Fluctuating = data2.is_Fluctuating;
810 gezelter 1879
811     // Obtain all of the required radial function values from the
812     // spline structures:
813 gezelter 1502
814 gezelter 1879 // needed for fields (and forces):
815     if (a_is_Charge || b_is_Charge) {
816     v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01);
817     }
818     if (a_is_Dipole || b_is_Dipole) {
819     v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11);
820     v11or = ri * v11;
821     }
822     if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) {
823     v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21);
824     v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22);
825     v22or = ri * v22;
826     }
827 gezelter 1721
828 gezelter 1879 // needed for potentials (and forces and torques):
829     if ((a_is_Dipole && b_is_Quadrupole) ||
830     (b_is_Dipole && a_is_Quadrupole)) {
831     v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31);
832     v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32);
833     v31or = v31 * ri;
834     v32or = v32 * ri;
835     }
836     if (a_is_Quadrupole && b_is_Quadrupole) {
837     v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41);
838     v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42);
839     v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43);
840     v42or = v42 * ri;
841     v43or = v43 * ri;
842     }
843    
844     // calculate the single-site contributions (fields, etc).
845    
846     if (a_is_Charge) {
847     C_a = data1.fixedCharge;
848    
849     if (a_is_Fluctuating) {
850     C_a += *(idat.flucQ1);
851 gezelter 1721 }
852    
853 gezelter 1587 if (idat.excluded) {
854 gezelter 1879 *(idat.skippedCharge2) += C_a;
855     } else {
856     // only do the field if we're not excluded:
857     Eb -= C_a * pre11_ * dv01 * rhat;
858 gezelter 1587 }
859     }
860 gezelter 1879
861     if (a_is_Dipole) {
862     D_a = *(idat.dipole1);
863     rdDa = dot(rhat, D_a);
864     rxDa = cross(rhat, D_a);
865     if (!idat.excluded)
866     Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
867 gezelter 1502 }
868    
869 gezelter 1879 if (a_is_Quadrupole) {
870     Q_a = *(idat.quadrupole1);
871     trQa = Q_a.trace();
872     Qar = Q_a * rhat;
873     rQa = rhat * Q_a;
874     rdQar = dot(rhat, Qar);
875     rxQar = cross(rhat, Qar);
876     if (!idat.excluded)
877     Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or
878     + rdQar * rhat * (dv22 - 2.0*v22or));
879     }
880    
881     if (b_is_Charge) {
882     C_b = data2.fixedCharge;
883 gezelter 1502
884 gezelter 1879 if (b_is_Fluctuating)
885     C_b += *(idat.flucQ2);
886    
887 gezelter 1587 if (idat.excluded) {
888 gezelter 1879 *(idat.skippedCharge1) += C_b;
889     } else {
890     // only do the field if we're not excluded:
891     Ea += C_b * pre11_ * dv01 * rhat;
892 gezelter 1587 }
893     }
894 gezelter 1502
895 gezelter 1879 if (b_is_Dipole) {
896     D_b = *(idat.dipole2);
897     rdDb = dot(rhat, D_b);
898     rxDb = cross(rhat, D_b);
899     if (!idat.excluded)
900     Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b);
901 gezelter 1502 }
902    
903 gezelter 1879 if (b_is_Quadrupole) {
904     Q_b = *(idat.quadrupole2);
905     trQb = Q_b.trace();
906     Qbr = Q_b * rhat;
907     rQb = rhat * Q_b;
908     rdQbr = dot(rhat, Qbr);
909     rxQbr = cross(rhat, Qbr);
910     if (!idat.excluded)
911     Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or
912     + rdQbr * rhat * (dv22 - 2.0*v22or));
913 gezelter 1721 }
914 gezelter 1502
915 gezelter 1879 if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
916 gezelter 1895 J = Jij[FQtids[idat.atid1]][FQtids[idat.atid2]];
917 gezelter 1879 }
918    
919     if (a_is_Charge) {
920 gezelter 1502
921 gezelter 1879 if (b_is_Charge) {
922     pref = pre11_ * *(idat.electroMult);
923     U += C_a * C_b * pref * v01;
924     F += C_a * C_b * pref * dv01 * rhat;
925    
926     // If this is an excluded pair, there are still indirect
927     // interactions via the reaction field we must worry about:
928 gezelter 1616
929 gezelter 1879 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
930     rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
931     indirect_Pot += rfContrib;
932     indirect_F += rfContrib * 2.0 * ri * rhat;
933 gezelter 1502 }
934    
935 gezelter 1879 // Fluctuating charge forces are handled via Coulomb integrals
936     // for excluded pairs (i.e. those connected via bonds) and
937     // with the standard charge-charge interaction otherwise.
938 gezelter 1502
939 gezelter 1879 if (idat.excluded) {
940     if (a_is_Fluctuating || b_is_Fluctuating) {
941     coulInt = J->getValueAt( *(idat.rij) );
942     if (a_is_Fluctuating) dUdCa += coulInt * C_b;
943     if (b_is_Fluctuating) dUdCb += coulInt * C_a;
944     excluded_Pot += C_a * C_b * coulInt;
945     }
946 gezelter 1502 } else {
947 gezelter 1879 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
948     if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
949 gezelter 1721 }
950 gezelter 1502 }
951    
952 gezelter 1879 if (b_is_Dipole) {
953     pref = pre12_ * *(idat.electroMult);
954     U += C_a * pref * v11 * rdDb;
955     F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b);
956     Tb += C_a * pref * v11 * rxDb;
957 gezelter 1502
958 gezelter 1879 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
959 gezelter 1502
960 gezelter 1879 // Even if we excluded this pair from direct interactions, we
961     // still have the reaction-field-mediated charge-dipole
962     // interaction:
963 gezelter 1502
964 gezelter 1879 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
965     rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
966     indirect_Pot += rfContrib * rdDb;
967     indirect_F += rfContrib * D_b / (*idat.rij);
968     indirect_Tb += C_a * pref * preRF_ * rxDb;
969 gezelter 1502 }
970     }
971    
972 gezelter 1879 if (b_is_Quadrupole) {
973     pref = pre14_ * *(idat.electroMult);
974     U += C_a * pref * (v21 * trQb + v22 * rdQbr);
975     F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or);
976     F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or);
977     Tb += C_a * pref * 2.0 * rxQbr * v22;
978 gezelter 1502
979 gezelter 1879 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
980 gezelter 1502 }
981     }
982    
983 gezelter 1879 if (a_is_Dipole) {
984 gezelter 1502
985 gezelter 1879 if (b_is_Charge) {
986     pref = pre12_ * *(idat.electroMult);
987 gezelter 1502
988 gezelter 1879 U -= C_b * pref * v11 * rdDa;
989     F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a);
990     Ta -= C_b * pref * v11 * rxDa;
991 gezelter 1502
992 gezelter 1879 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
993 gezelter 1587
994 gezelter 1879 // Even if we excluded this pair from direct interactions,
995     // we still have the reaction-field-mediated charge-dipole
996     // interaction:
997     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
998     rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
999     indirect_Pot -= rfContrib * rdDa;
1000     indirect_F -= rfContrib * D_a / (*idat.rij);
1001     indirect_Ta -= C_b * pref * preRF_ * rxDa;
1002     }
1003     }
1004 gezelter 1587
1005 gezelter 1879 if (b_is_Dipole) {
1006     pref = pre22_ * *(idat.electroMult);
1007     DadDb = dot(D_a, D_b);
1008     DaxDb = cross(D_a, D_b);
1009 gezelter 1502
1010 gezelter 1879 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
1011     F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b));
1012     F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat;
1013     Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
1014     Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
1015 gezelter 1723
1016 gezelter 1879 // Even if we excluded this pair from direct interactions, we
1017     // still have the reaction-field-mediated dipole-dipole
1018     // interaction:
1019     if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
1020     rfContrib = -pref * preRF_ * 2.0;
1021     indirect_Pot += rfContrib * DadDb;
1022     indirect_Ta += rfContrib * DaxDb;
1023     indirect_Tb -= rfContrib * DaxDb;
1024 gezelter 1723 }
1025 gezelter 1502 }
1026    
1027 gezelter 1879 if (b_is_Quadrupole) {
1028     pref = pre24_ * *(idat.electroMult);
1029     DadQb = D_a * Q_b;
1030     DadQbr = dot(D_a, Qbr);
1031     DaxQbr = cross(D_a, Qbr);
1032 gezelter 1502
1033 gezelter 1879 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
1034     F -= pref * (trQb*D_a + 2.0*DadQb) * v31or;
1035     F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat;
1036     F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or;
1037     F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or));
1038     Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
1039     Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
1040     - 2.0*rdDa*rxQbr*v32);
1041     }
1042     }
1043 gezelter 1502
1044 gezelter 1879 if (a_is_Quadrupole) {
1045     if (b_is_Charge) {
1046     pref = pre14_ * *(idat.electroMult);
1047     U += C_b * pref * (v21 * trQa + v22 * rdQar);
1048     F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or);
1049     F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or);
1050     Ta += C_b * pref * 2.0 * rxQar * v22;
1051 gezelter 1502
1052 gezelter 1879 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1053     }
1054     if (b_is_Dipole) {
1055     pref = pre24_ * *(idat.electroMult);
1056     DbdQa = D_b * Q_a;
1057     DbdQar = dot(D_b, Qar);
1058     DbxQar = cross(D_b, Qar);
1059 gezelter 1502
1060 gezelter 1879 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1061     F += pref * (trQa*D_b + 2.0*DbdQa) * v31or;
1062     F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat;
1063     F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or;
1064     F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or));
1065     Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1066     + 2.0*rdDb*rxQar*v32);
1067     Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1068 gezelter 1502 }
1069 gezelter 1879 if (b_is_Quadrupole) {
1070     pref = pre44_ * *(idat.electroMult); // yes
1071     QaQb = Q_a * Q_b;
1072     trQaQb = QaQb.trace();
1073     rQaQb = rhat * QaQb;
1074     QaQbr = QaQb * rhat;
1075     QaxQb = cross(Q_a, Q_b);
1076     rQaQbr = dot(rQa, Qbr);
1077     rQaxQbr = cross(rQa, Qbr);
1078    
1079     U += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1080     U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42;
1081     U += pref * (rdQar * rdQbr) * v43;
1082 gezelter 1502
1083 gezelter 1879 F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41;
1084     F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or);
1085     F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or);
1086 gezelter 1502
1087 gezelter 1879 F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or;
1088     F += pref * 4.0 * (rQaQb + QaQbr) * v42or;
1089     F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or;
1090 gezelter 1502
1091 gezelter 1879 Ta += pref * (- 4.0 * QaxQb * v41);
1092     Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1093     + 4.0 * cross(rhat, QaQbr)
1094     - 4.0 * rQaxQbr) * v42;
1095     Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1096 gezelter 1502
1097    
1098 gezelter 1879 Tb += pref * (+ 4.0 * QaxQb * v41);
1099     Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1100     - 4.0 * cross(rQaQb, rhat)
1101     + 4.0 * rQaxQbr) * v42;
1102     // Possible replacement for line 2 above:
1103     // + 4.0 * cross(rhat, QbQar)
1104 gezelter 1502
1105 gezelter 1879 Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1106 gezelter 1502
1107 gezelter 1879 // cerr << " tsum = " << Ta + Tb - cross( *(idat.d) , F ) << "\n";
1108 gezelter 1502 }
1109     }
1110    
1111 gezelter 1879 if (idat.doElectricField) {
1112     *(idat.eField1) += Ea * *(idat.electroMult);
1113     *(idat.eField2) += Eb * *(idat.electroMult);
1114     }
1115 gezelter 1502
1116 gezelter 1879 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1117     if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1118    
1119 gezelter 1587 if (!idat.excluded) {
1120    
1121 gezelter 1879 *(idat.vpair) += U;
1122     (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1123     *(idat.f1) += F * *(idat.sw);
1124 gezelter 1587
1125 gezelter 1879 if (a_is_Dipole || a_is_Quadrupole)
1126     *(idat.t1) += Ta * *(idat.sw);
1127 gezelter 1587
1128 gezelter 1879 if (b_is_Dipole || b_is_Quadrupole)
1129     *(idat.t2) += Tb * *(idat.sw);
1130    
1131 gezelter 1587 } else {
1132    
1133     // only accumulate the forces and torques resulting from the
1134     // indirect reaction field terms.
1135 gezelter 1616
1136 gezelter 1879 *(idat.vpair) += indirect_Pot;
1137     (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1138     (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1139     *(idat.f1) += *(idat.sw) * indirect_F;
1140 gezelter 1761
1141 gezelter 1879 if (a_is_Dipole || a_is_Quadrupole)
1142     *(idat.t1) += *(idat.sw) * indirect_Ta;
1143    
1144     if (b_is_Dipole || b_is_Quadrupole)
1145     *(idat.t2) += *(idat.sw) * indirect_Tb;
1146 gezelter 1502 }
1147     return;
1148 gezelter 1879 }
1149 gezelter 1502
1150 gezelter 1545 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1151 gezelter 1879
1152 gezelter 1502 if (!initialized_) initialize();
1153 gezelter 1586
1154 gezelter 1895 ElectrostaticAtomData data = ElectrostaticMap[Etids[sdat.atid]];
1155 gezelter 1879
1156 gezelter 1502 // logicals
1157     bool i_is_Charge = data.is_Charge;
1158     bool i_is_Dipole = data.is_Dipole;
1159 jmichalk 1734 bool i_is_Fluctuating = data.is_Fluctuating;
1160 gezelter 1879 RealType C_a = data.fixedCharge;
1161     RealType self, preVal, DadDa;
1162 jmichalk 1734
1163     if (i_is_Fluctuating) {
1164 gezelter 1879 C_a += *(sdat.flucQ);
1165 jmichalk 1734 // dVdFQ is really a force, so this is negative the derivative
1166     *(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1167 gezelter 1761 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1168     (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1169 jmichalk 1734 }
1170 gezelter 1502
1171 gezelter 1879 switch (summationMethod_) {
1172     case esm_REACTION_FIELD:
1173    
1174     if (i_is_Charge) {
1175     // Self potential [see Wang and Hermans, "Reaction Field
1176     // Molecular Dynamics Simulation with Friedman’s Image Charge
1177     // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1178     preVal = pre11_ * preRF_ * C_a * C_a;
1179     (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1180     }
1181    
1182 gezelter 1502 if (i_is_Dipole) {
1183 gezelter 1879 DadDa = data.dipole.lengthSquare();
1184     (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1185 gezelter 1502 }
1186 gezelter 1879
1187     break;
1188    
1189     case esm_SHIFTED_FORCE:
1190     case esm_SHIFTED_POTENTIAL:
1191     if (i_is_Charge) {
1192     self = - selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1193 gezelter 1586 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1194 gezelter 1502 }
1195 gezelter 1879 break;
1196     default:
1197     break;
1198 gezelter 1502 }
1199     }
1200 gezelter 1879
1201 gezelter 1545 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1202 gezelter 1505 // This seems to work moderately well as a default. There's no
1203     // inherent scale for 1/r interactions that we can standardize.
1204     // 12 angstroms seems to be a reasonably good guess for most
1205     // cases.
1206     return 12.0;
1207     }
1208 gezelter 1502 }

Properties

Name Value
svn:eol-style native