ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/nonbonded/EAM.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 2 months ago) by gezelter
File size: 13878 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/EAM.hpp"
48 #include "utils/simError.h"
49 #include "types/NonBondedInteractionType.hpp"
50
51
52 namespace OpenMD {
53
54 EAM::EAM() : initialized_(false), haveCutoffRadius_(false),
55 forceField_(NULL), eamRcut_(0.0), mixMeth_(eamJohnson),
56 name_("EAM") {}
57
58 CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) {
59 EAMAdapter ea1 = EAMAdapter(atomType1);
60 EAMAdapter ea2 = EAMAdapter(atomType2);
61 CubicSpline* z1 = ea1.getZ();
62 CubicSpline* z2 = ea2.getZ();
63
64 // Thise prefactors convert the charge-charge interactions into
65 // kcal / mol all were computed assuming distances are measured in
66 // angstroms Charge-Charge, assuming charges are measured in
67 // electrons. Matches value in Electrostatics.cpp
68 pre11_ = 332.0637778;
69
70 // make the r grid:
71
72 // we need phi out to the largest value we'll encounter in the radial space;
73
74 RealType rmax = 0.0;
75 rmax = max(rmax, ea1.getRcut());
76 rmax = max(rmax, ea1.getNr() * ea1.getDr());
77
78 rmax = max(rmax, ea2.getRcut());
79 rmax = max(rmax, ea2.getNr() * ea2.getDr());
80
81 // use the smallest dr (finest grid) to build our grid:
82
83 RealType dr = min(ea1.getDr(), ea2.getDr());
84
85 int nr = int(rmax/dr + 0.5);
86
87 vector<RealType> rvals;
88 for (int i = 0; i < nr; i++) rvals.push_back(RealType(i*dr));
89
90 // construct the pair potential:
91
92 vector<RealType> phivals;
93 RealType phi;
94 RealType r;
95 RealType zi, zj;
96
97 phivals.push_back(0.0);
98
99 for (unsigned int i = 1; i < rvals.size(); i++ ) {
100 r = rvals[i];
101
102 // only use z(r) if we're inside this atom's cutoff radius,
103 // otherwise, we'll use zero for the charge. This effectively
104 // means that our phi grid goes out beyond the cutoff of the
105 // pair potential
106
107 zi = r <= ea1.getRcut() ? z1->getValueAt(r) : 0.0;
108 zj = r <= ea2.getRcut() ? z2->getValueAt(r) : 0.0;
109
110 phi = pre11_ * (zi * zj) / r;
111
112 phivals.push_back(phi);
113 }
114 CubicSpline* cs = new CubicSpline();
115 cs->addPoints(rvals, phivals);
116 return cs;
117 }
118
119 void EAM::setCutoffRadius( RealType rCut ) {
120 eamRcut_ = rCut;
121 haveCutoffRadius_ = true;
122 }
123
124 void EAM::initialize() {
125 // set up the mixing method:
126 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
127 string EAMMixMeth = fopts.getEAMMixingMethod();
128 toUpper(EAMMixMeth);
129
130 if (EAMMixMeth == "JOHNSON")
131 mixMeth_ = eamJohnson;
132 else if (EAMMixMeth == "DAW")
133 mixMeth_ = eamDaw;
134 else
135 mixMeth_ = eamUnknown;
136
137 // find all of the EAM atom Types:
138 EAMtypes.clear();
139 EAMtids.clear();
140 EAMdata.clear();
141 MixingMap.clear();
142 nEAM_ = 0;
143
144 EAMtids.resize( forceField_->getNAtomType(), -1);
145
146 set<AtomType*>::iterator at;
147 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
148 if ((*at)->isEAM()) nEAM_++;
149 }
150 EAMdata.resize(nEAM_);
151 MixingMap.resize(nEAM_);
152
153 for (at = simTypes_.begin(); at != simTypes_.end(); ++at) {
154 if ((*at)->isEAM()) addType(*at);
155 }
156
157 // find all of the explicit EAM interactions (setfl):
158 ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
159 ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
160 NonBondedInteractionType* nbt;
161
162 for (nbt = nbiTypes->beginType(j); nbt != NULL;
163 nbt = nbiTypes->nextType(j)) {
164
165 if (nbt->isEAM()) {
166
167 pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
168
169 GenericData* data = nbt->getPropertyByName("EAM");
170 if (data == NULL) {
171 sprintf( painCave.errMsg, "EAM::rebuildMixingMap could not find\n"
172 "\tEAM parameters for %s - %s interaction.\n",
173 atypes.first->getName().c_str(),
174 atypes.second->getName().c_str());
175 painCave.severity = OPENMD_ERROR;
176 painCave.isFatal = 1;
177 simError();
178 }
179
180 EAMMixingData* eamData = dynamic_cast<EAMMixingData*>(data);
181 if (eamData == NULL) {
182 sprintf( painCave.errMsg,
183 "EAM::rebuildMixingMap could not convert GenericData to\n"
184 "\tEAMMixingData for %s - %s interaction.\n",
185 atypes.first->getName().c_str(),
186 atypes.second->getName().c_str());
187 painCave.severity = OPENMD_ERROR;
188 painCave.isFatal = 1;
189 simError();
190 }
191
192 EAMMixingParam eamParam = eamData->getData();
193
194 vector<RealType> phiAB = eamParam.phi;
195 RealType dr = eamParam.dr;
196 int nr = eamParam.nr;
197
198 addExplicitInteraction(atypes.first, atypes.second, dr, nr, phiAB);
199 }
200 }
201 initialized_ = true;
202 }
203
204
205
206 void EAM::addType(AtomType* atomType){
207
208 EAMAdapter ea = EAMAdapter(atomType);
209 EAMAtomData eamAtomData;
210
211 eamAtomData.rho = ea.getRho();
212 eamAtomData.F = ea.getF();
213 eamAtomData.Z = ea.getZ();
214 eamAtomData.rcut = ea.getRcut();
215
216 // add it to the map:
217 int atid = atomType->getIdent();
218 int eamtid = EAMtypes.size();
219
220 pair<set<int>::iterator,bool> ret;
221 ret = EAMtypes.insert( atid );
222 if (ret.second == false) {
223 sprintf( painCave.errMsg,
224 "EAM already had a previous entry with ident %d\n",
225 atid);
226 painCave.severity = OPENMD_INFO;
227 painCave.isFatal = 0;
228 simError();
229 }
230
231
232 EAMtids[atid] = eamtid;
233 EAMdata[eamtid] = eamAtomData;
234 MixingMap[eamtid].resize(nEAM_);
235
236 // Now, iterate over all known types and add to the mixing map:
237
238 std::set<int>::iterator it;
239 for( it = EAMtypes.begin(); it != EAMtypes.end(); ++it) {
240
241 int eamtid2 = EAMtids[ (*it) ];
242 AtomType* atype2 = forceField_->getAtomType( (*it) );
243
244 EAMInteractionData mixer;
245 mixer.phi = getPhi(atomType, atype2);
246 mixer.rcut = mixer.phi->getLimits().second;
247 mixer.explicitlySet = false;
248
249 MixingMap[eamtid2].resize( nEAM_ );
250
251 MixingMap[eamtid][eamtid2] = mixer;
252 if (eamtid2 != eamtid) {
253 MixingMap[eamtid2][eamtid] = mixer;
254 }
255 }
256 return;
257 }
258
259 void EAM::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
260 RealType dr, int nr,
261 vector<RealType> phiVals) {
262
263 // in case these weren't already in the map
264 addType(atype1);
265 addType(atype2);
266
267 EAMInteractionData mixer;
268 CubicSpline* cs = new CubicSpline();
269 vector<RealType> rVals;
270
271 for (int i = 0; i < nr; i++) rVals.push_back(i * dr);
272
273 cs->addPoints(rVals, phiVals);
274 mixer.phi = cs;
275 mixer.rcut = mixer.phi->getLimits().second;
276 mixer.explicitlySet = true;
277
278 int eamtid1 = EAMtids[ atype1->getIdent() ];
279 int eamtid2 = EAMtids[ atype2->getIdent() ];
280
281 MixingMap[eamtid1][eamtid2] = mixer;
282 if (eamtid2 != eamtid1) {
283 MixingMap[eamtid2][eamtid1] = mixer;
284 }
285 return;
286 }
287
288 void EAM::calcDensity(InteractionData &idat) {
289
290 if (!initialized_) initialize();
291
292 EAMAtomData &data1 = EAMdata[EAMtids[idat.atid1]];
293 EAMAtomData &data2 = EAMdata[EAMtids[idat.atid2]];
294
295 if (haveCutoffRadius_)
296 if ( *(idat.rij) > eamRcut_) return;
297
298 if ( *(idat.rij) < data1.rcut) {
299 *(idat.rho2) += data1.rho->getValueAt( *(idat.rij));
300 }
301
302 if ( *(idat.rij) < data2.rcut) {
303 *(idat.rho1) += data2.rho->getValueAt( *(idat.rij));
304 }
305
306 return;
307 }
308
309 void EAM::calcFunctional(SelfData &sdat) {
310
311 if (!initialized_) initialize();
312 EAMAtomData &data1 = EAMdata[ EAMtids[sdat.atid] ];
313
314 data1.F->getValueAndDerivativeAt( *(sdat.rho), *(sdat.frho),
315 *(sdat.dfrhodrho) );
316
317 (*(sdat.pot))[METALLIC_FAMILY] += *(sdat.frho);
318 if (sdat.doParticlePot) {
319 *(sdat.particlePot) += *(sdat.frho);
320 }
321
322 return;
323 }
324
325
326 void EAM::calcForce(InteractionData &idat) {
327
328 if (!initialized_) initialize();
329
330 if (haveCutoffRadius_)
331 if ( *(idat.rij) > eamRcut_) return;
332
333
334 int eamtid1 = EAMtids[idat.atid1];
335 int eamtid2 = EAMtids[idat.atid2];
336 EAMAtomData &data1 = EAMdata[eamtid1];
337 EAMAtomData &data2 = EAMdata[eamtid2];
338
339 // get type-specific cutoff radii
340
341 RealType rci = data1.rcut;
342 RealType rcj = data2.rcut;
343
344
345 RealType rha(0.0), drha(0.0), rhb(0.0), drhb(0.0);
346 RealType pha(0.0), dpha(0.0), phb(0.0), dphb(0.0);
347 RealType phab(0.0), dvpdr(0.0);
348 RealType drhoidr, drhojdr, dudr;
349
350 if ( *(idat.rij) < rci) {
351 data1.rho->getValueAndDerivativeAt( *(idat.rij), rha, drha);
352 CubicSpline* phi = MixingMap[eamtid1][eamtid1].phi;
353 phi->getValueAndDerivativeAt( *(idat.rij), pha, dpha);
354 }
355
356 if ( *(idat.rij) < rcj) {
357 data2.rho->getValueAndDerivativeAt( *(idat.rij), rhb, drhb );
358 CubicSpline* phi = MixingMap[eamtid2][eamtid2].phi;
359 phi->getValueAndDerivativeAt( *(idat.rij), phb, dphb);
360 }
361 switch(mixMeth_) {
362 case eamJohnson:
363 if ( *(idat.rij) < rci) {
364 phab = phab + 0.5 * (rhb / rha) * pha;
365 dvpdr = dvpdr + 0.5*((rhb/rha)*dpha +
366 pha*((drhb/rha) - (rhb*drha/rha/rha)));
367 }
368
369 if ( *(idat.rij) < rcj) {
370 phab = phab + 0.5 * (rha / rhb) * phb;
371 dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb +
372 phb*((drha/rhb) - (rha*drhb/rhb/rhb)));
373 }
374 break;
375 case eamDaw:
376 if ( *(idat.rij) < MixingMap[eamtid1][eamtid2].rcut) {
377 MixingMap[eamtid1][eamtid2].phi->getValueAndDerivativeAt( *(idat.rij),
378 phab, dvpdr);
379 }
380 break;
381 case eamUnknown:
382 default:
383
384 sprintf(painCave.errMsg,
385 "EAM::calcForce hit a mixing method it doesn't know about!\n"
386 );
387 painCave.severity = OPENMD_ERROR;
388 painCave.isFatal = 1;
389 simError();
390
391 }
392
393 drhoidr = drha;
394 drhojdr = drhb;
395
396 dudr = drhojdr* *(idat.dfrho1) + drhoidr* *(idat.dfrho2) + dvpdr;
397
398 *(idat.f1) += *(idat.d) * dudr / *(idat.rij);
399
400 if (idat.doParticlePot) {
401 // particlePot is the difference between the full potential and
402 // the full potential without the presence of a particular
403 // particle (atom1).
404 //
405 // This reduces the density at other particle locations, so we
406 // need to recompute the density at atom2 assuming atom1 didn't
407 // contribute. This then requires recomputing the density
408 // functional for atom2 as well.
409
410 *(idat.particlePot1) += data2.F->getValueAt( *(idat.rho2) - rha )
411 - *(idat.frho2);
412
413 *(idat.particlePot2) += data1.F->getValueAt( *(idat.rho1) - rhb)
414 - *(idat.frho1);
415 }
416
417 (*(idat.pot))[METALLIC_FAMILY] += phab;
418 *(idat.vpair) += phab;
419 return;
420 }
421
422 RealType EAM::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
423 if (!initialized_) initialize();
424
425 RealType cut = 0.0;
426
427 int atid1 = atypes.first->getIdent();
428 int atid2 = atypes.second->getIdent();
429 int eamtid1 = EAMtids[atid1];
430 int eamtid2 = EAMtids[atid2];
431
432 if (eamtid1 != -1) {
433 EAMAtomData data1 = EAMdata[eamtid1];
434 cut = data1.rcut;
435 }
436
437 if (eamtid2 != -1) {
438 EAMAtomData data2 = EAMdata[eamtid2];
439 if (data2.rcut > cut)
440 cut = data2.rcut;
441 }
442
443 return cut;
444 }
445 }
446

Properties

Name Value
svn:eol-style native