1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/EAM.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
|
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
EAM::EAM() : name_("EAM"), initialized_(false), forceField_(NULL), |
55 |
mixMeth_(eamJohnson), eamRcut_(0.0), haveCutoffRadius_(false) {} |
56 |
|
57 |
CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) { |
58 |
EAMAdapter ea1 = EAMAdapter(atomType1); |
59 |
EAMAdapter ea2 = EAMAdapter(atomType2); |
60 |
CubicSpline* z1 = ea1.getZ(); |
61 |
CubicSpline* z2 = ea2.getZ(); |
62 |
|
63 |
// Thise prefactors convert the charge-charge interactions into |
64 |
// kcal / mol all were computed assuming distances are measured in |
65 |
// angstroms Charge-Charge, assuming charges are measured in |
66 |
// electrons. Matches value in Electrostatics.cpp |
67 |
pre11_ = 332.0637778; |
68 |
|
69 |
// make the r grid: |
70 |
|
71 |
// we need phi out to the largest value we'll encounter in the radial space; |
72 |
|
73 |
RealType rmax = 0.0; |
74 |
rmax = max(rmax, ea1.getRcut()); |
75 |
rmax = max(rmax, ea1.getNr() * ea1.getDr()); |
76 |
|
77 |
rmax = max(rmax, ea2.getRcut()); |
78 |
rmax = max(rmax, ea2.getNr() * ea2.getDr()); |
79 |
|
80 |
// use the smallest dr (finest grid) to build our grid: |
81 |
|
82 |
RealType dr = min(ea1.getDr(), ea2.getDr()); |
83 |
|
84 |
int nr = int(rmax/dr + 0.5); |
85 |
|
86 |
vector<RealType> rvals; |
87 |
for (int i = 0; i < nr; i++) rvals.push_back(RealType(i*dr)); |
88 |
|
89 |
// construct the pair potential: |
90 |
|
91 |
vector<RealType> phivals; |
92 |
RealType phi; |
93 |
RealType r; |
94 |
RealType zi, zj; |
95 |
|
96 |
phivals.push_back(0.0); |
97 |
|
98 |
for (unsigned int i = 1; i < rvals.size(); i++ ) { |
99 |
r = rvals[i]; |
100 |
|
101 |
// only use z(r) if we're inside this atom's cutoff radius, |
102 |
// otherwise, we'll use zero for the charge. This effectively |
103 |
// means that our phi grid goes out beyond the cutoff of the |
104 |
// pair potential |
105 |
|
106 |
zi = r <= ea1.getRcut() ? z1->getValueAt(r) : 0.0; |
107 |
zj = r <= ea2.getRcut() ? z2->getValueAt(r) : 0.0; |
108 |
|
109 |
phi = pre11_ * (zi * zj) / r; |
110 |
|
111 |
phivals.push_back(phi); |
112 |
} |
113 |
|
114 |
CubicSpline* cs = new CubicSpline(); |
115 |
cs->addPoints(rvals, phivals); |
116 |
return cs; |
117 |
} |
118 |
|
119 |
void EAM::setCutoffRadius( RealType rCut ) { |
120 |
eamRcut_ = rCut; |
121 |
haveCutoffRadius_ = true; |
122 |
} |
123 |
|
124 |
void EAM::initialize() { |
125 |
// set up the mixing method: |
126 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
127 |
string EAMMixMeth = fopts.getEAMMixingMethod(); |
128 |
toUpper(EAMMixMeth); |
129 |
|
130 |
if (EAMMixMeth == "JOHNSON") |
131 |
mixMeth_ = eamJohnson; |
132 |
else if (EAMMixMeth == "DAW") |
133 |
mixMeth_ = eamDaw; |
134 |
else |
135 |
mixMeth_ = eamUnknown; |
136 |
|
137 |
// find all of the EAM atom Types: |
138 |
EAMtypes.clear(); |
139 |
EAMtids.clear(); |
140 |
EAMdata.clear(); |
141 |
MixingMap.clear(); |
142 |
nEAM_ = 0; |
143 |
|
144 |
EAMtids.resize( forceField_->getNAtomType(), -1); |
145 |
|
146 |
set<AtomType*>::iterator at; |
147 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
148 |
if ((*at)->isEAM()) nEAM_++; |
149 |
} |
150 |
EAMdata.resize(nEAM_); |
151 |
MixingMap.resize(nEAM_); |
152 |
|
153 |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
154 |
if ((*at)->isEAM()) addType(*at); |
155 |
} |
156 |
|
157 |
// find all of the explicit EAM interactions (setfl): |
158 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
159 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
160 |
NonBondedInteractionType* nbt; |
161 |
|
162 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
163 |
nbt = nbiTypes->nextType(j)) { |
164 |
|
165 |
if (nbt->isEAM()) { |
166 |
|
167 |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
168 |
|
169 |
GenericData* data = nbt->getPropertyByName("EAM"); |
170 |
if (data == NULL) { |
171 |
sprintf( painCave.errMsg, "EAM::rebuildMixingMap could not find\n" |
172 |
"\tEAM parameters for %s - %s interaction.\n", |
173 |
atypes.first->getName().c_str(), |
174 |
atypes.second->getName().c_str()); |
175 |
painCave.severity = OPENMD_ERROR; |
176 |
painCave.isFatal = 1; |
177 |
simError(); |
178 |
} |
179 |
|
180 |
EAMMixingData* eamData = dynamic_cast<EAMMixingData*>(data); |
181 |
if (eamData == NULL) { |
182 |
sprintf( painCave.errMsg, |
183 |
"EAM::rebuildMixingMap could not convert GenericData to\n" |
184 |
"\tEAMMixingData for %s - %s interaction.\n", |
185 |
atypes.first->getName().c_str(), |
186 |
atypes.second->getName().c_str()); |
187 |
painCave.severity = OPENMD_ERROR; |
188 |
painCave.isFatal = 1; |
189 |
simError(); |
190 |
} |
191 |
|
192 |
EAMMixingParam eamParam = eamData->getData(); |
193 |
|
194 |
vector<RealType> phiAB = eamParam.phi; |
195 |
RealType dr = eamParam.dr; |
196 |
int nr = eamParam.nr; |
197 |
|
198 |
addExplicitInteraction(atypes.first, atypes.second, dr, nr, phiAB); |
199 |
} |
200 |
} |
201 |
initialized_ = true; |
202 |
} |
203 |
|
204 |
|
205 |
|
206 |
void EAM::addType(AtomType* atomType){ |
207 |
|
208 |
EAMAdapter ea = EAMAdapter(atomType); |
209 |
EAMAtomData eamAtomData; |
210 |
|
211 |
eamAtomData.rho = ea.getRho(); |
212 |
eamAtomData.F = ea.getF(); |
213 |
eamAtomData.Z = ea.getZ(); |
214 |
eamAtomData.rcut = ea.getRcut(); |
215 |
eamAtomData.isFluctuating = atomType->isFluctuatingCharge(); |
216 |
|
217 |
// add it to the map: |
218 |
int atid = atomType->getIdent(); |
219 |
int eamtid = EAMtypes.size(); |
220 |
|
221 |
pair<set<int>::iterator,bool> ret; |
222 |
ret = EAMtypes.insert( atid ); |
223 |
if (ret.second == false) { |
224 |
sprintf( painCave.errMsg, |
225 |
"EAM already had a previous entry with ident %d\n", |
226 |
atid); |
227 |
painCave.severity = OPENMD_INFO; |
228 |
painCave.isFatal = 0; |
229 |
simError(); |
230 |
} |
231 |
|
232 |
if (eamAtomData.isFluctuating) { |
233 |
// compute charge to rho scaling: |
234 |
RealType z0 = eamAtomData.Z->getValueAt(0.0); |
235 |
RealType dr = ea.getDr(); |
236 |
RealType rmax = max(eamAtomData.rcut, ea.getNr() * dr); |
237 |
int nr = int(rmax/dr + 0.5); |
238 |
RealType r; |
239 |
RealType sum(0.0); |
240 |
|
241 |
for (int i = 0; i < nr; i++) { |
242 |
r = RealType(i*dr); |
243 |
sum += r * r * eamAtomData.rho->getValueAt(r) * dr; |
244 |
} |
245 |
sum *= 4.0 * M_PI; |
246 |
eamAtomData.qToRhoScaling = sum / z0; |
247 |
} |
248 |
|
249 |
|
250 |
EAMtids[atid] = eamtid; |
251 |
EAMdata[eamtid] = eamAtomData; |
252 |
MixingMap[eamtid].resize(nEAM_); |
253 |
|
254 |
// Now, iterate over all known types and add to the mixing map: |
255 |
|
256 |
std::set<int>::iterator it; |
257 |
for( it = EAMtypes.begin(); it != EAMtypes.end(); ++it) { |
258 |
|
259 |
int eamtid2 = EAMtids[ (*it) ]; |
260 |
AtomType* atype2 = forceField_->getAtomType( (*it) ); |
261 |
|
262 |
EAMInteractionData mixer; |
263 |
mixer.phi = getPhi(atomType, atype2); |
264 |
mixer.explicitlySet = false; |
265 |
|
266 |
MixingMap[eamtid2].resize( nEAM_ ); |
267 |
|
268 |
MixingMap[eamtid][eamtid2] = mixer; |
269 |
if (eamtid2 != eamtid) { |
270 |
MixingMap[eamtid2][eamtid] = mixer; |
271 |
} |
272 |
} |
273 |
return; |
274 |
} |
275 |
|
276 |
void EAM::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
277 |
RealType dr, int nr, |
278 |
vector<RealType> phiVals) { |
279 |
|
280 |
// in case these weren't already in the map |
281 |
addType(atype1); |
282 |
addType(atype2); |
283 |
|
284 |
EAMInteractionData mixer; |
285 |
CubicSpline* cs = new CubicSpline(); |
286 |
vector<RealType> rVals; |
287 |
|
288 |
for (int i = 0; i < nr; i++) rVals.push_back(i * dr); |
289 |
|
290 |
cs->addPoints(rVals, phiVals); |
291 |
mixer.phi = cs; |
292 |
mixer.explicitlySet = true; |
293 |
|
294 |
int eamtid1 = EAMtids[ atype1->getIdent() ]; |
295 |
int eamtid2 = EAMtids[ atype2->getIdent() ]; |
296 |
|
297 |
MixingMap[eamtid1][eamtid2] = mixer; |
298 |
if (eamtid2 != eamtid1) { |
299 |
MixingMap[eamtid2][eamtid1] = mixer; |
300 |
} |
301 |
return; |
302 |
} |
303 |
|
304 |
void EAM::calcDensity(InteractionData &idat) { |
305 |
|
306 |
if (!initialized_) initialize(); |
307 |
|
308 |
EAMAtomData &data1 = EAMdata[EAMtids[idat.atid1]]; |
309 |
EAMAtomData &data2 = EAMdata[EAMtids[idat.atid2]]; |
310 |
|
311 |
if (haveCutoffRadius_) |
312 |
if ( *(idat.rij) > eamRcut_) return; |
313 |
|
314 |
if ( *(idat.rij) < data1.rcut) { |
315 |
if (data1.isFluctuating) { |
316 |
*(idat.rho2) += (1.0 - *(idat.flucQ1) * data1.qToRhoScaling ) * |
317 |
data1.rho->getValueAt( *(idat.rij) ); |
318 |
} else { |
319 |
*(idat.rho2) += data1.rho->getValueAt( *(idat.rij)); |
320 |
} |
321 |
} |
322 |
|
323 |
if ( *(idat.rij) < data2.rcut) { |
324 |
if (data2.isFluctuating) { |
325 |
*(idat.rho1) += (1.0 - *(idat.flucQ2) * data2.qToRhoScaling ) * |
326 |
data2.rho->getValueAt( *(idat.rij) ); |
327 |
} else { |
328 |
*(idat.rho1) += data2.rho->getValueAt( *(idat.rij)); |
329 |
} |
330 |
} |
331 |
|
332 |
return; |
333 |
} |
334 |
|
335 |
void EAM::calcFunctional(SelfData &sdat) { |
336 |
|
337 |
if (!initialized_) initialize(); |
338 |
|
339 |
EAMAtomData &data1 = EAMdata[ EAMtids[sdat.atid] ]; |
340 |
|
341 |
data1.F->getValueAndDerivativeAt( *(sdat.rho), *(sdat.frho), *(sdat.dfrhodrho) ); |
342 |
|
343 |
(*(sdat.pot))[METALLIC_FAMILY] += *(sdat.frho); |
344 |
if (sdat.doParticlePot) { |
345 |
*(sdat.particlePot) += *(sdat.frho); |
346 |
} |
347 |
|
348 |
return; |
349 |
} |
350 |
|
351 |
|
352 |
void EAM::calcForce(InteractionData &idat) { |
353 |
|
354 |
if (!initialized_) initialize(); |
355 |
|
356 |
if (haveCutoffRadius_) |
357 |
if ( *(idat.rij) > eamRcut_) return; |
358 |
|
359 |
|
360 |
int eamtid1 = EAMtids[idat.atid1]; |
361 |
int eamtid2 = EAMtids[idat.atid2]; |
362 |
|
363 |
EAMAtomData &data1 = EAMdata[eamtid1]; |
364 |
EAMAtomData &data2 = EAMdata[eamtid2]; |
365 |
|
366 |
// get type-specific cutoff radii |
367 |
|
368 |
RealType rci = data1.rcut; |
369 |
RealType rcj = data2.rcut; |
370 |
|
371 |
RealType rha(0.0), drha(0.0), rhb(0.0), drhb(0.0); |
372 |
RealType pha(0.0), dpha(0.0), phb(0.0), dphb(0.0); |
373 |
RealType phab(0.0), dvpdr(0.0); |
374 |
RealType drhoidr, drhojdr, dudr; |
375 |
|
376 |
if ( *(idat.rij) < rci) { |
377 |
data1.rho->getValueAndDerivativeAt( *(idat.rij), rha, drha); |
378 |
CubicSpline* phi = MixingMap[eamtid1][eamtid1].phi; |
379 |
phi->getValueAndDerivativeAt( *(idat.rij), pha, dpha); |
380 |
if (data1.isFluctuating) { |
381 |
*(idat.dVdFQ1) -= *(idat.dfrho2) * rha * data1.qToRhoScaling; |
382 |
} |
383 |
} |
384 |
|
385 |
if ( *(idat.rij) < rcj) { |
386 |
data2.rho->getValueAndDerivativeAt( *(idat.rij), rhb, drhb ); |
387 |
CubicSpline* phi = MixingMap[eamtid2][eamtid2].phi; |
388 |
phi->getValueAndDerivativeAt( *(idat.rij), phb, dphb); |
389 |
if (data2.isFluctuating) { |
390 |
*(idat.dVdFQ2) -= *(idat.dfrho1) * rhb * data2.qToRhoScaling; |
391 |
} |
392 |
} |
393 |
|
394 |
switch(mixMeth_) { |
395 |
case eamJohnson: |
396 |
|
397 |
if ( *(idat.rij) < rci) { |
398 |
phab = phab + 0.5 * (rhb / rha) * pha; |
399 |
dvpdr = dvpdr + 0.5*((rhb/rha)*dpha + |
400 |
pha*((drhb/rha) - (rhb*drha/rha/rha))); |
401 |
} |
402 |
|
403 |
|
404 |
|
405 |
if ( *(idat.rij) < rcj) { |
406 |
phab = phab + 0.5 * (rha / rhb) * phb; |
407 |
dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb + |
408 |
phb*((drha/rhb) - (rha*drhb/rhb/rhb))); |
409 |
} |
410 |
|
411 |
break; |
412 |
|
413 |
case eamDaw: |
414 |
MixingMap[eamtid1][eamtid2].phi->getValueAndDerivativeAt( *(idat.rij), phab, dvpdr); |
415 |
|
416 |
break; |
417 |
case eamUnknown: |
418 |
default: |
419 |
|
420 |
sprintf(painCave.errMsg, |
421 |
"EAM::calcForce hit a mixing method it doesn't know about!\n" |
422 |
); |
423 |
painCave.severity = OPENMD_ERROR; |
424 |
painCave.isFatal = 1; |
425 |
simError(); |
426 |
|
427 |
} |
428 |
|
429 |
drhoidr = drha; |
430 |
drhojdr = drhb; |
431 |
|
432 |
dudr = drhojdr* *(idat.dfrho1) + drhoidr* *(idat.dfrho2) + dvpdr; |
433 |
|
434 |
*(idat.f1) += *(idat.d) * dudr / *(idat.rij); |
435 |
|
436 |
|
437 |
if (idat.doParticlePot) { |
438 |
// particlePot is the difference between the full potential and |
439 |
// the full potential without the presence of a particular |
440 |
// particle (atom1). |
441 |
// |
442 |
// This reduces the density at other particle locations, so we |
443 |
// need to recompute the density at atom2 assuming atom1 didn't |
444 |
// contribute. This then requires recomputing the density |
445 |
// functional for atom2 as well. |
446 |
|
447 |
*(idat.particlePot1) += data2.F->getValueAt( *(idat.rho2) - rha ) |
448 |
- *(idat.frho2); |
449 |
|
450 |
*(idat.particlePot2) += data1.F->getValueAt( *(idat.rho1) - rhb) |
451 |
- *(idat.frho1); |
452 |
} |
453 |
|
454 |
(*(idat.pot))[METALLIC_FAMILY] += phab; |
455 |
|
456 |
*(idat.vpair) += phab; |
457 |
|
458 |
return; |
459 |
|
460 |
} |
461 |
|
462 |
RealType EAM::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
463 |
if (!initialized_) initialize(); |
464 |
|
465 |
RealType cut = 0.0; |
466 |
|
467 |
int atid1 = atypes.first->getIdent(); |
468 |
int atid2 = atypes.second->getIdent(); |
469 |
int eamtid1 = EAMtids[atid1]; |
470 |
int eamtid2 = EAMtids[atid2]; |
471 |
|
472 |
if (eamtid1 != -1) { |
473 |
EAMAtomData data1 = EAMdata[eamtid1]; |
474 |
cut = data1.rcut; |
475 |
} |
476 |
|
477 |
if (eamtid2 != -1) { |
478 |
EAMAtomData data2 = EAMdata[eamtid2]; |
479 |
if (data2.rcut > cut) |
480 |
cut = data2.rcut; |
481 |
} |
482 |
|
483 |
return cut; |
484 |
} |
485 |
} |
486 |
|