35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <stdio.h> |
51 |
|
|
52 |
|
namespace OpenMD { |
53 |
|
|
54 |
< |
bool EAM::initialized_ = false; |
55 |
< |
RealType EAM::eamRcut_ = 0.0; |
55 |
< |
EAMMixingMethod EAM::mixMeth_ = eamJohnson; |
56 |
< |
ForceField* EAM::forceField_ = NULL; |
57 |
< |
std::map<int, AtomType*> EAM::EAMlist; |
58 |
< |
std::map<AtomType*, EAMAtomData> EAM::EAMMap; |
59 |
< |
std::map<std::pair<AtomType*, AtomType*>, EAMInteractionData> EAM::MixingMap; |
60 |
< |
|
54 |
> |
EAM::EAM() : name_("EAM"), initialized_(false), forceField_(NULL), |
55 |
> |
mixMeth_(eamJohnson), eamRcut_(0.0), haveCutoffRadius_(false) {} |
56 |
|
|
57 |
< |
EAM* EAM::_instance = NULL; |
57 |
> |
CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) { |
58 |
> |
EAMAdapter ea1 = EAMAdapter(atomType1); |
59 |
> |
EAMAdapter ea2 = EAMAdapter(atomType2); |
60 |
> |
CubicSpline* z1 = ea1.getZ(); |
61 |
> |
CubicSpline* z2 = ea2.getZ(); |
62 |
|
|
63 |
< |
EAM* EAM::Instance() { |
64 |
< |
if (!_instance) { |
65 |
< |
_instance = new EAM(); |
66 |
< |
} |
67 |
< |
return _instance; |
69 |
< |
} |
70 |
< |
|
71 |
< |
EAMParam EAM::getEAMParam(AtomType* atomType) { |
72 |
< |
|
73 |
< |
// Do sanity checking on the AtomType we were passed before |
74 |
< |
// building any data structures: |
75 |
< |
if (!atomType->isEAM()) { |
76 |
< |
sprintf( painCave.errMsg, |
77 |
< |
"EAM::getEAMParam was passed an atomType (%s) that does not\n" |
78 |
< |
"\tappear to be an embedded atom method (EAM) atom.\n", |
79 |
< |
atomType->getName().c_str()); |
80 |
< |
painCave.severity = OPENMD_ERROR; |
81 |
< |
painCave.isFatal = 1; |
82 |
< |
simError(); |
83 |
< |
} |
84 |
< |
|
85 |
< |
GenericData* data = atomType->getPropertyByName("EAM"); |
86 |
< |
if (data == NULL) { |
87 |
< |
sprintf( painCave.errMsg, "EAM::getEAMParam could not find EAM\n" |
88 |
< |
"\tparameters for atomType %s.\n", |
89 |
< |
atomType->getName().c_str()); |
90 |
< |
painCave.severity = OPENMD_ERROR; |
91 |
< |
painCave.isFatal = 1; |
92 |
< |
simError(); |
93 |
< |
} |
94 |
< |
|
95 |
< |
EAMParamGenericData* eamData = dynamic_cast<EAMParamGenericData*>(data); |
96 |
< |
if (eamData == NULL) { |
97 |
< |
sprintf( painCave.errMsg, |
98 |
< |
"EAM::getEAMParam could not convert GenericData to EAMParam for\n" |
99 |
< |
"\tatom type %s\n", atomType->getName().c_str()); |
100 |
< |
painCave.severity = OPENMD_ERROR; |
101 |
< |
painCave.isFatal = 1; |
102 |
< |
simError(); |
103 |
< |
} |
104 |
< |
|
105 |
< |
return eamData->getData(); |
106 |
< |
} |
63 |
> |
// Thise prefactors convert the charge-charge interactions into |
64 |
> |
// kcal / mol all were computed assuming distances are measured in |
65 |
> |
// angstroms Charge-Charge, assuming charges are measured in |
66 |
> |
// electrons. Matches value in Electrostatics.cpp |
67 |
> |
pre11_ = 332.0637778; |
68 |
|
|
69 |
< |
CubicSpline* EAM::getZ(AtomType* atomType) { |
109 |
< |
EAMParam eamParam = getEAMParam(atomType); |
110 |
< |
int nr = eamParam.nr; |
111 |
< |
RealType dr = eamParam.dr; |
112 |
< |
vector<RealType> rvals; |
113 |
< |
|
114 |
< |
for (int i = 0; i < nr; i++) rvals.push_back(i * dr); |
115 |
< |
|
116 |
< |
CubicSpline* cs = new CubicSpline(); |
117 |
< |
cs->addPoints(rvals, eamParam.Z); |
118 |
< |
return cs; |
119 |
< |
} |
69 |
> |
// make the r grid: |
70 |
|
|
71 |
< |
RealType EAM::getRcut(AtomType* atomType) { |
122 |
< |
EAMParam eamParam = getEAMParam(atomType); |
123 |
< |
return eamParam.rcut; |
124 |
< |
} |
125 |
< |
|
126 |
< |
CubicSpline* EAM::getRho(AtomType* atomType) { |
127 |
< |
EAMParam eamParam = getEAMParam(atomType); |
128 |
< |
int nr = eamParam.nr; |
129 |
< |
RealType dr = eamParam.dr; |
130 |
< |
vector<RealType> rvals; |
71 |
> |
// we need phi out to the largest value we'll encounter in the radial space; |
72 |
|
|
73 |
< |
for (int i = 0; i < nr; i++) rvals.push_back(i * dr); |
74 |
< |
|
75 |
< |
CubicSpline* cs = new CubicSpline(); |
135 |
< |
cs->addPoints(rvals, eamParam.rho); |
136 |
< |
return cs; |
137 |
< |
} |
73 |
> |
RealType rmax = 0.0; |
74 |
> |
rmax = max(rmax, ea1.getRcut()); |
75 |
> |
rmax = max(rmax, ea1.getNr() * ea1.getDr()); |
76 |
|
|
77 |
< |
CubicSpline* EAM::getF(AtomType* atomType) { |
78 |
< |
EAMParam eamParam = getEAMParam(atomType); |
141 |
< |
int nrho = eamParam.nrho; |
142 |
< |
RealType drho = eamParam.drho; |
143 |
< |
vector<RealType> rhovals; |
144 |
< |
vector<RealType> scaledF; |
145 |
< |
|
146 |
< |
for (int i = 0; i < nrho; i++) { |
147 |
< |
rhovals.push_back(i * drho); |
148 |
< |
scaledF.push_back( eamParam.F[i] * 23.06054 ); |
149 |
< |
} |
150 |
< |
|
151 |
< |
CubicSpline* cs = new CubicSpline(); |
152 |
< |
cs->addPoints(rhovals, eamParam.F); |
153 |
< |
return cs; |
154 |
< |
} |
155 |
< |
|
156 |
< |
CubicSpline* EAM::getPhi(AtomType* atomType1, AtomType* atomType2) { |
157 |
< |
EAMParam eamParam1 = getEAMParam(atomType1); |
158 |
< |
EAMParam eamParam2 = getEAMParam(atomType2); |
159 |
< |
CubicSpline* z1 = getZ(atomType1); |
160 |
< |
CubicSpline* z2 = getZ(atomType2); |
77 |
> |
rmax = max(rmax, ea2.getRcut()); |
78 |
> |
rmax = max(rmax, ea2.getNr() * ea2.getDr()); |
79 |
|
|
80 |
< |
// make the r grid: |
80 |
> |
// use the smallest dr (finest grid) to build our grid: |
81 |
|
|
82 |
< |
// set rcut to be the smaller of the two atomic rcuts |
82 |
> |
RealType dr = min(ea1.getDr(), ea2.getDr()); |
83 |
|
|
84 |
< |
RealType rcut = eamParam1.rcut < eamParam2.rcut ? |
167 |
< |
eamParam1.rcut : eamParam2.rcut; |
84 |
> |
int nr = int(rmax/dr + 0.5); |
85 |
|
|
169 |
– |
// use the smallest dr (finest grid) to build our grid: |
170 |
– |
|
171 |
– |
RealType dr = eamParam1.dr < eamParam2.dr ? eamParam1.dr : eamParam2.dr; |
172 |
– |
int nr = int(rcut/dr); |
86 |
|
vector<RealType> rvals; |
87 |
< |
for (int i = 0; i < nr; i++) rvals.push_back(i*dr); |
87 |
> |
for (int i = 0; i < nr; i++) rvals.push_back(RealType(i*dr)); |
88 |
|
|
89 |
|
// construct the pair potential: |
90 |
|
|
95 |
|
|
96 |
|
phivals.push_back(0.0); |
97 |
|
|
98 |
< |
for (int i = 1; i < rvals.size(); i++ ) { |
98 |
> |
for (unsigned int i = 1; i < rvals.size(); i++ ) { |
99 |
|
r = rvals[i]; |
187 |
– |
zi = z1->getValueAt(r); |
188 |
– |
zj = z2->getValueAt(r); |
100 |
|
|
101 |
< |
phi = 331.999296 * (zi * zj) / r; |
101 |
> |
// only use z(r) if we're inside this atom's cutoff radius, |
102 |
> |
// otherwise, we'll use zero for the charge. This effectively |
103 |
> |
// means that our phi grid goes out beyond the cutoff of the |
104 |
> |
// pair potential |
105 |
> |
|
106 |
> |
zi = r <= ea1.getRcut() ? z1->getValueAt(r) : 0.0; |
107 |
> |
zj = r <= ea2.getRcut() ? z2->getValueAt(r) : 0.0; |
108 |
> |
|
109 |
> |
phi = pre11_ * (zi * zj) / r; |
110 |
> |
|
111 |
|
phivals.push_back(phi); |
112 |
|
} |
113 |
|
|
116 |
|
return cs; |
117 |
|
} |
118 |
|
|
119 |
< |
void EAM::initialize() { |
119 |
> |
void EAM::setCutoffRadius( RealType rCut ) { |
120 |
> |
eamRcut_ = rCut; |
121 |
> |
haveCutoffRadius_ = true; |
122 |
> |
} |
123 |
|
|
124 |
+ |
void EAM::initialize() { |
125 |
|
// set up the mixing method: |
126 |
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
127 |
< |
string EAMMixMeth = toUpperCopy(fopts.getEAMMixingMethod()); |
128 |
< |
|
127 |
> |
string EAMMixMeth = fopts.getEAMMixingMethod(); |
128 |
> |
toUpper(EAMMixMeth); |
129 |
> |
|
130 |
|
if (EAMMixMeth == "JOHNSON") |
131 |
|
mixMeth_ = eamJohnson; |
132 |
|
else if (EAMMixMeth == "DAW") |
135 |
|
mixMeth_ = eamUnknown; |
136 |
|
|
137 |
|
// find all of the EAM atom Types: |
138 |
< |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
139 |
< |
ForceField::AtomTypeContainer::MapTypeIterator i; |
140 |
< |
AtomType* at; |
138 |
> |
EAMtypes.clear(); |
139 |
> |
EAMtids.clear(); |
140 |
> |
EAMdata.clear(); |
141 |
> |
MixingMap.clear(); |
142 |
> |
nEAM_ = 0; |
143 |
> |
|
144 |
> |
EAMtids.resize( forceField_->getNAtomType(), -1); |
145 |
|
|
146 |
< |
for (at = atomTypes->beginType(i); at != NULL; |
147 |
< |
at = atomTypes->nextType(i)) { |
148 |
< |
|
220 |
< |
if (at->isEAM()) |
221 |
< |
addType(at); |
146 |
> |
set<AtomType*>::iterator at; |
147 |
> |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
148 |
> |
if ((*at)->isEAM()) nEAM_++; |
149 |
|
} |
150 |
+ |
EAMdata.resize(nEAM_); |
151 |
+ |
MixingMap.resize(nEAM_); |
152 |
+ |
|
153 |
+ |
for (at = simTypes_.begin(); at != simTypes_.end(); ++at) { |
154 |
+ |
if ((*at)->isEAM()) addType(*at); |
155 |
+ |
} |
156 |
|
|
157 |
|
// find all of the explicit EAM interactions (setfl): |
158 |
|
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
164 |
|
|
165 |
|
if (nbt->isEAM()) { |
166 |
|
|
167 |
< |
std::pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
167 |
> |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
168 |
|
|
169 |
|
GenericData* data = nbt->getPropertyByName("EAM"); |
170 |
|
if (data == NULL) { |
205 |
|
|
206 |
|
void EAM::addType(AtomType* atomType){ |
207 |
|
|
208 |
+ |
EAMAdapter ea = EAMAdapter(atomType); |
209 |
|
EAMAtomData eamAtomData; |
276 |
– |
|
277 |
– |
eamAtomData.rho = getRho(atomType); |
278 |
– |
eamAtomData.F = getF(atomType); |
279 |
– |
eamAtomData.Z = getZ(atomType); |
280 |
– |
eamAtomData.rcut = getRcut(atomType); |
210 |
|
|
211 |
+ |
eamAtomData.rho = ea.getRho(); |
212 |
+ |
eamAtomData.F = ea.getF(); |
213 |
+ |
eamAtomData.Z = ea.getZ(); |
214 |
+ |
eamAtomData.rcut = ea.getRcut(); |
215 |
+ |
eamAtomData.isFluctuating = atomType->isFluctuatingCharge(); |
216 |
+ |
|
217 |
|
// add it to the map: |
218 |
< |
AtomTypeProperties atp = atomType->getATP(); |
218 |
> |
int atid = atomType->getIdent(); |
219 |
> |
int eamtid = EAMtypes.size(); |
220 |
|
|
221 |
< |
std::pair<std::map<int,AtomType*>::iterator,bool> ret; |
222 |
< |
ret = EAMlist.insert( std::pair<int, AtomType*>(atp.ident, atomType) ); |
221 |
> |
pair<set<int>::iterator,bool> ret; |
222 |
> |
ret = EAMtypes.insert( atid ); |
223 |
|
if (ret.second == false) { |
224 |
|
sprintf( painCave.errMsg, |
225 |
|
"EAM already had a previous entry with ident %d\n", |
226 |
< |
atp.ident); |
226 |
> |
atid); |
227 |
|
painCave.severity = OPENMD_INFO; |
228 |
|
painCave.isFatal = 0; |
229 |
|
simError(); |
230 |
|
} |
231 |
|
|
232 |
< |
EAMMap[atomType] = eamAtomData; |
232 |
> |
if (eamAtomData.isFluctuating) { |
233 |
> |
// compute charge to rho scaling: |
234 |
> |
RealType z0 = eamAtomData.Z->getValueAt(0.0); |
235 |
> |
RealType dr = ea.getDr(); |
236 |
> |
RealType rmax = max(eamAtomData.rcut, ea.getNr() * dr); |
237 |
> |
int nr = int(rmax/dr + 0.5); |
238 |
> |
RealType r; |
239 |
> |
RealType sum(0.0); |
240 |
> |
|
241 |
> |
for (int i = 0; i < nr; i++) { |
242 |
> |
r = RealType(i*dr); |
243 |
> |
sum += r * r * eamAtomData.rho->getValueAt(r) * dr; |
244 |
> |
} |
245 |
> |
sum *= 4.0 * M_PI; |
246 |
> |
eamAtomData.qToRhoScaling = sum / z0; |
247 |
> |
} |
248 |
> |
|
249 |
> |
|
250 |
> |
EAMtids[atid] = eamtid; |
251 |
> |
EAMdata[eamtid] = eamAtomData; |
252 |
> |
MixingMap[eamtid].resize(nEAM_); |
253 |
|
|
254 |
|
// Now, iterate over all known types and add to the mixing map: |
255 |
|
|
256 |
< |
std::map<AtomType*, EAMAtomData>::iterator it; |
257 |
< |
for( it = EAMMap.begin(); it != EAMMap.end(); ++it) { |
256 |
> |
std::set<int>::iterator it; |
257 |
> |
for( it = EAMtypes.begin(); it != EAMtypes.end(); ++it) { |
258 |
|
|
259 |
< |
AtomType* atype2 = (*it).first; |
259 |
> |
int eamtid2 = EAMtids[ (*it) ]; |
260 |
> |
AtomType* atype2 = forceField_->getAtomType( (*it) ); |
261 |
|
|
262 |
|
EAMInteractionData mixer; |
263 |
|
mixer.phi = getPhi(atomType, atype2); |
264 |
|
mixer.explicitlySet = false; |
265 |
|
|
266 |
< |
std::pair<AtomType*, AtomType*> key1, key2; |
310 |
< |
key1 = std::make_pair(atomType, atype2); |
311 |
< |
key2 = std::make_pair(atype2, atomType); |
266 |
> |
MixingMap[eamtid2].resize( nEAM_ ); |
267 |
|
|
268 |
< |
MixingMap[key1] = mixer; |
269 |
< |
if (key2 != key1) { |
270 |
< |
MixingMap[key2] = mixer; |
268 |
> |
MixingMap[eamtid][eamtid2] = mixer; |
269 |
> |
if (eamtid2 != eamtid) { |
270 |
> |
MixingMap[eamtid2][eamtid] = mixer; |
271 |
|
} |
272 |
|
} |
273 |
|
return; |
291 |
|
mixer.phi = cs; |
292 |
|
mixer.explicitlySet = true; |
293 |
|
|
294 |
< |
std::pair<AtomType*, AtomType*> key1, key2; |
295 |
< |
key1 = std::make_pair(atype1, atype2); |
341 |
< |
key2 = std::make_pair(atype2, atype1); |
294 |
> |
int eamtid1 = EAMtids[ atype1->getIdent() ]; |
295 |
> |
int eamtid2 = EAMtids[ atype2->getIdent() ]; |
296 |
|
|
297 |
< |
MixingMap[key1] = mixer; |
298 |
< |
if (key2 != key1) { |
299 |
< |
MixingMap[key2] = mixer; |
297 |
> |
MixingMap[eamtid1][eamtid2] = mixer; |
298 |
> |
if (eamtid2 != eamtid1) { |
299 |
> |
MixingMap[eamtid2][eamtid1] = mixer; |
300 |
|
} |
301 |
|
return; |
302 |
|
} |
303 |
|
|
304 |
< |
void EAM::calcDensity(AtomType* at1, AtomType* at2, const RealType rij, |
351 |
< |
RealType &rho_i_at_j, RealType &rho_j_at_i) { |
304 |
> |
void EAM::calcDensity(InteractionData &idat) { |
305 |
|
|
306 |
|
if (!initialized_) initialize(); |
307 |
|
|
308 |
< |
EAMAtomData data1 = EAMMap[at1]; |
309 |
< |
EAMAtomData data2 = EAMMap[at2]; |
308 |
> |
EAMAtomData &data1 = EAMdata[EAMtids[idat.atid1]]; |
309 |
> |
EAMAtomData &data2 = EAMdata[EAMtids[idat.atid2]]; |
310 |
|
|
311 |
< |
if (rij < data1.rcut) rho_i_at_j = data1.rho->getValueAt(rij); |
312 |
< |
if (rij < data2.rcut) rho_j_at_i = data2.rho->getValueAt(rij); |
313 |
< |
return; |
311 |
> |
if (haveCutoffRadius_) |
312 |
> |
if ( *(idat.rij) > eamRcut_) return; |
313 |
> |
|
314 |
> |
if ( *(idat.rij) < data1.rcut) { |
315 |
> |
if (data1.isFluctuating) { |
316 |
> |
*(idat.rho2) += (1.0 - *(idat.flucQ1) * data1.qToRhoScaling ) * |
317 |
> |
data1.rho->getValueAt( *(idat.rij) ); |
318 |
> |
} else { |
319 |
> |
*(idat.rho2) += data1.rho->getValueAt( *(idat.rij)); |
320 |
> |
} |
321 |
> |
} |
322 |
> |
|
323 |
> |
if ( *(idat.rij) < data2.rcut) { |
324 |
> |
if (data2.isFluctuating) { |
325 |
> |
*(idat.rho1) += (1.0 - *(idat.flucQ2) * data2.qToRhoScaling ) * |
326 |
> |
data2.rho->getValueAt( *(idat.rij) ); |
327 |
> |
} else { |
328 |
> |
*(idat.rho1) += data2.rho->getValueAt( *(idat.rij)); |
329 |
> |
} |
330 |
> |
} |
331 |
> |
|
332 |
> |
return; |
333 |
|
} |
334 |
< |
|
335 |
< |
void EAM::calcFunctional(AtomType* at1, RealType rho, RealType &frho, |
336 |
< |
RealType &dfrhodrho) { |
365 |
< |
|
334 |
> |
|
335 |
> |
void EAM::calcFunctional(SelfData &sdat) { |
336 |
> |
|
337 |
|
if (!initialized_) initialize(); |
338 |
|
|
339 |
< |
EAMAtomData data1 = EAMMap[at1]; |
340 |
< |
|
341 |
< |
pair<RealType, RealType> result = data1.F->getValueAndDerivativeAt(rho); |
339 |
> |
EAMAtomData &data1 = EAMdata[ EAMtids[sdat.atid] ]; |
340 |
> |
|
341 |
> |
data1.F->getValueAndDerivativeAt( *(sdat.rho), *(sdat.frho), *(sdat.dfrhodrho) ); |
342 |
|
|
343 |
< |
frho = result.first; |
344 |
< |
dfrhodrho = result.second; |
343 |
> |
(*(sdat.pot))[METALLIC_FAMILY] += *(sdat.frho); |
344 |
> |
if (sdat.doParticlePot) { |
345 |
> |
*(sdat.particlePot) += *(sdat.frho); |
346 |
> |
} |
347 |
> |
|
348 |
|
return; |
349 |
|
} |
350 |
|
|
351 |
|
|
352 |
< |
void EAM::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
379 |
< |
RealType rij, RealType r2, RealType sw, |
380 |
< |
RealType &vpair, RealType &pot, Vector3d &f1, |
381 |
< |
RealType rho_i, RealType rho_j, |
382 |
< |
RealType dfrhodrho_i, RealType dfrhodrho_j, |
383 |
< |
RealType &fshift_i, RealType &fshift_j) { |
352 |
> |
void EAM::calcForce(InteractionData &idat) { |
353 |
|
|
354 |
|
if (!initialized_) initialize(); |
386 |
– |
|
387 |
– |
pair<RealType, RealType> res; |
388 |
– |
|
389 |
– |
if (rij < eamRcut_) { |
355 |
|
|
356 |
< |
EAMAtomData data1 = EAMMap[at1]; |
357 |
< |
EAMAtomData data2 = EAMMap[at2]; |
356 |
> |
if (haveCutoffRadius_) |
357 |
> |
if ( *(idat.rij) > eamRcut_) return; |
358 |
> |
|
359 |
|
|
360 |
< |
// get type-specific cutoff radii |
361 |
< |
|
362 |
< |
RealType rci = data1.rcut; |
363 |
< |
RealType rcj = data2.rcut; |
364 |
< |
|
365 |
< |
RealType rha, drha, rhb, drhb; |
366 |
< |
RealType pha, dpha, phb, dphb; |
367 |
< |
RealType phab, dvpdr; |
368 |
< |
RealType drhoidr, drhojdr, dudr; |
369 |
< |
|
370 |
< |
if (rij < rci) { |
371 |
< |
res = data1.rho->getValueAndDerivativeAt(rij); |
372 |
< |
rha = res.first; |
373 |
< |
drha = res.second; |
374 |
< |
|
375 |
< |
res = MixingMap[make_pair(at1, at1)].phi->getValueAndDerivativeAt(rij); |
376 |
< |
pha = res.first; |
377 |
< |
dpha = res.second; |
360 |
> |
int eamtid1 = EAMtids[idat.atid1]; |
361 |
> |
int eamtid2 = EAMtids[idat.atid2]; |
362 |
> |
|
363 |
> |
EAMAtomData &data1 = EAMdata[eamtid1]; |
364 |
> |
EAMAtomData &data2 = EAMdata[eamtid2]; |
365 |
> |
|
366 |
> |
// get type-specific cutoff radii |
367 |
> |
|
368 |
> |
RealType rci = data1.rcut; |
369 |
> |
RealType rcj = data2.rcut; |
370 |
> |
|
371 |
> |
RealType rha(0.0), drha(0.0), rhb(0.0), drhb(0.0); |
372 |
> |
RealType pha(0.0), dpha(0.0), phb(0.0), dphb(0.0); |
373 |
> |
RealType phab(0.0), dvpdr(0.0); |
374 |
> |
RealType drhoidr, drhojdr, dudr; |
375 |
> |
|
376 |
> |
if ( *(idat.rij) < rci) { |
377 |
> |
data1.rho->getValueAndDerivativeAt( *(idat.rij), rha, drha); |
378 |
> |
CubicSpline* phi = MixingMap[eamtid1][eamtid1].phi; |
379 |
> |
phi->getValueAndDerivativeAt( *(idat.rij), pha, dpha); |
380 |
> |
if (data1.isFluctuating) { |
381 |
> |
*(idat.dVdFQ1) -= *(idat.dfrho2) * rha * data1.qToRhoScaling; |
382 |
|
} |
383 |
< |
|
384 |
< |
if (rij < rcj) { |
385 |
< |
res = data2.rho->getValueAndDerivativeAt(rij); |
386 |
< |
rhb = res.first; |
387 |
< |
drhb = res.second; |
388 |
< |
|
389 |
< |
res = MixingMap[make_pair(at2, at2)].phi->getValueAndDerivativeAt(rij); |
390 |
< |
phb = res.first; |
421 |
< |
dphb = res.second; |
383 |
> |
} |
384 |
> |
|
385 |
> |
if ( *(idat.rij) < rcj) { |
386 |
> |
data2.rho->getValueAndDerivativeAt( *(idat.rij), rhb, drhb ); |
387 |
> |
CubicSpline* phi = MixingMap[eamtid2][eamtid2].phi; |
388 |
> |
phi->getValueAndDerivativeAt( *(idat.rij), phb, dphb); |
389 |
> |
if (data2.isFluctuating) { |
390 |
> |
*(idat.dVdFQ2) -= *(idat.dfrho1) * rhb * data2.qToRhoScaling; |
391 |
|
} |
392 |
+ |
} |
393 |
|
|
394 |
< |
phab = 0.0; |
395 |
< |
dvpdr = 0.0; |
396 |
< |
|
397 |
< |
switch(mixMeth_) { |
398 |
< |
case eamJohnson: |
399 |
< |
|
400 |
< |
if (rij < rci) { |
431 |
< |
phab = phab + 0.5 * (rhb / rha) * pha; |
432 |
< |
dvpdr = dvpdr + 0.5*((rhb/rha)*dpha + |
433 |
< |
pha*((drhb/rha) - (rhb*drha/rha/rha))); |
434 |
< |
} |
435 |
< |
|
436 |
< |
if (rij < rcj) { |
437 |
< |
phab = phab + 0.5 * (rha / rhb) * phb; |
438 |
< |
dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb + |
439 |
< |
phb*((drha/rhb) - (rha*drhb/rhb/rhb))); |
440 |
< |
} |
441 |
< |
|
442 |
< |
break; |
443 |
< |
|
444 |
< |
case eamDaw: |
445 |
< |
|
446 |
< |
res = MixingMap[make_pair(at1,at2)].phi->getValueAndDerivativeAt(rij); |
447 |
< |
phab = res.first; |
448 |
< |
dvpdr = res.second; |
449 |
< |
|
450 |
< |
break; |
451 |
< |
case eamUnknown: |
452 |
< |
default: |
453 |
< |
|
454 |
< |
sprintf(painCave.errMsg, |
455 |
< |
"EAM::calcForce hit a mixing method it doesn't know about!\n" |
456 |
< |
); |
457 |
< |
painCave.severity = OPENMD_ERROR; |
458 |
< |
painCave.isFatal = 1; |
459 |
< |
simError(); |
460 |
< |
|
394 |
> |
switch(mixMeth_) { |
395 |
> |
case eamJohnson: |
396 |
> |
|
397 |
> |
if ( *(idat.rij) < rci) { |
398 |
> |
phab = phab + 0.5 * (rhb / rha) * pha; |
399 |
> |
dvpdr = dvpdr + 0.5*((rhb/rha)*dpha + |
400 |
> |
pha*((drhb/rha) - (rhb*drha/rha/rha))); |
401 |
|
} |
402 |
|
|
403 |
< |
drhoidr = drha; |
404 |
< |
drhojdr = drhb; |
403 |
> |
|
404 |
> |
|
405 |
> |
if ( *(idat.rij) < rcj) { |
406 |
> |
phab = phab + 0.5 * (rha / rhb) * phb; |
407 |
> |
dvpdr = dvpdr + 0.5 * ((rha/rhb)*dphb + |
408 |
> |
phb*((drha/rhb) - (rha*drhb/rhb/rhb))); |
409 |
> |
} |
410 |
> |
|
411 |
> |
break; |
412 |
> |
|
413 |
> |
case eamDaw: |
414 |
> |
MixingMap[eamtid1][eamtid2].phi->getValueAndDerivativeAt( *(idat.rij), phab, dvpdr); |
415 |
> |
|
416 |
> |
break; |
417 |
> |
case eamUnknown: |
418 |
> |
default: |
419 |
> |
|
420 |
> |
sprintf(painCave.errMsg, |
421 |
> |
"EAM::calcForce hit a mixing method it doesn't know about!\n" |
422 |
> |
); |
423 |
> |
painCave.severity = OPENMD_ERROR; |
424 |
> |
painCave.isFatal = 1; |
425 |
> |
simError(); |
426 |
> |
|
427 |
> |
} |
428 |
> |
|
429 |
> |
drhoidr = drha; |
430 |
> |
drhojdr = drhb; |
431 |
> |
|
432 |
> |
dudr = drhojdr* *(idat.dfrho1) + drhoidr* *(idat.dfrho2) + dvpdr; |
433 |
> |
|
434 |
> |
*(idat.f1) += *(idat.d) * dudr / *(idat.rij); |
435 |
|
|
466 |
– |
dudr = drhojdr*dfrhodrho_i + drhoidr*dfrhodrho_j + dvpdr; |
467 |
– |
|
468 |
– |
f1 = d * dudr / rij; |
436 |
|
|
437 |
< |
// particle_pot is the difference between the full potential |
438 |
< |
// and the full potential without the presence of a particular |
437 |
> |
if (idat.doParticlePot) { |
438 |
> |
// particlePot is the difference between the full potential and |
439 |
> |
// the full potential without the presence of a particular |
440 |
|
// particle (atom1). |
441 |
|
// |
442 |
< |
// This reduces the density at other particle locations, so |
443 |
< |
// we need to recompute the density at atom2 assuming atom1 |
444 |
< |
// didn't contribute. This then requires recomputing the |
445 |
< |
// density functional for atom2 as well. |
446 |
< |
// |
447 |
< |
// Most of the particle_pot heavy lifting comes from the |
448 |
< |
// pair interaction, and will be handled by vpair. |
449 |
< |
|
450 |
< |
fshift_i = data1.F->getValueAt( rho_i - rhb ); |
451 |
< |
fshift_j = data1.F->getValueAt( rho_j - rha ); |
484 |
< |
|
485 |
< |
pot += phab; |
486 |
< |
|
487 |
< |
vpair += phab; |
442 |
> |
// This reduces the density at other particle locations, so we |
443 |
> |
// need to recompute the density at atom2 assuming atom1 didn't |
444 |
> |
// contribute. This then requires recomputing the density |
445 |
> |
// functional for atom2 as well. |
446 |
> |
|
447 |
> |
*(idat.particlePot1) += data2.F->getValueAt( *(idat.rho2) - rha ) |
448 |
> |
- *(idat.frho2); |
449 |
> |
|
450 |
> |
*(idat.particlePot2) += data1.F->getValueAt( *(idat.rho1) - rhb) |
451 |
> |
- *(idat.frho1); |
452 |
|
} |
489 |
– |
|
490 |
– |
return; |
453 |
|
|
454 |
< |
} |
493 |
< |
|
494 |
< |
|
495 |
< |
void EAM::calc_eam_prepair_rho(int *atid1, int *atid2, RealType *rij, |
496 |
< |
RealType* rho_i_at_j, RealType* rho_j_at_i){ |
497 |
< |
|
498 |
< |
if (!initialized_) initialize(); |
454 |
> |
(*(idat.pot))[METALLIC_FAMILY] += phab; |
455 |
|
|
456 |
< |
AtomType* atype1 = EAMlist[*atid1]; |
457 |
< |
AtomType* atype2 = EAMlist[*atid2]; |
456 |
> |
*(idat.vpair) += phab; |
457 |
> |
|
458 |
> |
return; |
459 |
|
|
503 |
– |
calcDensity(atype1, atype2, *rij, *rho_i_at_j, *rho_j_at_i); |
504 |
– |
|
505 |
– |
return; |
460 |
|
} |
461 |
|
|
462 |
< |
void EAM::calc_eam_preforce_Frho(int *atid1, RealType *rho, RealType *frho, |
463 |
< |
RealType *dfrhodrho) { |
462 |
> |
RealType EAM::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
463 |
> |
if (!initialized_) initialize(); |
464 |
|
|
465 |
< |
if (!initialized_) initialize(); |
465 |
> |
RealType cut = 0.0; |
466 |
|
|
467 |
< |
AtomType* atype1 = EAMlist[*atid1]; |
468 |
< |
|
469 |
< |
calcFunctional(atype1, *rho, *frho, *dfrhodrho); |
467 |
> |
int atid1 = atypes.first->getIdent(); |
468 |
> |
int atid2 = atypes.second->getIdent(); |
469 |
> |
int eamtid1 = EAMtids[atid1]; |
470 |
> |
int eamtid2 = EAMtids[atid2]; |
471 |
|
|
472 |
< |
return; |
473 |
< |
} |
474 |
< |
RealType EAM::getEAMcut(int *atid1) { |
472 |
> |
if (eamtid1 != -1) { |
473 |
> |
EAMAtomData data1 = EAMdata[eamtid1]; |
474 |
> |
cut = data1.rcut; |
475 |
> |
} |
476 |
|
|
477 |
< |
if (!initialized_) initialize(); |
477 |
> |
if (eamtid2 != -1) { |
478 |
> |
EAMAtomData data2 = EAMdata[eamtid2]; |
479 |
> |
if (data2.rcut > cut) |
480 |
> |
cut = data2.rcut; |
481 |
> |
} |
482 |
|
|
483 |
< |
AtomType* atype1 = EAMlist[*atid1]; |
524 |
< |
|
525 |
< |
return getRcut(atype1); |
483 |
> |
return cut; |
484 |
|
} |
527 |
– |
|
528 |
– |
void EAM::do_eam_pair(int *atid1, int *atid2, RealType *d, RealType *rij, |
529 |
– |
RealType *r2, RealType *sw, RealType *vpair, |
530 |
– |
RealType *pot, RealType *f1, RealType *rho1, |
531 |
– |
RealType *rho2, RealType *dfrho1, RealType *dfrho2, |
532 |
– |
RealType *fshift1, RealType *fshift2) { |
533 |
– |
|
534 |
– |
if (!initialized_) initialize(); |
535 |
– |
|
536 |
– |
AtomType* atype1 = EAMlist[*atid1]; |
537 |
– |
AtomType* atype2 = EAMlist[*atid2]; |
538 |
– |
|
539 |
– |
Vector3d disp(d[0], d[1], d[2]); |
540 |
– |
Vector3d frc(f1[0], f1[1], f1[2]); |
541 |
– |
|
542 |
– |
calcForce(atype1, atype2, disp, *rij, *r2, *sw, *vpair, *pot, frc, |
543 |
– |
*rho1, *rho2, *dfrho1, *dfrho2, *fshift1, *fshift2); |
544 |
– |
|
545 |
– |
f1[0] = frc.x(); |
546 |
– |
f1[1] = frc.y(); |
547 |
– |
f1[2] = frc.z(); |
548 |
– |
|
549 |
– |
return; |
550 |
– |
} |
551 |
– |
|
552 |
– |
void EAM::setCutoffEAM(RealType *thisRcut) { |
553 |
– |
eamRcut_ = *thisRcut; |
554 |
– |
} |
485 |
|
} |
486 |
|
|
557 |
– |
extern "C" { |
558 |
– |
|
559 |
– |
#define fortranCalcDensity FC_FUNC(calc_eam_prepair_rho, CALC_EAM_PREPAIR_RHO) |
560 |
– |
#define fortranCalcFunctional FC_FUNC(calc_eam_preforce_frho, CALC_EAM_PREFORCE_FRHO) |
561 |
– |
#define fortranCalcForce FC_FUNC(do_eam_pair, DO_EAM_PAIR) |
562 |
– |
#define fortranSetCutoffEAM FC_FUNC(setcutoffeam, SETCUTOFFEAM) |
563 |
– |
#define fortranGetEAMcut FC_FUNC(geteamcut, GETEAMCUT) |
564 |
– |
|
565 |
– |
|
566 |
– |
void fortranCalcDensity(int *atid1, int *atid2, RealType *rij, |
567 |
– |
RealType *rho_i_at_j, RealType *rho_j_at_i) { |
568 |
– |
|
569 |
– |
return OpenMD::EAM::Instance()->calc_eam_prepair_rho(atid1, atid2, rij, |
570 |
– |
rho_i_at_j, |
571 |
– |
rho_j_at_i); |
572 |
– |
} |
573 |
– |
void fortranCalcFunctional(int *atid1, RealType *rho, RealType *frho, |
574 |
– |
RealType *dfrhodrho) { |
575 |
– |
|
576 |
– |
return OpenMD::EAM::Instance()->calc_eam_preforce_Frho(atid1, rho, frho, |
577 |
– |
dfrhodrho); |
578 |
– |
|
579 |
– |
} |
580 |
– |
void fortranSetCutoffEAM(RealType *rcut) { |
581 |
– |
return OpenMD::EAM::Instance()->setCutoffEAM(rcut); |
582 |
– |
} |
583 |
– |
void fortranCalcForce(int *atid1, int *atid2, RealType *d, RealType *rij, |
584 |
– |
RealType *r2, RealType *sw, RealType *vpair, |
585 |
– |
RealType *pot, RealType *f1, RealType *rho1, |
586 |
– |
RealType *rho2, RealType *dfrho1, RealType *dfrho2, |
587 |
– |
RealType *fshift1, RealType *fshift2){ |
588 |
– |
|
589 |
– |
return OpenMD::EAM::Instance()->do_eam_pair(atid1, atid2, d, rij, |
590 |
– |
r2, sw, vpair, |
591 |
– |
pot, f1, rho1, |
592 |
– |
rho2, dfrho1, dfrho2, |
593 |
– |
fshift1, fshift2); |
594 |
– |
} |
595 |
– |
RealType fortranGetEAMcut(int* atid) { |
596 |
– |
return OpenMD::EAM::Instance()->getEAMcut(atid); |
597 |
– |
} |
598 |
– |
|
599 |
– |
} |