1 |
/* |
2 |
* |
3 |
* Template Numerical Toolkit (TNT) |
4 |
* |
5 |
* Mathematical and Computational Sciences Division |
6 |
* National Institute of Technology, |
7 |
* Gaithersburg, MD USA |
8 |
* |
9 |
* |
10 |
* This software was developed at the National Institute of Standards and |
11 |
* Technology (NIST) by employees of the Federal Government in the course |
12 |
* of their official duties. Pursuant to title 17 Section 105 of the |
13 |
* United States Code, this software is not subject to copyright protection |
14 |
* and is in the public domain. NIST assumes no responsibility whatsoever for |
15 |
* its use by other parties, and makes no guarantees, expressed or implied, |
16 |
* about its quality, reliability, or any other characteristic. |
17 |
* |
18 |
*/ |
19 |
|
20 |
|
21 |
#ifndef TNT_ARRAY2D_UTILS_H |
22 |
#define TNT_ARRAY2D_UTILS_H |
23 |
|
24 |
#include <cstdlib> |
25 |
#include <cassert> |
26 |
|
27 |
namespace TNT |
28 |
{ |
29 |
|
30 |
|
31 |
template <class T> |
32 |
std::ostream& operator<<(std::ostream &s, const Array2D<T> &A) |
33 |
{ |
34 |
int M=A.dim1(); |
35 |
int N=A.dim2(); |
36 |
|
37 |
s << M << " " << N << "\n"; |
38 |
|
39 |
for (int i=0; i<M; i++) |
40 |
{ |
41 |
for (int j=0; j<N; j++) |
42 |
{ |
43 |
s << A[i][j] << " "; |
44 |
} |
45 |
s << "\n"; |
46 |
} |
47 |
|
48 |
|
49 |
return s; |
50 |
} |
51 |
|
52 |
template <class T> |
53 |
std::istream& operator>>(std::istream &s, Array2D<T> &A) |
54 |
{ |
55 |
|
56 |
int M, N; |
57 |
|
58 |
s >> M >> N; |
59 |
|
60 |
Array2D<T> B(M,N); |
61 |
|
62 |
for (int i=0; i<M; i++) |
63 |
for (int j=0; j<N; j++) |
64 |
{ |
65 |
s >> B[i][j]; |
66 |
} |
67 |
|
68 |
A = B; |
69 |
return s; |
70 |
} |
71 |
|
72 |
|
73 |
template <class T> |
74 |
Array2D<T> operator+(const Array2D<T> &A, const Array2D<T> &B) |
75 |
{ |
76 |
int m = A.dim1(); |
77 |
int n = A.dim2(); |
78 |
|
79 |
if (B.dim1() != m || B.dim2() != n ) |
80 |
return Array2D<T>(); |
81 |
|
82 |
else |
83 |
{ |
84 |
Array2D<T> C(m,n); |
85 |
|
86 |
for (int i=0; i<m; i++) |
87 |
{ |
88 |
for (int j=0; j<n; j++) |
89 |
C[i][j] = A[i][j] + B[i][j]; |
90 |
} |
91 |
return C; |
92 |
} |
93 |
} |
94 |
|
95 |
template <class T> |
96 |
Array2D<T> operator-(const Array2D<T> &A, const Array2D<T> &B) |
97 |
{ |
98 |
int m = A.dim1(); |
99 |
int n = A.dim2(); |
100 |
|
101 |
if (B.dim1() != m || B.dim2() != n ) |
102 |
return Array2D<T>(); |
103 |
|
104 |
else |
105 |
{ |
106 |
Array2D<T> C(m,n); |
107 |
|
108 |
for (int i=0; i<m; i++) |
109 |
{ |
110 |
for (int j=0; j<n; j++) |
111 |
C[i][j] = A[i][j] - B[i][j]; |
112 |
} |
113 |
return C; |
114 |
} |
115 |
} |
116 |
|
117 |
|
118 |
template <class T> |
119 |
Array2D<T> operator*(const Array2D<T> &A, const Array2D<T> &B) |
120 |
{ |
121 |
int m = A.dim1(); |
122 |
int n = A.dim2(); |
123 |
|
124 |
if (B.dim1() != m || B.dim2() != n ) |
125 |
return Array2D<T>(); |
126 |
|
127 |
else |
128 |
{ |
129 |
Array2D<T> C(m,n); |
130 |
|
131 |
for (int i=0; i<m; i++) |
132 |
{ |
133 |
for (int j=0; j<n; j++) |
134 |
C[i][j] = A[i][j] * B[i][j]; |
135 |
} |
136 |
return C; |
137 |
} |
138 |
} |
139 |
|
140 |
|
141 |
|
142 |
|
143 |
template <class T> |
144 |
Array2D<T> operator/(const Array2D<T> &A, const Array2D<T> &B) |
145 |
{ |
146 |
int m = A.dim1(); |
147 |
int n = A.dim2(); |
148 |
|
149 |
if (B.dim1() != m || B.dim2() != n ) |
150 |
return Array2D<T>(); |
151 |
|
152 |
else |
153 |
{ |
154 |
Array2D<T> C(m,n); |
155 |
|
156 |
for (int i=0; i<m; i++) |
157 |
{ |
158 |
for (int j=0; j<n; j++) |
159 |
C[i][j] = A[i][j] / B[i][j]; |
160 |
} |
161 |
return C; |
162 |
} |
163 |
} |
164 |
|
165 |
|
166 |
|
167 |
|
168 |
|
169 |
template <class T> |
170 |
Array2D<T>& operator+=(Array2D<T> &A, const Array2D<T> &B) |
171 |
{ |
172 |
int m = A.dim1(); |
173 |
int n = A.dim2(); |
174 |
|
175 |
if (B.dim1() == m || B.dim2() == n ) |
176 |
{ |
177 |
for (int i=0; i<m; i++) |
178 |
{ |
179 |
for (int j=0; j<n; j++) |
180 |
A[i][j] += B[i][j]; |
181 |
} |
182 |
} |
183 |
return A; |
184 |
} |
185 |
|
186 |
|
187 |
|
188 |
template <class T> |
189 |
Array2D<T>& operator-=(Array2D<T> &A, const Array2D<T> &B) |
190 |
{ |
191 |
int m = A.dim1(); |
192 |
int n = A.dim2(); |
193 |
|
194 |
if (B.dim1() == m || B.dim2() == n ) |
195 |
{ |
196 |
for (int i=0; i<m; i++) |
197 |
{ |
198 |
for (int j=0; j<n; j++) |
199 |
A[i][j] -= B[i][j]; |
200 |
} |
201 |
} |
202 |
return A; |
203 |
} |
204 |
|
205 |
|
206 |
|
207 |
template <class T> |
208 |
Array2D<T>& operator*=(Array2D<T> &A, const Array2D<T> &B) |
209 |
{ |
210 |
int m = A.dim1(); |
211 |
int n = A.dim2(); |
212 |
|
213 |
if (B.dim1() == m || B.dim2() == n ) |
214 |
{ |
215 |
for (int i=0; i<m; i++) |
216 |
{ |
217 |
for (int j=0; j<n; j++) |
218 |
A[i][j] *= B[i][j]; |
219 |
} |
220 |
} |
221 |
return A; |
222 |
} |
223 |
|
224 |
|
225 |
|
226 |
|
227 |
|
228 |
template <class T> |
229 |
Array2D<T>& operator/=(Array2D<T> &A, const Array2D<T> &B) |
230 |
{ |
231 |
int m = A.dim1(); |
232 |
int n = A.dim2(); |
233 |
|
234 |
if (B.dim1() == m || B.dim2() == n ) |
235 |
{ |
236 |
for (int i=0; i<m; i++) |
237 |
{ |
238 |
for (int j=0; j<n; j++) |
239 |
A[i][j] /= B[i][j]; |
240 |
} |
241 |
} |
242 |
return A; |
243 |
} |
244 |
|
245 |
/** |
246 |
Matrix Multiply: compute C = A*B, where C[i][j] |
247 |
is the dot-product of row i of A and column j of B. |
248 |
|
249 |
|
250 |
@param A an (m x n) array |
251 |
@param B an (n x k) array |
252 |
@return the (m x k) array A*B, or a null array (0x0) |
253 |
if the matrices are non-conformant (i.e. the number |
254 |
of columns of A are different than the number of rows of B.) |
255 |
|
256 |
|
257 |
*/ |
258 |
template <class T> |
259 |
Array2D<T> matmult(const Array2D<T> &A, const Array2D<T> &B) |
260 |
{ |
261 |
if (A.dim2() != B.dim1()) |
262 |
return Array2D<T>(); |
263 |
|
264 |
int M = A.dim1(); |
265 |
int N = A.dim2(); |
266 |
int K = B.dim2(); |
267 |
|
268 |
Array2D<T> C(M,K); |
269 |
|
270 |
for (int i=0; i<M; i++) |
271 |
for (int j=0; j<K; j++) |
272 |
{ |
273 |
T sum = 0; |
274 |
|
275 |
for (int k=0; k<N; k++) |
276 |
sum += A[i][k] * B [k][j]; |
277 |
|
278 |
C[i][j] = sum; |
279 |
} |
280 |
|
281 |
return C; |
282 |
|
283 |
} |
284 |
|
285 |
} // namespace TNT |
286 |
|
287 |
#endif |