1 |
#ifndef JAMA_SVD_H |
2 |
#define JAMA_SVD_H |
3 |
|
4 |
|
5 |
#include "tnt_array1d.hpp" |
6 |
#include "tnt_array1d_utils.hpp" |
7 |
#include "tnt_array2d.hpp" |
8 |
#include "tnt_array2d_utils.hpp" |
9 |
#include "tnt_math_utils.hpp" |
10 |
|
11 |
#include <algorithm> |
12 |
// for min(), max() below |
13 |
#include <cmath> |
14 |
// for abs() below |
15 |
|
16 |
using namespace TNT; |
17 |
using namespace std; |
18 |
|
19 |
namespace JAMA |
20 |
{ |
21 |
/** Singular Value Decomposition. |
22 |
<P> |
23 |
For an m-by-n matrix A with m >= n, the singular value decomposition is |
24 |
an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and |
25 |
an n-by-n orthogonal matrix V so that A = U*S*V'. |
26 |
<P> |
27 |
The singular values, sigma[k] = S[k][k], are ordered so that |
28 |
sigma[0] >= sigma[1] >= ... >= sigma[n-1]. |
29 |
<P> |
30 |
The singular value decompostion always exists, so the constructor will |
31 |
never fail. The matrix condition number and the effective numerical |
32 |
rank can be computed from this decomposition. |
33 |
|
34 |
<p> |
35 |
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
36 |
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
37 |
*/ |
38 |
template <class Real> |
39 |
class SVD |
40 |
{ |
41 |
|
42 |
|
43 |
Array2D<Real> U, V; |
44 |
Array1D<Real> s; |
45 |
int m, n; |
46 |
|
47 |
public: |
48 |
|
49 |
|
50 |
SVD (const Array2D<Real> &Arg) { |
51 |
|
52 |
|
53 |
m = Arg.dim1(); |
54 |
n = Arg.dim2(); |
55 |
int nu = min(m,n); |
56 |
s = Array1D<Real>(min(m+1,n)); |
57 |
U = Array2D<Real>(m, nu, Real(0)); |
58 |
V = Array2D<Real>(n,n); |
59 |
Array1D<Real> e(n); |
60 |
Array1D<Real> work(m); |
61 |
Array2D<Real> A(Arg.copy()); |
62 |
int wantu = 1; /* boolean */ |
63 |
int wantv = 1; /* boolean */ |
64 |
int i=0, j=0, k=0; |
65 |
|
66 |
// Reduce A to bidiagonal form, storing the diagonal elements |
67 |
// in s and the super-diagonal elements in e. |
68 |
|
69 |
int nct = min(m-1,n); |
70 |
int nrt = max(0,min(n-2,m)); |
71 |
for (k = 0; k < max(nct,nrt); k++) { |
72 |
if (k < nct) { |
73 |
|
74 |
// Compute the transformation for the k-th column and |
75 |
// place the k-th diagonal in s[k]. |
76 |
// Compute 2-norm of k-th column without under/overflow. |
77 |
s[k] = 0; |
78 |
for (i = k; i < m; i++) { |
79 |
s[k] = hypot(s[k],A[i][k]); |
80 |
} |
81 |
if (s[k] != 0.0) { |
82 |
if (A[k][k] < 0.0) { |
83 |
s[k] = -s[k]; |
84 |
} |
85 |
for (i = k; i < m; i++) { |
86 |
A[i][k] /= s[k]; |
87 |
} |
88 |
A[k][k] += 1.0; |
89 |
} |
90 |
s[k] = -s[k]; |
91 |
} |
92 |
for (j = k+1; j < n; j++) { |
93 |
if ((k < nct) && (s[k] != 0.0)) { |
94 |
|
95 |
// Apply the transformation. |
96 |
|
97 |
Real t(0.0); |
98 |
for (i = k; i < m; i++) { |
99 |
t += A[i][k]*A[i][j]; |
100 |
} |
101 |
t = -t/A[k][k]; |
102 |
for (i = k; i < m; i++) { |
103 |
A[i][j] += t*A[i][k]; |
104 |
} |
105 |
} |
106 |
|
107 |
// Place the k-th row of A into e for the |
108 |
// subsequent calculation of the row transformation. |
109 |
|
110 |
e[j] = A[k][j]; |
111 |
} |
112 |
if (wantu & (k < nct)) { |
113 |
|
114 |
// Place the transformation in U for subsequent back |
115 |
// multiplication. |
116 |
|
117 |
for (i = k; i < m; i++) { |
118 |
U[i][k] = A[i][k]; |
119 |
} |
120 |
} |
121 |
if (k < nrt) { |
122 |
|
123 |
// Compute the k-th row transformation and place the |
124 |
// k-th super-diagonal in e[k]. |
125 |
// Compute 2-norm without under/overflow. |
126 |
e[k] = 0; |
127 |
for (i = k+1; i < n; i++) { |
128 |
e[k] = hypot(e[k],e[i]); |
129 |
} |
130 |
if (e[k] != 0.0) { |
131 |
if (e[k+1] < 0.0) { |
132 |
e[k] = -e[k]; |
133 |
} |
134 |
for (i = k+1; i < n; i++) { |
135 |
e[i] /= e[k]; |
136 |
} |
137 |
e[k+1] += 1.0; |
138 |
} |
139 |
e[k] = -e[k]; |
140 |
if ((k+1 < m) & (e[k] != 0.0)) { |
141 |
|
142 |
// Apply the transformation. |
143 |
|
144 |
for (i = k+1; i < m; i++) { |
145 |
work[i] = 0.0; |
146 |
} |
147 |
for (j = k+1; j < n; j++) { |
148 |
for (i = k+1; i < m; i++) { |
149 |
work[i] += e[j]*A[i][j]; |
150 |
} |
151 |
} |
152 |
for (j = k+1; j < n; j++) { |
153 |
Real t(-e[j]/e[k+1]); |
154 |
for (i = k+1; i < m; i++) { |
155 |
A[i][j] += t*work[i]; |
156 |
} |
157 |
} |
158 |
} |
159 |
if (wantv) { |
160 |
|
161 |
// Place the transformation in V for subsequent |
162 |
// back multiplication. |
163 |
|
164 |
for (i = k+1; i < n; i++) { |
165 |
V[i][k] = e[i]; |
166 |
} |
167 |
} |
168 |
} |
169 |
} |
170 |
|
171 |
// Set up the final bidiagonal matrix or order p. |
172 |
|
173 |
int p = min(n,m+1); |
174 |
if (nct < n) { |
175 |
s[nct] = A[nct][nct]; |
176 |
} |
177 |
if (m < p) { |
178 |
s[p-1] = 0.0; |
179 |
} |
180 |
if (nrt+1 < p) { |
181 |
e[nrt] = A[nrt][p-1]; |
182 |
} |
183 |
e[p-1] = 0.0; |
184 |
|
185 |
// If required, generate U. |
186 |
|
187 |
if (wantu) { |
188 |
for (j = nct; j < nu; j++) { |
189 |
for (i = 0; i < m; i++) { |
190 |
U[i][j] = 0.0; |
191 |
} |
192 |
U[j][j] = 1.0; |
193 |
} |
194 |
for (k = nct-1; k >= 0; k--) { |
195 |
if (s[k] != 0.0) { |
196 |
for (j = k+1; j < nu; j++) { |
197 |
Real t(0.0); |
198 |
for (i = k; i < m; i++) { |
199 |
t += U[i][k]*U[i][j]; |
200 |
} |
201 |
t = -t/U[k][k]; |
202 |
for (i = k; i < m; i++) { |
203 |
U[i][j] += t*U[i][k]; |
204 |
} |
205 |
} |
206 |
for (i = k; i < m; i++ ) { |
207 |
U[i][k] = -U[i][k]; |
208 |
} |
209 |
U[k][k] = 1.0 + U[k][k]; |
210 |
for (i = 0; i < k-1; i++) { |
211 |
U[i][k] = 0.0; |
212 |
} |
213 |
} else { |
214 |
for (i = 0; i < m; i++) { |
215 |
U[i][k] = 0.0; |
216 |
} |
217 |
U[k][k] = 1.0; |
218 |
} |
219 |
} |
220 |
} |
221 |
|
222 |
// If required, generate V. |
223 |
|
224 |
if (wantv) { |
225 |
for (k = n-1; k >= 0; k--) { |
226 |
if ((k < nrt) & (e[k] != 0.0)) { |
227 |
for (j = k+1; j < nu; j++) { |
228 |
Real t(0.0); |
229 |
for (i = k+1; i < n; i++) { |
230 |
t += V[i][k]*V[i][j]; |
231 |
} |
232 |
t = -t/V[k+1][k]; |
233 |
for (i = k+1; i < n; i++) { |
234 |
V[i][j] += t*V[i][k]; |
235 |
} |
236 |
} |
237 |
} |
238 |
for (i = 0; i < n; i++) { |
239 |
V[i][k] = 0.0; |
240 |
} |
241 |
V[k][k] = 1.0; |
242 |
} |
243 |
} |
244 |
|
245 |
// Main iteration loop for the singular values. |
246 |
|
247 |
int pp = p-1; |
248 |
int iter = 0; |
249 |
Real eps(pow(2.0,-52.0)); |
250 |
while (p > 0) { |
251 |
int k=0; |
252 |
int kase=0; |
253 |
|
254 |
// Here is where a test for too many iterations would go. |
255 |
|
256 |
// This section of the program inspects for |
257 |
// negligible elements in the s and e arrays. On |
258 |
// completion the variables kase and k are set as follows. |
259 |
|
260 |
// kase = 1 if s(p) and e[k-1] are negligible and k<p |
261 |
// kase = 2 if s(k) is negligible and k<p |
262 |
// kase = 3 if e[k-1] is negligible, k<p, and |
263 |
// s(k), ..., s(p) are not negligible (qr step). |
264 |
// kase = 4 if e(p-1) is negligible (convergence). |
265 |
|
266 |
for (k = p-2; k >= -1; k--) { |
267 |
if (k == -1) { |
268 |
break; |
269 |
} |
270 |
if (abs(e[k]) <= eps*(abs(s[k]) + abs(s[k+1]))) { |
271 |
e[k] = 0.0; |
272 |
break; |
273 |
} |
274 |
} |
275 |
if (k == p-2) { |
276 |
kase = 4; |
277 |
} else { |
278 |
int ks; |
279 |
for (ks = p-1; ks >= k; ks--) { |
280 |
if (ks == k) { |
281 |
break; |
282 |
} |
283 |
Real t( (ks != p ? abs(e[ks]) : 0.) + |
284 |
(ks != k+1 ? abs(e[ks-1]) : 0.)); |
285 |
if (abs(s[ks]) <= eps*t) { |
286 |
s[ks] = 0.0; |
287 |
break; |
288 |
} |
289 |
} |
290 |
if (ks == k) { |
291 |
kase = 3; |
292 |
} else if (ks == p-1) { |
293 |
kase = 1; |
294 |
} else { |
295 |
kase = 2; |
296 |
k = ks; |
297 |
} |
298 |
} |
299 |
k++; |
300 |
|
301 |
// Perform the task indicated by kase. |
302 |
|
303 |
switch (kase) { |
304 |
|
305 |
// Deflate negligible s(p). |
306 |
|
307 |
case 1: { |
308 |
Real f(e[p-2]); |
309 |
e[p-2] = 0.0; |
310 |
for (j = p-2; j >= k; j--) { |
311 |
Real t( hypot(s[j],f)); |
312 |
Real cs(s[j]/t); |
313 |
Real sn(f/t); |
314 |
s[j] = t; |
315 |
if (j != k) { |
316 |
f = -sn*e[j-1]; |
317 |
e[j-1] = cs*e[j-1]; |
318 |
} |
319 |
if (wantv) { |
320 |
for (i = 0; i < n; i++) { |
321 |
t = cs*V[i][j] + sn*V[i][p-1]; |
322 |
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; |
323 |
V[i][j] = t; |
324 |
} |
325 |
} |
326 |
} |
327 |
} |
328 |
break; |
329 |
|
330 |
// Split at negligible s(k). |
331 |
|
332 |
case 2: { |
333 |
Real f(e[k-1]); |
334 |
e[k-1] = 0.0; |
335 |
for (j = k; j < p; j++) { |
336 |
Real t(hypot(s[j],f)); |
337 |
Real cs( s[j]/t); |
338 |
Real sn(f/t); |
339 |
s[j] = t; |
340 |
f = -sn*e[j]; |
341 |
e[j] = cs*e[j]; |
342 |
if (wantu) { |
343 |
for (i = 0; i < m; i++) { |
344 |
t = cs*U[i][j] + sn*U[i][k-1]; |
345 |
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; |
346 |
U[i][j] = t; |
347 |
} |
348 |
} |
349 |
} |
350 |
} |
351 |
break; |
352 |
|
353 |
// Perform one qr step. |
354 |
|
355 |
case 3: { |
356 |
|
357 |
// Calculate the shift. |
358 |
|
359 |
Real scale = max(max(max(max( |
360 |
abs(s[p-1]),abs(s[p-2])),abs(e[p-2])), |
361 |
abs(s[k])),abs(e[k])); |
362 |
Real sp = s[p-1]/scale; |
363 |
Real spm1 = s[p-2]/scale; |
364 |
Real epm1 = e[p-2]/scale; |
365 |
Real sk = s[k]/scale; |
366 |
Real ek = e[k]/scale; |
367 |
Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; |
368 |
Real c = (sp*epm1)*(sp*epm1); |
369 |
Real shift = 0.0; |
370 |
if ((b != 0.0) || (c != 0.0)) { |
371 |
shift = sqrt(b*b + c); |
372 |
if (b < 0.0) { |
373 |
shift = -shift; |
374 |
} |
375 |
shift = c/(b + shift); |
376 |
} |
377 |
Real f = (sk + sp)*(sk - sp) + shift; |
378 |
Real g = sk*ek; |
379 |
|
380 |
// Chase zeros. |
381 |
|
382 |
for (j = k; j < p-1; j++) { |
383 |
Real t = hypot(f,g); |
384 |
Real cs = f/t; |
385 |
Real sn = g/t; |
386 |
if (j != k) { |
387 |
e[j-1] = t; |
388 |
} |
389 |
f = cs*s[j] + sn*e[j]; |
390 |
e[j] = cs*e[j] - sn*s[j]; |
391 |
g = sn*s[j+1]; |
392 |
s[j+1] = cs*s[j+1]; |
393 |
if (wantv) { |
394 |
for (i = 0; i < n; i++) { |
395 |
t = cs*V[i][j] + sn*V[i][j+1]; |
396 |
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; |
397 |
V[i][j] = t; |
398 |
} |
399 |
} |
400 |
t = hypot(f,g); |
401 |
cs = f/t; |
402 |
sn = g/t; |
403 |
s[j] = t; |
404 |
f = cs*e[j] + sn*s[j+1]; |
405 |
s[j+1] = -sn*e[j] + cs*s[j+1]; |
406 |
g = sn*e[j+1]; |
407 |
e[j+1] = cs*e[j+1]; |
408 |
if (wantu && (j < m-1)) { |
409 |
for (i = 0; i < m; i++) { |
410 |
t = cs*U[i][j] + sn*U[i][j+1]; |
411 |
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; |
412 |
U[i][j] = t; |
413 |
} |
414 |
} |
415 |
} |
416 |
e[p-2] = f; |
417 |
iter = iter + 1; |
418 |
} |
419 |
break; |
420 |
|
421 |
// Convergence. |
422 |
|
423 |
case 4: { |
424 |
|
425 |
// Make the singular values positive. |
426 |
|
427 |
if (s[k] <= 0.0) { |
428 |
s[k] = (s[k] < 0.0 ? -s[k] : 0.0); |
429 |
if (wantv) { |
430 |
for (i = 0; i <= pp; i++) { |
431 |
V[i][k] = -V[i][k]; |
432 |
} |
433 |
} |
434 |
} |
435 |
|
436 |
// Order the singular values. |
437 |
|
438 |
while (k < pp) { |
439 |
if (s[k] >= s[k+1]) { |
440 |
break; |
441 |
} |
442 |
Real t = s[k]; |
443 |
s[k] = s[k+1]; |
444 |
s[k+1] = t; |
445 |
if (wantv && (k < n-1)) { |
446 |
for (i = 0; i < n; i++) { |
447 |
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; |
448 |
} |
449 |
} |
450 |
if (wantu && (k < m-1)) { |
451 |
for (i = 0; i < m; i++) { |
452 |
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; |
453 |
} |
454 |
} |
455 |
k++; |
456 |
} |
457 |
iter = 0; |
458 |
p--; |
459 |
} |
460 |
break; |
461 |
} |
462 |
} |
463 |
} |
464 |
|
465 |
|
466 |
void getU (Array2D<Real> &A) |
467 |
{ |
468 |
int minm = min(m+1,n); |
469 |
|
470 |
A = Array2D<Real>(m, minm); |
471 |
|
472 |
for (int i=0; i<m; i++) |
473 |
for (int j=0; j<minm; j++) |
474 |
A[i][j] = U[i][j]; |
475 |
|
476 |
} |
477 |
|
478 |
/* Return the right singular vectors */ |
479 |
|
480 |
void getV (Array2D<Real> &A) |
481 |
{ |
482 |
A = V; |
483 |
} |
484 |
|
485 |
/** Return the one-dimensional array of singular values */ |
486 |
|
487 |
void getSingularValues (Array1D<Real> &x) |
488 |
{ |
489 |
x = s; |
490 |
} |
491 |
|
492 |
/** Return the diagonal matrix of singular values |
493 |
@return S |
494 |
*/ |
495 |
|
496 |
void getS (Array2D<Real> &A) { |
497 |
A = Array2D<Real>(n,n); |
498 |
for (int i = 0; i < n; i++) { |
499 |
for (int j = 0; j < n; j++) { |
500 |
A[i][j] = 0.0; |
501 |
} |
502 |
A[i][i] = s[i]; |
503 |
} |
504 |
} |
505 |
|
506 |
/** Two norm (max(S)) */ |
507 |
|
508 |
Real norm2 () { |
509 |
return s[0]; |
510 |
} |
511 |
|
512 |
/** Two norm of condition number (max(S)/min(S)) */ |
513 |
|
514 |
Real cond () { |
515 |
return s[0]/s[min(m,n)-1]; |
516 |
} |
517 |
|
518 |
/** Effective numerical matrix rank |
519 |
@return Number of nonnegligible singular values. |
520 |
*/ |
521 |
|
522 |
int rank () |
523 |
{ |
524 |
Real eps = pow(2.0,-52.0); |
525 |
Real tol = max(m,n)*s[0]*eps; |
526 |
int r = 0; |
527 |
for (int i = 0; i < s.dim(); i++) { |
528 |
if (s[i] > tol) { |
529 |
r++; |
530 |
} |
531 |
} |
532 |
return r; |
533 |
} |
534 |
}; |
535 |
|
536 |
} |
537 |
#endif |
538 |
// JAMA_SVD_H |