1 |
#ifndef JAMA_EIG_H |
2 |
#define JAMA_EIG_H |
3 |
|
4 |
|
5 |
#include "tnt_array1d.hpp" |
6 |
#include "tnt_array2d.hpp" |
7 |
#include "tnt_math_utils.hpp" |
8 |
|
9 |
#include <algorithm> |
10 |
// for min(), max() below |
11 |
|
12 |
#include <cmath> |
13 |
// for abs() below |
14 |
|
15 |
using namespace TNT; |
16 |
using namespace std; |
17 |
|
18 |
namespace JAMA |
19 |
{ |
20 |
|
21 |
/** |
22 |
|
23 |
Computes eigenvalues and eigenvectors of a real (non-complex) |
24 |
matrix. |
25 |
<P> |
26 |
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is |
27 |
diagonal and the eigenvector matrix V is orthogonal. That is, |
28 |
the diagonal values of D are the eigenvalues, and |
29 |
V*V' = I, where I is the identity matrix. The columns of V |
30 |
represent the eigenvectors in the sense that A*V = V*D. |
31 |
|
32 |
<P> |
33 |
If A is not symmetric, then the eigenvalue matrix D is block diagonal |
34 |
with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, |
35 |
a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex |
36 |
eigenvalues look like |
37 |
<pre> |
38 |
|
39 |
u + iv . . . . . |
40 |
. u - iv . . . . |
41 |
. . a + ib . . . |
42 |
. . . a - ib . . |
43 |
. . . . x . |
44 |
. . . . . y |
45 |
</pre> |
46 |
then D looks like |
47 |
<pre> |
48 |
|
49 |
u v . . . . |
50 |
-v u . . . . |
51 |
. . a b . . |
52 |
. . -b a . . |
53 |
. . . . x . |
54 |
. . . . . y |
55 |
</pre> |
56 |
This keeps V a real matrix in both symmetric and non-symmetric |
57 |
cases, and A*V = V*D. |
58 |
|
59 |
|
60 |
|
61 |
<p> |
62 |
The matrix V may be badly |
63 |
conditioned, or even singular, so the validity of the equation |
64 |
A = V*D*inverse(V) depends upon the condition number of V. |
65 |
|
66 |
<p> |
67 |
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
68 |
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
69 |
**/ |
70 |
|
71 |
template <class Real> |
72 |
class Eigenvalue |
73 |
{ |
74 |
|
75 |
|
76 |
/** Row and column dimension (square matrix). */ |
77 |
int n; |
78 |
|
79 |
int issymmetric; /* boolean*/ |
80 |
|
81 |
/** Arrays for internal storage of eigenvalues. */ |
82 |
|
83 |
TNT::Array1D<Real> d; /* real part */ |
84 |
TNT::Array1D<Real> e; /* img part */ |
85 |
|
86 |
/** Array for internal storage of eigenvectors. */ |
87 |
TNT::Array2D<Real> V; |
88 |
|
89 |
/** Array for internal storage of nonsymmetric Hessenberg form. |
90 |
@serial internal storage of nonsymmetric Hessenberg form. |
91 |
*/ |
92 |
TNT::Array2D<Real> H; |
93 |
|
94 |
|
95 |
/** Working storage for nonsymmetric algorithm. |
96 |
@serial working storage for nonsymmetric algorithm. |
97 |
*/ |
98 |
TNT::Array1D<Real> ort; |
99 |
|
100 |
|
101 |
// Symmetric Householder reduction to tridiagonal form. |
102 |
|
103 |
void tred2() { |
104 |
|
105 |
// This is derived from the Algol procedures tred2 by |
106 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
107 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
108 |
// Fortran subroutine in EISPACK. |
109 |
|
110 |
for (int j = 0; j < n; j++) { |
111 |
d[j] = V[n-1][j]; |
112 |
} |
113 |
|
114 |
// Householder reduction to tridiagonal form. |
115 |
|
116 |
for (int i = n-1; i > 0; i--) { |
117 |
|
118 |
// Scale to avoid under/overflow. |
119 |
|
120 |
Real scale = 0.0; |
121 |
Real h = 0.0; |
122 |
for (int k = 0; k < i; k++) { |
123 |
scale = scale + abs(d[k]); |
124 |
} |
125 |
if (scale == 0.0) { |
126 |
e[i] = d[i-1]; |
127 |
for (int j = 0; j < i; j++) { |
128 |
d[j] = V[i-1][j]; |
129 |
V[i][j] = 0.0; |
130 |
V[j][i] = 0.0; |
131 |
} |
132 |
} else { |
133 |
|
134 |
// Generate Householder vector. |
135 |
|
136 |
for (int k = 0; k < i; k++) { |
137 |
d[k] /= scale; |
138 |
h += d[k] * d[k]; |
139 |
} |
140 |
Real f = d[i-1]; |
141 |
Real g = sqrt(h); |
142 |
if (f > 0) { |
143 |
g = -g; |
144 |
} |
145 |
e[i] = scale * g; |
146 |
h = h - f * g; |
147 |
d[i-1] = f - g; |
148 |
for (int j = 0; j < i; j++) { |
149 |
e[j] = 0.0; |
150 |
} |
151 |
|
152 |
// Apply similarity transformation to remaining columns. |
153 |
|
154 |
for (int j = 0; j < i; j++) { |
155 |
f = d[j]; |
156 |
V[j][i] = f; |
157 |
g = e[j] + V[j][j] * f; |
158 |
for (int k = j+1; k <= i-1; k++) { |
159 |
g += V[k][j] * d[k]; |
160 |
e[k] += V[k][j] * f; |
161 |
} |
162 |
e[j] = g; |
163 |
} |
164 |
f = 0.0; |
165 |
for (int j = 0; j < i; j++) { |
166 |
e[j] /= h; |
167 |
f += e[j] * d[j]; |
168 |
} |
169 |
Real hh = f / (h + h); |
170 |
for (int j = 0; j < i; j++) { |
171 |
e[j] -= hh * d[j]; |
172 |
} |
173 |
for (int j = 0; j < i; j++) { |
174 |
f = d[j]; |
175 |
g = e[j]; |
176 |
for (int k = j; k <= i-1; k++) { |
177 |
V[k][j] -= (f * e[k] + g * d[k]); |
178 |
} |
179 |
d[j] = V[i-1][j]; |
180 |
V[i][j] = 0.0; |
181 |
} |
182 |
} |
183 |
d[i] = h; |
184 |
} |
185 |
|
186 |
// Accumulate transformations. |
187 |
|
188 |
for (int i = 0; i < n-1; i++) { |
189 |
V[n-1][i] = V[i][i]; |
190 |
V[i][i] = 1.0; |
191 |
Real h = d[i+1]; |
192 |
if (h != 0.0) { |
193 |
for (int k = 0; k <= i; k++) { |
194 |
d[k] = V[k][i+1] / h; |
195 |
} |
196 |
for (int j = 0; j <= i; j++) { |
197 |
Real g = 0.0; |
198 |
for (int k = 0; k <= i; k++) { |
199 |
g += V[k][i+1] * V[k][j]; |
200 |
} |
201 |
for (int k = 0; k <= i; k++) { |
202 |
V[k][j] -= g * d[k]; |
203 |
} |
204 |
} |
205 |
} |
206 |
for (int k = 0; k <= i; k++) { |
207 |
V[k][i+1] = 0.0; |
208 |
} |
209 |
} |
210 |
for (int j = 0; j < n; j++) { |
211 |
d[j] = V[n-1][j]; |
212 |
V[n-1][j] = 0.0; |
213 |
} |
214 |
V[n-1][n-1] = 1.0; |
215 |
e[0] = 0.0; |
216 |
} |
217 |
|
218 |
// Symmetric tridiagonal QL algorithm. |
219 |
|
220 |
void tql2 () { |
221 |
|
222 |
// This is derived from the Algol procedures tql2, by |
223 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
224 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
225 |
// Fortran subroutine in EISPACK. |
226 |
|
227 |
for (int i = 1; i < n; i++) { |
228 |
e[i-1] = e[i]; |
229 |
} |
230 |
e[n-1] = 0.0; |
231 |
|
232 |
Real f = 0.0; |
233 |
Real tst1 = 0.0; |
234 |
Real eps = pow(2.0,-52.0); |
235 |
for (int l = 0; l < n; l++) { |
236 |
|
237 |
// Find small subdiagonal element |
238 |
|
239 |
tst1 = max(tst1,abs(d[l]) + abs(e[l])); |
240 |
int m = l; |
241 |
|
242 |
// Original while-loop from Java code |
243 |
while (m < n) { |
244 |
if (abs(e[m]) <= eps*tst1) { |
245 |
break; |
246 |
} |
247 |
m++; |
248 |
} |
249 |
|
250 |
|
251 |
// If m == l, d[l] is an eigenvalue, |
252 |
// otherwise, iterate. |
253 |
|
254 |
if (m > l) { |
255 |
int iter = 0; |
256 |
do { |
257 |
iter = iter + 1; // (Could check iteration count here.) |
258 |
|
259 |
// Compute implicit shift |
260 |
|
261 |
Real g = d[l]; |
262 |
Real p = (d[l+1] - g) / (2.0 * e[l]); |
263 |
Real r = hypot(p,1.0); |
264 |
if (p < 0) { |
265 |
r = -r; |
266 |
} |
267 |
d[l] = e[l] / (p + r); |
268 |
d[l+1] = e[l] * (p + r); |
269 |
Real dl1 = d[l+1]; |
270 |
Real h = g - d[l]; |
271 |
for (int i = l+2; i < n; i++) { |
272 |
d[i] -= h; |
273 |
} |
274 |
f = f + h; |
275 |
|
276 |
// Implicit QL transformation. |
277 |
|
278 |
p = d[m]; |
279 |
Real c = 1.0; |
280 |
Real c2 = c; |
281 |
Real c3 = c; |
282 |
Real el1 = e[l+1]; |
283 |
Real s = 0.0; |
284 |
Real s2 = 0.0; |
285 |
for (int i = m-1; i >= l; i--) { |
286 |
c3 = c2; |
287 |
c2 = c; |
288 |
s2 = s; |
289 |
g = c * e[i]; |
290 |
h = c * p; |
291 |
r = hypot(p,e[i]); |
292 |
e[i+1] = s * r; |
293 |
s = e[i] / r; |
294 |
c = p / r; |
295 |
p = c * d[i] - s * g; |
296 |
d[i+1] = h + s * (c * g + s * d[i]); |
297 |
|
298 |
// Accumulate transformation. |
299 |
|
300 |
for (int k = 0; k < n; k++) { |
301 |
h = V[k][i+1]; |
302 |
V[k][i+1] = s * V[k][i] + c * h; |
303 |
V[k][i] = c * V[k][i] - s * h; |
304 |
} |
305 |
} |
306 |
p = -s * s2 * c3 * el1 * e[l] / dl1; |
307 |
e[l] = s * p; |
308 |
d[l] = c * p; |
309 |
|
310 |
// Check for convergence. |
311 |
|
312 |
} while (abs(e[l]) > eps*tst1); |
313 |
} |
314 |
d[l] = d[l] + f; |
315 |
e[l] = 0.0; |
316 |
} |
317 |
|
318 |
// Sort eigenvalues and corresponding vectors. |
319 |
|
320 |
for (int i = 0; i < n-1; i++) { |
321 |
int k = i; |
322 |
Real p = d[i]; |
323 |
for (int j = i+1; j < n; j++) { |
324 |
if (d[j] < p) { |
325 |
k = j; |
326 |
p = d[j]; |
327 |
} |
328 |
} |
329 |
if (k != i) { |
330 |
d[k] = d[i]; |
331 |
d[i] = p; |
332 |
for (int j = 0; j < n; j++) { |
333 |
p = V[j][i]; |
334 |
V[j][i] = V[j][k]; |
335 |
V[j][k] = p; |
336 |
} |
337 |
} |
338 |
} |
339 |
} |
340 |
|
341 |
// Nonsymmetric reduction to Hessenberg form. |
342 |
|
343 |
void orthes () { |
344 |
|
345 |
// This is derived from the Algol procedures orthes and ortran, |
346 |
// by Martin and Wilkinson, Handbook for Auto. Comp., |
347 |
// Vol.ii-Linear Algebra, and the corresponding |
348 |
// Fortran subroutines in EISPACK. |
349 |
|
350 |
int low = 0; |
351 |
int high = n-1; |
352 |
|
353 |
for (int m = low+1; m <= high-1; m++) { |
354 |
|
355 |
// Scale column. |
356 |
|
357 |
Real scale = 0.0; |
358 |
for (int i = m; i <= high; i++) { |
359 |
scale = scale + abs(H[i][m-1]); |
360 |
} |
361 |
if (scale != 0.0) { |
362 |
|
363 |
// Compute Householder transformation. |
364 |
|
365 |
Real h = 0.0; |
366 |
for (int i = high; i >= m; i--) { |
367 |
ort[i] = H[i][m-1]/scale; |
368 |
h += ort[i] * ort[i]; |
369 |
} |
370 |
Real g = sqrt(h); |
371 |
if (ort[m] > 0) { |
372 |
g = -g; |
373 |
} |
374 |
h = h - ort[m] * g; |
375 |
ort[m] = ort[m] - g; |
376 |
|
377 |
// Apply Householder similarity transformation |
378 |
// H = (I-u*u'/h)*H*(I-u*u')/h) |
379 |
|
380 |
for (int j = m; j < n; j++) { |
381 |
Real f = 0.0; |
382 |
for (int i = high; i >= m; i--) { |
383 |
f += ort[i]*H[i][j]; |
384 |
} |
385 |
f = f/h; |
386 |
for (int i = m; i <= high; i++) { |
387 |
H[i][j] -= f*ort[i]; |
388 |
} |
389 |
} |
390 |
|
391 |
for (int i = 0; i <= high; i++) { |
392 |
Real f = 0.0; |
393 |
for (int j = high; j >= m; j--) { |
394 |
f += ort[j]*H[i][j]; |
395 |
} |
396 |
f = f/h; |
397 |
for (int j = m; j <= high; j++) { |
398 |
H[i][j] -= f*ort[j]; |
399 |
} |
400 |
} |
401 |
ort[m] = scale*ort[m]; |
402 |
H[m][m-1] = scale*g; |
403 |
} |
404 |
} |
405 |
|
406 |
// Accumulate transformations (Algol's ortran). |
407 |
|
408 |
for (int i = 0; i < n; i++) { |
409 |
for (int j = 0; j < n; j++) { |
410 |
V[i][j] = (i == j ? 1.0 : 0.0); |
411 |
} |
412 |
} |
413 |
|
414 |
for (int m = high-1; m >= low+1; m--) { |
415 |
if (H[m][m-1] != 0.0) { |
416 |
for (int i = m+1; i <= high; i++) { |
417 |
ort[i] = H[i][m-1]; |
418 |
} |
419 |
for (int j = m; j <= high; j++) { |
420 |
Real g = 0.0; |
421 |
for (int i = m; i <= high; i++) { |
422 |
g += ort[i] * V[i][j]; |
423 |
} |
424 |
// Double division avoids possible underflow |
425 |
g = (g / ort[m]) / H[m][m-1]; |
426 |
for (int i = m; i <= high; i++) { |
427 |
V[i][j] += g * ort[i]; |
428 |
} |
429 |
} |
430 |
} |
431 |
} |
432 |
} |
433 |
|
434 |
|
435 |
// Complex scalar division. |
436 |
|
437 |
Real cdivr, cdivi; |
438 |
void cdiv(Real xr, Real xi, Real yr, Real yi) { |
439 |
Real r,d; |
440 |
if (abs(yr) > abs(yi)) { |
441 |
r = yi/yr; |
442 |
d = yr + r*yi; |
443 |
cdivr = (xr + r*xi)/d; |
444 |
cdivi = (xi - r*xr)/d; |
445 |
} else { |
446 |
r = yr/yi; |
447 |
d = yi + r*yr; |
448 |
cdivr = (r*xr + xi)/d; |
449 |
cdivi = (r*xi - xr)/d; |
450 |
} |
451 |
} |
452 |
|
453 |
|
454 |
// Nonsymmetric reduction from Hessenberg to real Schur form. |
455 |
|
456 |
void hqr2 () { |
457 |
|
458 |
// This is derived from the Algol procedure hqr2, |
459 |
// by Martin and Wilkinson, Handbook for Auto. Comp., |
460 |
// Vol.ii-Linear Algebra, and the corresponding |
461 |
// Fortran subroutine in EISPACK. |
462 |
|
463 |
// Initialize |
464 |
|
465 |
int nn = this->n; |
466 |
int n = nn-1; |
467 |
int low = 0; |
468 |
int high = nn-1; |
469 |
Real eps = pow(2.0,-52.0); |
470 |
Real exshift = 0.0; |
471 |
Real p=0,q=0,r=0,s=0,z=0,t,w,x,y; |
472 |
|
473 |
// Store roots isolated by balanc and compute matrix norm |
474 |
|
475 |
Real norm = 0.0; |
476 |
for (int i = 0; i < nn; i++) { |
477 |
if ((i < low) || (i > high)) { |
478 |
d[i] = H[i][i]; |
479 |
e[i] = 0.0; |
480 |
} |
481 |
for (int j = max(i-1,0); j < nn; j++) { |
482 |
norm = norm + abs(H[i][j]); |
483 |
} |
484 |
} |
485 |
|
486 |
// Outer loop over eigenvalue index |
487 |
|
488 |
int iter = 0; |
489 |
while (n >= low) { |
490 |
|
491 |
// Look for single small sub-diagonal element |
492 |
|
493 |
int l = n; |
494 |
while (l > low) { |
495 |
s = abs(H[l-1][l-1]) + abs(H[l][l]); |
496 |
if (s == 0.0) { |
497 |
s = norm; |
498 |
} |
499 |
if (abs(H[l][l-1]) < eps * s) { |
500 |
break; |
501 |
} |
502 |
l--; |
503 |
} |
504 |
|
505 |
// Check for convergence |
506 |
// One root found |
507 |
|
508 |
if (l == n) { |
509 |
H[n][n] = H[n][n] + exshift; |
510 |
d[n] = H[n][n]; |
511 |
e[n] = 0.0; |
512 |
n--; |
513 |
iter = 0; |
514 |
|
515 |
// Two roots found |
516 |
|
517 |
} else if (l == n-1) { |
518 |
w = H[n][n-1] * H[n-1][n]; |
519 |
p = (H[n-1][n-1] - H[n][n]) / 2.0; |
520 |
q = p * p + w; |
521 |
z = sqrt(abs(q)); |
522 |
H[n][n] = H[n][n] + exshift; |
523 |
H[n-1][n-1] = H[n-1][n-1] + exshift; |
524 |
x = H[n][n]; |
525 |
|
526 |
// Real pair |
527 |
|
528 |
if (q >= 0) { |
529 |
if (p >= 0) { |
530 |
z = p + z; |
531 |
} else { |
532 |
z = p - z; |
533 |
} |
534 |
d[n-1] = x + z; |
535 |
d[n] = d[n-1]; |
536 |
if (z != 0.0) { |
537 |
d[n] = x - w / z; |
538 |
} |
539 |
e[n-1] = 0.0; |
540 |
e[n] = 0.0; |
541 |
x = H[n][n-1]; |
542 |
s = abs(x) + abs(z); |
543 |
p = x / s; |
544 |
q = z / s; |
545 |
r = sqrt(p * p+q * q); |
546 |
p = p / r; |
547 |
q = q / r; |
548 |
|
549 |
// Row modification |
550 |
|
551 |
for (int j = n-1; j < nn; j++) { |
552 |
z = H[n-1][j]; |
553 |
H[n-1][j] = q * z + p * H[n][j]; |
554 |
H[n][j] = q * H[n][j] - p * z; |
555 |
} |
556 |
|
557 |
// Column modification |
558 |
|
559 |
for (int i = 0; i <= n; i++) { |
560 |
z = H[i][n-1]; |
561 |
H[i][n-1] = q * z + p * H[i][n]; |
562 |
H[i][n] = q * H[i][n] - p * z; |
563 |
} |
564 |
|
565 |
// Accumulate transformations |
566 |
|
567 |
for (int i = low; i <= high; i++) { |
568 |
z = V[i][n-1]; |
569 |
V[i][n-1] = q * z + p * V[i][n]; |
570 |
V[i][n] = q * V[i][n] - p * z; |
571 |
} |
572 |
|
573 |
// Complex pair |
574 |
|
575 |
} else { |
576 |
d[n-1] = x + p; |
577 |
d[n] = x + p; |
578 |
e[n-1] = z; |
579 |
e[n] = -z; |
580 |
} |
581 |
n = n - 2; |
582 |
iter = 0; |
583 |
|
584 |
// No convergence yet |
585 |
|
586 |
} else { |
587 |
|
588 |
// Form shift |
589 |
|
590 |
x = H[n][n]; |
591 |
y = 0.0; |
592 |
w = 0.0; |
593 |
if (l < n) { |
594 |
y = H[n-1][n-1]; |
595 |
w = H[n][n-1] * H[n-1][n]; |
596 |
} |
597 |
|
598 |
// Wilkinson's original ad hoc shift |
599 |
|
600 |
if (iter == 10) { |
601 |
exshift += x; |
602 |
for (int i = low; i <= n; i++) { |
603 |
H[i][i] -= x; |
604 |
} |
605 |
s = abs(H[n][n-1]) + abs(H[n-1][n-2]); |
606 |
x = y = 0.75 * s; |
607 |
w = -0.4375 * s * s; |
608 |
} |
609 |
|
610 |
// MATLAB's new ad hoc shift |
611 |
|
612 |
if (iter == 30) { |
613 |
s = (y - x) / 2.0; |
614 |
s = s * s + w; |
615 |
if (s > 0) { |
616 |
s = sqrt(s); |
617 |
if (y < x) { |
618 |
s = -s; |
619 |
} |
620 |
s = x - w / ((y - x) / 2.0 + s); |
621 |
for (int i = low; i <= n; i++) { |
622 |
H[i][i] -= s; |
623 |
} |
624 |
exshift += s; |
625 |
x = y = w = 0.964; |
626 |
} |
627 |
} |
628 |
|
629 |
iter = iter + 1; // (Could check iteration count here.) |
630 |
|
631 |
// Look for two consecutive small sub-diagonal elements |
632 |
|
633 |
int m = n-2; |
634 |
while (m >= l) { |
635 |
z = H[m][m]; |
636 |
r = x - z; |
637 |
s = y - z; |
638 |
p = (r * s - w) / H[m+1][m] + H[m][m+1]; |
639 |
q = H[m+1][m+1] - z - r - s; |
640 |
r = H[m+2][m+1]; |
641 |
s = abs(p) + abs(q) + abs(r); |
642 |
p = p / s; |
643 |
q = q / s; |
644 |
r = r / s; |
645 |
if (m == l) { |
646 |
break; |
647 |
} |
648 |
if (abs(H[m][m-1]) * (abs(q) + abs(r)) < |
649 |
eps * (abs(p) * (abs(H[m-1][m-1]) + abs(z) + |
650 |
abs(H[m+1][m+1])))) { |
651 |
break; |
652 |
} |
653 |
m--; |
654 |
} |
655 |
|
656 |
for (int i = m+2; i <= n; i++) { |
657 |
H[i][i-2] = 0.0; |
658 |
if (i > m+2) { |
659 |
H[i][i-3] = 0.0; |
660 |
} |
661 |
} |
662 |
|
663 |
// Double QR step involving rows l:n and columns m:n |
664 |
|
665 |
for (int k = m; k <= n-1; k++) { |
666 |
int notlast = (k != n-1); |
667 |
if (k != m) { |
668 |
p = H[k][k-1]; |
669 |
q = H[k+1][k-1]; |
670 |
r = (notlast ? H[k+2][k-1] : 0.0); |
671 |
x = abs(p) + abs(q) + abs(r); |
672 |
if (x != 0.0) { |
673 |
p = p / x; |
674 |
q = q / x; |
675 |
r = r / x; |
676 |
} |
677 |
} |
678 |
if (x == 0.0) { |
679 |
break; |
680 |
} |
681 |
s = sqrt(p * p + q * q + r * r); |
682 |
if (p < 0) { |
683 |
s = -s; |
684 |
} |
685 |
if (s != 0) { |
686 |
if (k != m) { |
687 |
H[k][k-1] = -s * x; |
688 |
} else if (l != m) { |
689 |
H[k][k-1] = -H[k][k-1]; |
690 |
} |
691 |
p = p + s; |
692 |
x = p / s; |
693 |
y = q / s; |
694 |
z = r / s; |
695 |
q = q / p; |
696 |
r = r / p; |
697 |
|
698 |
// Row modification |
699 |
|
700 |
for (int j = k; j < nn; j++) { |
701 |
p = H[k][j] + q * H[k+1][j]; |
702 |
if (notlast) { |
703 |
p = p + r * H[k+2][j]; |
704 |
H[k+2][j] = H[k+2][j] - p * z; |
705 |
} |
706 |
H[k][j] = H[k][j] - p * x; |
707 |
H[k+1][j] = H[k+1][j] - p * y; |
708 |
} |
709 |
|
710 |
// Column modification |
711 |
|
712 |
for (int i = 0; i <= min(n,k+3); i++) { |
713 |
p = x * H[i][k] + y * H[i][k+1]; |
714 |
if (notlast) { |
715 |
p = p + z * H[i][k+2]; |
716 |
H[i][k+2] = H[i][k+2] - p * r; |
717 |
} |
718 |
H[i][k] = H[i][k] - p; |
719 |
H[i][k+1] = H[i][k+1] - p * q; |
720 |
} |
721 |
|
722 |
// Accumulate transformations |
723 |
|
724 |
for (int i = low; i <= high; i++) { |
725 |
p = x * V[i][k] + y * V[i][k+1]; |
726 |
if (notlast) { |
727 |
p = p + z * V[i][k+2]; |
728 |
V[i][k+2] = V[i][k+2] - p * r; |
729 |
} |
730 |
V[i][k] = V[i][k] - p; |
731 |
V[i][k+1] = V[i][k+1] - p * q; |
732 |
} |
733 |
} // (s != 0) |
734 |
} // k loop |
735 |
} // check convergence |
736 |
} // while (n >= low) |
737 |
|
738 |
// Backsubstitute to find vectors of upper triangular form |
739 |
|
740 |
if (norm == 0.0) { |
741 |
return; |
742 |
} |
743 |
|
744 |
for (n = nn-1; n >= 0; n--) { |
745 |
p = d[n]; |
746 |
q = e[n]; |
747 |
|
748 |
// Real vector |
749 |
|
750 |
if (q == 0) { |
751 |
int l = n; |
752 |
H[n][n] = 1.0; |
753 |
for (int i = n-1; i >= 0; i--) { |
754 |
w = H[i][i] - p; |
755 |
r = 0.0; |
756 |
for (int j = l; j <= n; j++) { |
757 |
r = r + H[i][j] * H[j][n]; |
758 |
} |
759 |
if (e[i] < 0.0) { |
760 |
z = w; |
761 |
s = r; |
762 |
} else { |
763 |
l = i; |
764 |
if (e[i] == 0.0) { |
765 |
if (w != 0.0) { |
766 |
H[i][n] = -r / w; |
767 |
} else { |
768 |
H[i][n] = -r / (eps * norm); |
769 |
} |
770 |
|
771 |
// Solve real equations |
772 |
|
773 |
} else { |
774 |
x = H[i][i+1]; |
775 |
y = H[i+1][i]; |
776 |
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
777 |
t = (x * s - z * r) / q; |
778 |
H[i][n] = t; |
779 |
if (abs(x) > abs(z)) { |
780 |
H[i+1][n] = (-r - w * t) / x; |
781 |
} else { |
782 |
H[i+1][n] = (-s - y * t) / z; |
783 |
} |
784 |
} |
785 |
|
786 |
// Overflow control |
787 |
|
788 |
t = abs(H[i][n]); |
789 |
if ((eps * t) * t > 1) { |
790 |
for (int j = i; j <= n; j++) { |
791 |
H[j][n] = H[j][n] / t; |
792 |
} |
793 |
} |
794 |
} |
795 |
} |
796 |
|
797 |
// Complex vector |
798 |
|
799 |
} else if (q < 0) { |
800 |
int l = n-1; |
801 |
|
802 |
// Last vector component imaginary so matrix is triangular |
803 |
|
804 |
if (abs(H[n][n-1]) > abs(H[n-1][n])) { |
805 |
H[n-1][n-1] = q / H[n][n-1]; |
806 |
H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; |
807 |
} else { |
808 |
cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); |
809 |
H[n-1][n-1] = cdivr; |
810 |
H[n-1][n] = cdivi; |
811 |
} |
812 |
H[n][n-1] = 0.0; |
813 |
H[n][n] = 1.0; |
814 |
for (int i = n-2; i >= 0; i--) { |
815 |
Real ra,sa,vr,vi; |
816 |
ra = 0.0; |
817 |
sa = 0.0; |
818 |
for (int j = l; j <= n; j++) { |
819 |
ra = ra + H[i][j] * H[j][n-1]; |
820 |
sa = sa + H[i][j] * H[j][n]; |
821 |
} |
822 |
w = H[i][i] - p; |
823 |
|
824 |
if (e[i] < 0.0) { |
825 |
z = w; |
826 |
r = ra; |
827 |
s = sa; |
828 |
} else { |
829 |
l = i; |
830 |
if (e[i] == 0) { |
831 |
cdiv(-ra,-sa,w,q); |
832 |
H[i][n-1] = cdivr; |
833 |
H[i][n] = cdivi; |
834 |
} else { |
835 |
|
836 |
// Solve complex equations |
837 |
|
838 |
x = H[i][i+1]; |
839 |
y = H[i+1][i]; |
840 |
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
841 |
vi = (d[i] - p) * 2.0 * q; |
842 |
if ((vr == 0.0) && (vi == 0.0)) { |
843 |
vr = eps * norm * (abs(w) + abs(q) + |
844 |
abs(x) + abs(y) + abs(z)); |
845 |
} |
846 |
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
847 |
H[i][n-1] = cdivr; |
848 |
H[i][n] = cdivi; |
849 |
if (abs(x) > (abs(z) + abs(q))) { |
850 |
H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; |
851 |
H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; |
852 |
} else { |
853 |
cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q); |
854 |
H[i+1][n-1] = cdivr; |
855 |
H[i+1][n] = cdivi; |
856 |
} |
857 |
} |
858 |
|
859 |
// Overflow control |
860 |
|
861 |
t = max(abs(H[i][n-1]),abs(H[i][n])); |
862 |
if ((eps * t) * t > 1) { |
863 |
for (int j = i; j <= n; j++) { |
864 |
H[j][n-1] = H[j][n-1] / t; |
865 |
H[j][n] = H[j][n] / t; |
866 |
} |
867 |
} |
868 |
} |
869 |
} |
870 |
} |
871 |
} |
872 |
|
873 |
// Vectors of isolated roots |
874 |
|
875 |
for (int i = 0; i < nn; i++) { |
876 |
if (i < low || i > high) { |
877 |
for (int j = i; j < nn; j++) { |
878 |
V[i][j] = H[i][j]; |
879 |
} |
880 |
} |
881 |
} |
882 |
|
883 |
// Back transformation to get eigenvectors of original matrix |
884 |
|
885 |
for (int j = nn-1; j >= low; j--) { |
886 |
for (int i = low; i <= high; i++) { |
887 |
z = 0.0; |
888 |
for (int k = low; k <= min(j,high); k++) { |
889 |
z = z + V[i][k] * H[k][j]; |
890 |
} |
891 |
V[i][j] = z; |
892 |
} |
893 |
} |
894 |
} |
895 |
|
896 |
public: |
897 |
|
898 |
|
899 |
/** Check for symmetry, then construct the eigenvalue decomposition |
900 |
@param A Square real (non-complex) matrix |
901 |
*/ |
902 |
|
903 |
Eigenvalue(const TNT::Array2D<Real> &A) { |
904 |
n = A.dim2(); |
905 |
V = Array2D<Real>(n,n); |
906 |
d = Array1D<Real>(n); |
907 |
e = Array1D<Real>(n); |
908 |
|
909 |
issymmetric = 1; |
910 |
for (int j = 0; (j < n) && issymmetric; j++) { |
911 |
for (int i = 0; (i < n) && issymmetric; i++) { |
912 |
issymmetric = (A[i][j] == A[j][i]); |
913 |
} |
914 |
} |
915 |
|
916 |
if (issymmetric) { |
917 |
for (int i = 0; i < n; i++) { |
918 |
for (int j = 0; j < n; j++) { |
919 |
V[i][j] = A[i][j]; |
920 |
} |
921 |
} |
922 |
|
923 |
// Tridiagonalize. |
924 |
tred2(); |
925 |
|
926 |
// Diagonalize. |
927 |
tql2(); |
928 |
|
929 |
} else { |
930 |
H = TNT::Array2D<Real>(n,n); |
931 |
ort = TNT::Array1D<Real>(n); |
932 |
|
933 |
for (int j = 0; j < n; j++) { |
934 |
for (int i = 0; i < n; i++) { |
935 |
H[i][j] = A[i][j]; |
936 |
} |
937 |
} |
938 |
|
939 |
// Reduce to Hessenberg form. |
940 |
orthes(); |
941 |
|
942 |
// Reduce Hessenberg to real Schur form. |
943 |
hqr2(); |
944 |
} |
945 |
} |
946 |
|
947 |
|
948 |
/** Return the eigenvector matrix |
949 |
@return V |
950 |
*/ |
951 |
|
952 |
void getV (TNT::Array2D<Real> &V_) { |
953 |
V_ = V; |
954 |
return; |
955 |
} |
956 |
|
957 |
/** Return the real parts of the eigenvalues |
958 |
@return real(diag(D)) |
959 |
*/ |
960 |
|
961 |
void getRealEigenvalues (TNT::Array1D<Real> &d_) { |
962 |
d_ = d; |
963 |
return ; |
964 |
} |
965 |
|
966 |
/** Return the imaginary parts of the eigenvalues |
967 |
in parameter e_. |
968 |
|
969 |
@pararm e_: new matrix with imaginary parts of the eigenvalues. |
970 |
*/ |
971 |
void getImagEigenvalues (TNT::Array1D<Real> &e_) { |
972 |
e_ = e; |
973 |
return; |
974 |
} |
975 |
|
976 |
|
977 |
/** |
978 |
Computes the block diagonal eigenvalue matrix. |
979 |
If the original matrix A is not symmetric, then the eigenvalue |
980 |
matrix D is block diagonal with the real eigenvalues in 1-by-1 |
981 |
blocks and any complex eigenvalues, |
982 |
a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex |
983 |
eigenvalues look like |
984 |
<pre> |
985 |
|
986 |
u + iv . . . . . |
987 |
. u - iv . . . . |
988 |
. . a + ib . . . |
989 |
. . . a - ib . . |
990 |
. . . . x . |
991 |
. . . . . y |
992 |
</pre> |
993 |
then D looks like |
994 |
<pre> |
995 |
|
996 |
u v . . . . |
997 |
-v u . . . . |
998 |
. . a b . . |
999 |
. . -b a . . |
1000 |
. . . . x . |
1001 |
. . . . . y |
1002 |
</pre> |
1003 |
This keeps V a real matrix in both symmetric and non-symmetric |
1004 |
cases, and A*V = V*D. |
1005 |
|
1006 |
@param D: upon return, the matrix is filled with the block diagonal |
1007 |
eigenvalue matrix. |
1008 |
|
1009 |
*/ |
1010 |
void getD (TNT::Array2D<Real> &D) { |
1011 |
D = Array2D<Real>(n,n); |
1012 |
for (int i = 0; i < n; i++) { |
1013 |
for (int j = 0; j < n; j++) { |
1014 |
D[i][j] = 0.0; |
1015 |
} |
1016 |
D[i][i] = d[i]; |
1017 |
if (e[i] > 0) { |
1018 |
D[i][i+1] = e[i]; |
1019 |
} else if (e[i] < 0) { |
1020 |
D[i][i-1] = e[i]; |
1021 |
} |
1022 |
} |
1023 |
} |
1024 |
}; |
1025 |
|
1026 |
} //namespace JAMA |
1027 |
|
1028 |
|
1029 |
#endif |
1030 |
// JAMA_EIG_H |