1 |
gezelter |
1336 |
#ifndef JAMA_CHOLESKY_H |
2 |
|
|
#define JAMA_CHOLESKY_H |
3 |
|
|
|
4 |
|
|
#include <cmath> |
5 |
|
|
/* needed for sqrt() below. */ |
6 |
|
|
|
7 |
|
|
|
8 |
|
|
namespace JAMA |
9 |
|
|
{ |
10 |
|
|
|
11 |
|
|
using namespace TNT; |
12 |
|
|
|
13 |
|
|
/** |
14 |
|
|
<P> |
15 |
|
|
For a symmetric, positive definite matrix A, this function |
16 |
|
|
computes the Cholesky factorization, i.e. it computes a lower |
17 |
|
|
triangular matrix L such that A = L*L'. |
18 |
|
|
If the matrix is not symmetric or positive definite, the function |
19 |
|
|
computes only a partial decomposition. This can be tested with |
20 |
|
|
the is_spd() flag. |
21 |
|
|
|
22 |
|
|
<p>Typical usage looks like: |
23 |
|
|
<pre> |
24 |
|
|
Array2D<double> A(n,n); |
25 |
|
|
Array2D<double> L; |
26 |
|
|
|
27 |
|
|
... |
28 |
|
|
|
29 |
|
|
Cholesky<double> chol(A); |
30 |
|
|
|
31 |
|
|
if (chol.is_spd()) |
32 |
|
|
L = chol.getL(); |
33 |
|
|
|
34 |
|
|
else |
35 |
|
|
cout << "factorization was not complete.\n"; |
36 |
|
|
|
37 |
|
|
</pre> |
38 |
|
|
|
39 |
|
|
|
40 |
|
|
<p> |
41 |
|
|
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
42 |
|
|
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
43 |
|
|
|
44 |
|
|
*/ |
45 |
|
|
|
46 |
|
|
template <class Real> |
47 |
|
|
class Cholesky |
48 |
|
|
{ |
49 |
|
|
Array2D<Real> L_; // lower triangular factor |
50 |
|
|
int isspd; // 1 if matrix to be factored was SPD |
51 |
|
|
|
52 |
|
|
public: |
53 |
|
|
|
54 |
|
|
Cholesky(); |
55 |
|
|
Cholesky(const Array2D<Real> &A); |
56 |
|
|
Array2D<Real> getL() const; |
57 |
|
|
Array1D<Real> solve(const Array1D<Real> &B); |
58 |
|
|
Array2D<Real> solve(const Array2D<Real> &B); |
59 |
|
|
int is_spd() const; |
60 |
|
|
|
61 |
|
|
}; |
62 |
|
|
|
63 |
|
|
template <class Real> |
64 |
|
|
Cholesky<Real>::Cholesky() : L_(0,0), isspd(0) {} |
65 |
|
|
|
66 |
|
|
/** |
67 |
|
|
@return 1, if original matrix to be factored was symmetric |
68 |
|
|
positive-definite (SPD). |
69 |
|
|
*/ |
70 |
|
|
template <class Real> |
71 |
|
|
int Cholesky<Real>::is_spd() const |
72 |
|
|
{ |
73 |
|
|
return isspd; |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
/** |
77 |
|
|
@return the lower triangular factor, L, such that L*L'=A. |
78 |
|
|
*/ |
79 |
|
|
template <class Real> |
80 |
|
|
Array2D<Real> Cholesky<Real>::getL() const |
81 |
|
|
{ |
82 |
|
|
return L_; |
83 |
|
|
} |
84 |
|
|
|
85 |
|
|
/** |
86 |
|
|
Constructs a lower triangular matrix L, such that L*L'= A. |
87 |
|
|
If A is not symmetric positive-definite (SPD), only a |
88 |
|
|
partial factorization is performed. If is_spd() |
89 |
|
|
evalutate true (1) then the factorizaiton was successful. |
90 |
|
|
*/ |
91 |
|
|
template <class Real> |
92 |
|
|
Cholesky<Real>::Cholesky(const Array2D<Real> &A) |
93 |
|
|
{ |
94 |
|
|
|
95 |
|
|
|
96 |
|
|
int m = A.dim1(); |
97 |
|
|
int n = A.dim2(); |
98 |
|
|
|
99 |
|
|
isspd = (m == n); |
100 |
|
|
|
101 |
|
|
if (m != n) |
102 |
|
|
{ |
103 |
|
|
L_ = Array2D<Real>(0,0); |
104 |
|
|
return; |
105 |
|
|
} |
106 |
|
|
|
107 |
|
|
L_ = Array2D<Real>(n,n); |
108 |
|
|
|
109 |
|
|
|
110 |
|
|
// Main loop. |
111 |
|
|
for (int j = 0; j < n; j++) |
112 |
|
|
{ |
113 |
|
|
Real d(0.0); |
114 |
|
|
for (int k = 0; k < j; k++) |
115 |
|
|
{ |
116 |
|
|
Real s(0.0); |
117 |
|
|
for (int i = 0; i < k; i++) |
118 |
|
|
{ |
119 |
|
|
s += L_[k][i]*L_[j][i]; |
120 |
|
|
} |
121 |
|
|
L_[j][k] = s = (A[j][k] - s)/L_[k][k]; |
122 |
|
|
d = d + s*s; |
123 |
|
|
isspd = isspd && (A[k][j] == A[j][k]); |
124 |
|
|
} |
125 |
|
|
d = A[j][j] - d; |
126 |
|
|
isspd = isspd && (d > 0.0); |
127 |
|
|
L_[j][j] = sqrt(d > 0.0 ? d : 0.0); |
128 |
|
|
for (int k = j+1; k < n; k++) |
129 |
|
|
{ |
130 |
|
|
L_[j][k] = 0.0; |
131 |
|
|
} |
132 |
|
|
} |
133 |
|
|
} |
134 |
|
|
|
135 |
|
|
/** |
136 |
|
|
|
137 |
|
|
Solve a linear system A*x = b, using the previously computed |
138 |
|
|
cholesky factorization of A: L*L'. |
139 |
|
|
|
140 |
|
|
@param B A Matrix with as many rows as A and any number of columns. |
141 |
|
|
@return x so that L*L'*x = b. If b is nonconformat, or if A |
142 |
|
|
was not symmetric posidtive definite, a null (0x0) |
143 |
|
|
array is returned. |
144 |
|
|
*/ |
145 |
|
|
template <class Real> |
146 |
|
|
Array1D<Real> Cholesky<Real>::solve(const Array1D<Real> &b) |
147 |
|
|
{ |
148 |
|
|
int n = L_.dim1(); |
149 |
|
|
if (b.dim1() != n) |
150 |
|
|
return Array1D<Real>(); |
151 |
|
|
|
152 |
|
|
|
153 |
|
|
Array1D<Real> x = b.copy(); |
154 |
|
|
|
155 |
|
|
|
156 |
|
|
// Solve L*y = b; |
157 |
|
|
for (int k = 0; k < n; k++) |
158 |
|
|
{ |
159 |
|
|
for (int i = 0; i < k; i++) |
160 |
|
|
x[k] -= x[i]*L_[k][i]; |
161 |
|
|
x[k] /= L_[k][k]; |
162 |
|
|
|
163 |
|
|
} |
164 |
|
|
|
165 |
|
|
// Solve L'*X = Y; |
166 |
|
|
for (int k = n-1; k >= 0; k--) |
167 |
|
|
{ |
168 |
|
|
for (int i = k+1; i < n; i++) |
169 |
|
|
x[k] -= x[i]*L_[i][k]; |
170 |
|
|
x[k] /= L_[k][k]; |
171 |
|
|
} |
172 |
|
|
|
173 |
|
|
return x; |
174 |
|
|
} |
175 |
|
|
|
176 |
|
|
|
177 |
|
|
/** |
178 |
|
|
|
179 |
|
|
Solve a linear system A*X = B, using the previously computed |
180 |
|
|
cholesky factorization of A: L*L'. |
181 |
|
|
|
182 |
|
|
@param B A Matrix with as many rows as A and any number of columns. |
183 |
|
|
@return X so that L*L'*X = B. If B is nonconformat, or if A |
184 |
|
|
was not symmetric posidtive definite, a null (0x0) |
185 |
|
|
array is returned. |
186 |
|
|
*/ |
187 |
|
|
template <class Real> |
188 |
|
|
Array2D<Real> Cholesky<Real>::solve(const Array2D<Real> &B) |
189 |
|
|
{ |
190 |
|
|
int n = L_.dim1(); |
191 |
|
|
if (B.dim1() != n) |
192 |
|
|
return Array2D<Real>(); |
193 |
|
|
|
194 |
|
|
|
195 |
|
|
Array2D<Real> X = B.copy(); |
196 |
|
|
int nx = B.dim2(); |
197 |
|
|
|
198 |
|
|
// Cleve's original code |
199 |
|
|
#if 0 |
200 |
|
|
// Solve L*Y = B; |
201 |
|
|
for (int k = 0; k < n; k++) { |
202 |
|
|
for (int i = k+1; i < n; i++) { |
203 |
|
|
for (int j = 0; j < nx; j++) { |
204 |
|
|
X[i][j] -= X[k][j]*L_[k][i]; |
205 |
|
|
} |
206 |
|
|
} |
207 |
|
|
for (int j = 0; j < nx; j++) { |
208 |
|
|
X[k][j] /= L_[k][k]; |
209 |
|
|
} |
210 |
|
|
} |
211 |
|
|
|
212 |
|
|
// Solve L'*X = Y; |
213 |
|
|
for (int k = n-1; k >= 0; k--) { |
214 |
|
|
for (int j = 0; j < nx; j++) { |
215 |
|
|
X[k][j] /= L_[k][k]; |
216 |
|
|
} |
217 |
|
|
for (int i = 0; i < k; i++) { |
218 |
|
|
for (int j = 0; j < nx; j++) { |
219 |
|
|
X[i][j] -= X[k][j]*L_[k][i]; |
220 |
|
|
} |
221 |
|
|
} |
222 |
|
|
} |
223 |
|
|
#endif |
224 |
|
|
|
225 |
|
|
|
226 |
|
|
// Solve L*y = b; |
227 |
|
|
for (int j=0; j< nx; j++) |
228 |
|
|
{ |
229 |
|
|
for (int k = 0; k < n; k++) |
230 |
|
|
{ |
231 |
|
|
for (int i = 0; i < k; i++) |
232 |
|
|
X[k][j] -= X[i][j]*L_[k][i]; |
233 |
|
|
X[k][j] /= L_[k][k]; |
234 |
|
|
} |
235 |
|
|
} |
236 |
|
|
|
237 |
|
|
// Solve L'*X = Y; |
238 |
|
|
for (int j=0; j<nx; j++) |
239 |
|
|
{ |
240 |
|
|
for (int k = n-1; k >= 0; k--) |
241 |
|
|
{ |
242 |
|
|
for (int i = k+1; i < n; i++) |
243 |
|
|
X[k][j] -= X[i][j]*L_[i][k]; |
244 |
|
|
X[k][j] /= L_[k][k]; |
245 |
|
|
} |
246 |
|
|
} |
247 |
|
|
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
return X; |
251 |
|
|
} |
252 |
|
|
|
253 |
|
|
|
254 |
|
|
} |
255 |
|
|
// namespace JAMA |
256 |
|
|
|
257 |
|
|
#endif |
258 |
|
|
// JAMA_CHOLESKY_H |