ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/Vector.hpp
Revision: 1615
Committed: Fri Aug 26 17:55:44 2011 UTC (13 years, 8 months ago) by gezelter
File size: 16009 byte(s)
Log Message:
Added Momentum correlation function, imported changes from Vector from
development branch, updated comments in some integrators

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file Vector.hpp
44 * @author Teng Lin
45 * @date 09/14/2004
46 * @version 1.0
47 */
48
49 #ifndef MATH_VECTOR_HPP
50 #define MATH_VECTOR_HPP
51
52 #include <cassert>
53 #include <cmath>
54 #include <iostream>
55 #include <math.h>
56 #include "config.h"
57 namespace OpenMD {
58
59 static const RealType epsilon = 0.000001;
60
61 template<typename T>
62 inline bool equal(T e1, T e2) {
63 return e1 == e2;
64 }
65
66 //template<>
67 //inline bool equal(float e1, float e2) {
68 // return fabs(e1 - e2) < epsilon;
69 //}
70
71 template<>
72 inline bool equal(RealType e1, RealType e2) {
73 return fabs(e1 - e2) < epsilon;
74 }
75
76
77 /**
78 * @class Vector Vector.hpp "math/Vector.hpp"
79 * @brief Fix length vector class
80 */
81 template<typename Real, unsigned int Dim>
82 class Vector{
83 public:
84
85 typedef Real ElemType;
86 typedef Real* ElemPoinerType;
87
88 /** default constructor */
89 inline Vector(){
90 for (unsigned int i = 0; i < Dim; i++)
91 this->data_[i] = 0;
92 }
93
94 /** Constructs and initializes a Vector from a vector */
95 inline Vector(const Vector<Real, Dim>& v) {
96 *this = v;
97 }
98
99 /** copy assignment operator */
100 inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) {
101 if (this == &v)
102 return *this;
103
104 for (unsigned int i = 0; i < Dim; i++)
105 this->data_[i] = v[i];
106
107 return *this;
108 }
109
110 template<typename T>
111 inline Vector(const T& s){
112 for (unsigned int i = 0; i < Dim; i++)
113 this->data_[i] = s;
114 }
115
116 /** Constructs and initializes a Vector from an array */
117 inline Vector( Real* v) {
118 for (unsigned int i = 0; i < Dim; i++)
119 this->data_[i] = v[i];
120 }
121
122 /**
123 * Returns reference of ith element.
124 * @return reference of ith element
125 * @param i index
126 */
127 inline Real& operator[](unsigned int i) {
128 assert( i < Dim);
129 return this->data_[i];
130 }
131
132 /**
133 * Returns reference of ith element.
134 * @return reference of ith element
135 * @param i index
136 */
137 inline Real& operator()(unsigned int i) {
138 assert( i < Dim);
139 return this->data_[i];
140 }
141
142 /**
143 * Returns constant reference of ith element.
144 * @return reference of ith element
145 * @param i index
146 */
147 inline const Real& operator[](unsigned int i) const {
148 assert( i < Dim);
149 return this->data_[i];
150 }
151
152 /**
153 * Returns constant reference of ith element.
154 * @return reference of ith element
155 * @param i index
156 */
157 inline const Real& operator()(unsigned int i) const {
158 assert( i < Dim);
159 return this->data_[i];
160 }
161
162 /** Copy the internal data to an array*/
163 void getArray(Real* array) {
164 for (unsigned int i = 0; i < Dim; i ++) {
165 array[i] = this->data_[i];
166 }
167 }
168
169 /** Returns the pointer of internal array */
170 Real* getArrayPointer() {
171 return this->data_;
172 }
173
174 /**
175 * Tests if this vetor is equal to other vector
176 * @return true if equal, otherwise return false
177 * @param v vector to be compared
178 */
179 inline bool operator ==(const Vector<Real, Dim>& v) {
180
181 for (unsigned int i = 0; i < Dim; i ++) {
182 if (!equal(this->data_[i], v[i])) {
183 return false;
184 }
185 }
186
187 return true;
188 }
189
190 /**
191 * Tests if this vetor is not equal to other vector
192 * @return true if equal, otherwise return false
193 * @param v vector to be compared
194 */
195 inline bool operator !=(const Vector<Real, Dim>& v) {
196 return !(*this == v);
197 }
198
199 /** Negates the value of this vector in place. */
200 inline void negate() {
201 for (unsigned int i = 0; i < Dim; i++)
202 this->data_[i] = -this->data_[i];
203 }
204
205 /**
206 * Sets the value of this vector to the negation of vector v1.
207 * @param v1 the source vector
208 */
209 inline void negate(const Vector<Real, Dim>& v1) {
210 for (unsigned int i = 0; i < Dim; i++)
211 this->data_[i] = -v1.data_[i];
212
213 }
214
215 /**
216 * Sets the value of this vector to the sum of itself and v1 (*this += v1).
217 * @param v1 the other vector
218 */
219 inline void add( const Vector<Real, Dim>& v1 ) {
220 for (unsigned int i = 0; i < Dim; i++)
221 this->data_[i] += v1.data_[i];
222 }
223
224 /**
225 * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2).
226 * @param v1 the first vector
227 * @param v2 the second vector
228 */
229 inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
230 for (unsigned int i = 0; i < Dim; i++)
231 this->data_[i] = v1.data_[i] + v2.data_[i];
232 }
233
234 /**
235 * Sets the value of this vector to the difference of itself and v1 (*this -= v1).
236 * @param v1 the other vector
237 */
238 inline void sub( const Vector<Real, Dim>& v1 ) {
239 for (unsigned int i = 0; i < Dim; i++)
240 this->data_[i] -= v1.data_[i];
241 }
242
243 /**
244 * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2).
245 * @param v1 the first vector
246 * @param v2 the second vector
247 */
248 inline void sub( const Vector<Real, Dim>& v1, const Vector &v2 ){
249 for (unsigned int i = 0; i < Dim; i++)
250 this->data_[i] = v1.data_[i] - v2.data_[i];
251 }
252
253 /**
254 * Sets the value of this vector to the scalar multiplication of itself (*this *= s).
255 * @param s the scalar value
256 */
257 inline void mul( Real s ) {
258 for (unsigned int i = 0; i < Dim; i++)
259 this->data_[i] *= s;
260 }
261
262 /**
263 * Sets the value of this vector to the scalar multiplication of vector v1
264 * (*this = s * v1).
265 * @param v1 the vector
266 * @param s the scalar value
267 */
268 inline void mul( const Vector<Real, Dim>& v1, Real s) {
269 for (unsigned int i = 0; i < Dim; i++)
270 this->data_[i] = s * v1.data_[i];
271 }
272
273 /**
274 * Sets the elements of this vector to the multiplication of
275 * elements of two other vectors. Not to be confused with scalar
276 * multiplication (mul) or dot products.
277 *
278 * (*this.data_[i] = v1.data_[i] * v2.data_[i]).
279 * @param v1 the first vector
280 * @param v2 the second vector
281 */
282 inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
283 for (unsigned int i = 0; i < Dim; i++)
284 this->data_[i] = v1.data_[i] * v2.data_[i];
285 }
286
287 /**
288 * Sets the value of this vector to the scalar division of itself (*this /= s ).
289 * @param s the scalar value
290 */
291 inline void div( Real s) {
292 for (unsigned int i = 0; i < Dim; i++)
293 this->data_[i] /= s;
294 }
295
296 /**
297 * Sets the value of this vector to the scalar division of vector v1 (*this = v1 / s ).
298 * @param v1 the source vector
299 * @param s the scalar value
300 */
301 inline void div( const Vector<Real, Dim>& v1, Real s ) {
302 for (unsigned int i = 0; i < Dim; i++)
303 this->data_[i] = v1.data_[i] / s;
304 }
305
306 /**
307 * Sets the elements of this vector to the division of
308 * elements of two other vectors. Not to be confused with scalar
309 * division (div)
310 *
311 * (*this.data_[i] = v1.data_[i] / v2.data_[i]).
312 * @param v1 the first vector
313 * @param v2 the second vector
314 */
315 inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
316 for (unsigned int i = 0; i < Dim; i++)
317 this->data_[i] = v1.data_[i] / v2.data_[i];
318 }
319
320
321 /** @see #add */
322 inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) {
323 add(v1);
324 return *this;
325 }
326
327 /** @see #sub */
328 inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) {
329 sub(v1);
330 return *this;
331 }
332
333 /** @see #mul */
334 inline Vector<Real, Dim>& operator *=( Real s) {
335 mul(s);
336 return *this;
337 }
338
339 /** @see #div */
340 inline Vector<Real, Dim>& operator /=( Real s ) {
341 div(s);
342 return *this;
343 }
344
345 /**
346 * Returns the sum of all elements of this vector.
347 * @return the sum of all elements of this vector
348 */
349 inline Real sum() {
350 Real tmp;
351 tmp = 0;
352 for (unsigned int i = 0; i < Dim; i++)
353 tmp += this->data_[i];
354 return tmp;
355 }
356
357 /**
358 * Returns the product of all elements of this vector.
359 * @return the product of all elements of this vector
360 */
361 inline Real componentProduct() {
362 Real tmp;
363 tmp = 1;
364 for (unsigned int i = 0; i < Dim; i++)
365 tmp *= this->data_[i];
366 return tmp;
367 }
368
369 /**
370 * Returns the length of this vector.
371 * @return the length of this vector
372 */
373 inline Real length() {
374 return sqrt(lengthSquare());
375 }
376
377 /**
378 * Returns the squared length of this vector.
379 * @return the squared length of this vector
380 */
381 inline Real lengthSquare() {
382 return dot(*this, *this);
383 }
384
385 /** Normalizes this vector in place */
386 inline void normalize() {
387 Real len;
388
389 len = length();
390
391 //if (len < OpenMD::NumericConstant::epsilon)
392 // throw();
393
394 *this /= len;
395 }
396
397 /**
398 * Tests if this vector is normalized
399 * @return true if this vector is normalized, otherwise return false
400 */
401 inline bool isNormalized() {
402 return equal(lengthSquare(), (RealType)1);
403 }
404
405 unsigned int size() {return Dim;}
406 protected:
407 Real data_[Dim];
408
409 };
410
411 /** unary minus*/
412 template<typename Real, unsigned int Dim>
413 inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){
414 Vector<Real, Dim> tmp(v1);
415 tmp.negate();
416 return tmp;
417 }
418
419 /**
420 * Return the sum of two vectors (v1 - v2).
421 * @return the sum of two vectors
422 * @param v1 the first vector
423 * @param v2 the second vector
424 */
425 template<typename Real, unsigned int Dim>
426 inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
427 Vector<Real, Dim> result;
428
429 result.add(v1, v2);
430 return result;
431 }
432
433 /**
434 * Return the difference of two vectors (v1 - v2).
435 * @return the difference of two vectors
436 * @param v1 the first vector
437 * @param v2 the second vector
438 */
439 template<typename Real, unsigned int Dim>
440 Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
441 Vector<Real, Dim> result;
442 result.sub(v1, v2);
443 return result;
444 }
445
446 /**
447 * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
448 * @return the vaule of scalar multiplication of this vector
449 * @param v1 the source vector
450 * @param s the scalar value
451 */
452 template<typename Real, unsigned int Dim>
453 Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) {
454 Vector<Real, Dim> result;
455 result.mul(v1,s);
456 return result;
457 }
458
459 /**
460 * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
461 * @return the vaule of scalar multiplication of this vector
462 * @param s the scalar value
463 * @param v1 the source vector
464 */
465 template<typename Real, unsigned int Dim>
466 Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) {
467 Vector<Real, Dim> result;
468 result.mul(v1, s);
469 return result;
470 }
471
472 /**
473 * Returns the value of division of a vector by a scalar.
474 * @return the vaule of scalar division of this vector
475 * @param v1 the source vector
476 * @param s the scalar value
477 */
478 template<typename Real, unsigned int Dim>
479 Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) {
480 Vector<Real, Dim> result;
481 result.div( v1,s);
482 return result;
483 }
484
485 /**
486 * Returns the dot product of two Vectors
487 * @param v1 first vector
488 * @param v2 second vector
489 * @return the dot product of v1 and v2
490 */
491 template<typename Real, unsigned int Dim>
492 inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
493 Real tmp;
494 tmp = 0;
495
496 for (unsigned int i = 0; i < Dim; i++)
497 tmp += v1[i] * v2[i];
498
499 return tmp;
500 }
501
502
503
504
505 /**
506 * Returns the wide dot product of three Vectors. Compare with
507 * Rapaport's VWDot function.
508 *
509 * @param v1 first vector
510 * @param v2 second vector
511 * @param v3 third vector
512 * @return the wide dot product of v1, v2, and v3.
513 */
514 template<typename Real, unsigned int Dim>
515 inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) {
516 Real tmp;
517 tmp = 0;
518
519 for (unsigned int i = 0; i < Dim; i++)
520 tmp += v1[i] * v2[i] * v3[i];
521
522 return tmp;
523 }
524
525
526 /**
527 * Returns the distance between two Vectors
528 * @param v1 first vector
529 * @param v2 second vector
530 * @return the distance between v1 and v2
531 */
532 template<typename Real, unsigned int Dim>
533 inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
534 Vector<Real, Dim> tempVector = v1 - v2;
535 return tempVector.length();
536 }
537
538 /**
539 * Returns the squared distance between two Vectors
540 * @param v1 first vector
541 * @param v2 second vector
542 * @return the squared distance between v1 and v2
543 */
544 template<typename Real, unsigned int Dim>
545 inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
546 Vector<Real, Dim> tempVector = v1 - v2;
547 return tempVector.lengthSquare();
548 }
549
550 /**
551 * Write to an output stream
552 */
553 template<typename Real, unsigned int Dim>
554 std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) {
555
556 o << "[ ";
557
558 for (unsigned int i = 0 ; i< Dim; i++) {
559 o << v[i];
560
561 if (i != Dim -1) {
562 o<< ", ";
563 }
564 }
565
566 o << " ]";
567 return o;
568 }
569
570 }
571 #endif

Properties

Name Value
svn:keywords Author Id Revision Date