ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/Vector.hpp
(Generate patch)

Comparing trunk/src/math/Vector.hpp (file contents):
Revision 385 by tim, Tue Mar 1 20:10:14 2005 UTC vs.
Revision 1615 by gezelter, Fri Aug 26 17:55:44 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include <cmath>
54   #include <iostream>
55   #include <math.h>
56 < namespace oopse {
56 > #include "config.h"
57 > namespace OpenMD {
58  
59 <    static const double epsilon = 0.000001;
59 >  static const RealType epsilon = 0.000001;
60  
61 <    template<typename T>
62 <    inline bool equal(T e1, T e2) {
63 <        return e1 == e2;
64 <    }
61 >  template<typename T>
62 >  inline bool equal(T e1, T e2) {
63 >    return e1 == e2;
64 >  }
65  
66 <    template<>
67 <    inline bool equal(float e1, float e2) {
68 <        return fabs(e1 - e2) < epsilon;
69 <    }
66 >  //template<>
67 >  //inline bool equal(float e1, float e2) {
68 >  //  return fabs(e1 - e2) < epsilon;
69 >  //}
70  
71 <    template<>
72 <    inline bool equal(double e1, double e2) {
73 <        return fabs(e1 - e2) < epsilon;
74 <    }
71 >  template<>
72 >  inline bool equal(RealType e1, RealType e2) {
73 >    return fabs(e1 - e2) < epsilon;
74 >  }
75  
76      
77 <    /**
78 <     * @class Vector Vector.hpp "math/Vector.hpp"
79 <     * @brief Fix length vector class
80 <     */
81 <    template<typename Real, unsigned int Dim>
82 <    class Vector{
83 <        public:
77 >  /**
78 >   * @class Vector Vector.hpp "math/Vector.hpp"
79 >   * @brief Fix length vector class
80 >   */
81 >  template<typename Real, unsigned int Dim>
82 >  class Vector{
83 >  public:
84  
85 <            typedef Real ElemType;
86 <            typedef Real* ElemPoinerType;
85 >    typedef Real ElemType;
86 >    typedef Real* ElemPoinerType;
87  
88 <            /** default constructor */
89 <            inline Vector(){
90 <                for (unsigned int i = 0; i < Dim; i++)
91 <                    this->data_[i] = 0;
92 <            }
88 >    /** default constructor */
89 >    inline Vector(){
90 >      for (unsigned int i = 0; i < Dim; i++)
91 >        this->data_[i] = 0;
92 >    }
93  
94 <            /** Constructs and initializes a Vector from a vector */
95 <            inline Vector(const Vector<Real, Dim>& v) {
96 <                *this  = v;
97 <            }
94 >    /** Constructs and initializes a Vector from a vector */
95 >    inline Vector(const Vector<Real, Dim>& v) {
96 >      *this  = v;
97 >    }
98  
99 <            /** copy assignment operator */
100 <            inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) {
101 <                if (this == &v)
102 <                    return *this;
99 >    /** copy assignment operator */
100 >    inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) {
101 >      if (this == &v)
102 >        return *this;
103                  
104 <                for (unsigned int i = 0; i < Dim; i++)            
105 <                    this->data_[i] = v[i];
104 >      for (unsigned int i = 0; i < Dim; i++)            
105 >        this->data_[i] = v[i];
106                  
107 <                return *this;
108 <            }
107 >      return *this;
108 >    }
109  
110 <            template<typename T>
111 <            inline Vector(const T& s){
112 <                for (unsigned int i = 0; i < Dim; i++)
113 <                    this->data_[i] = s;
114 <            }
110 >    template<typename T>
111 >    inline Vector(const T& s){
112 >      for (unsigned int i = 0; i < Dim; i++)
113 >        this->data_[i] = s;
114 >    }
115              
116 <            /** Constructs and initializes a Vector from an array */            
117 <            inline Vector( Real* v) {
118 <                for (unsigned int i = 0; i < Dim; i++)
119 <                    this->data_[i] = v[i];
120 <            }
116 >    /** Constructs and initializes a Vector from an array */            
117 >    inline Vector( Real* v) {
118 >      for (unsigned int i = 0; i < Dim; i++)
119 >        this->data_[i] = v[i];
120 >    }
121  
122 <            /**
123 <             * Returns reference of ith element.
124 <             * @return reference of ith element
125 <             * @param i index
126 <             */
127 <            inline Real& operator[](unsigned int  i) {
128 <                assert( i < Dim);
129 <                return this->data_[i];
130 <            }
122 >    /**
123 >     * Returns reference of ith element.
124 >     * @return reference of ith element
125 >     * @param i index
126 >     */
127 >    inline Real& operator[](unsigned int  i) {
128 >      assert( i < Dim);
129 >      return this->data_[i];
130 >    }
131  
132 <            /**
133 <             * Returns reference of ith element.
134 <             * @return reference of ith element
135 <             * @param i index
136 <             */
137 <            inline Real& operator()(unsigned int  i) {
138 <                assert( i < Dim);
139 <                return this->data_[i];
140 <            }
132 >    /**
133 >     * Returns reference of ith element.
134 >     * @return reference of ith element
135 >     * @param i index
136 >     */
137 >    inline Real& operator()(unsigned int  i) {
138 >      assert( i < Dim);
139 >      return this->data_[i];
140 >    }
141  
142 <            /**
143 <             * Returns constant reference of ith element.
144 <             * @return reference of ith element
145 <             * @param i index
146 <             */
147 <            inline  const Real& operator[](unsigned int i) const {
148 <                assert( i < Dim);
149 <                return this->data_[i];
150 <            }
142 >    /**
143 >     * Returns constant reference of ith element.
144 >     * @return reference of ith element
145 >     * @param i index
146 >     */
147 >    inline  const Real& operator[](unsigned int i) const {
148 >      assert( i < Dim);
149 >      return this->data_[i];
150 >    }
151  
152 <            /**
153 <             * Returns constant reference of ith element.
154 <             * @return reference of ith element
155 <             * @param i index
156 <             */
157 <            inline  const Real& operator()(unsigned int i) const {
158 <                assert( i < Dim);
159 <                return this->data_[i];
160 <            }
152 >    /**
153 >     * Returns constant reference of ith element.
154 >     * @return reference of ith element
155 >     * @param i index
156 >     */
157 >    inline  const Real& operator()(unsigned int i) const {
158 >      assert( i < Dim);
159 >      return this->data_[i];
160 >    }
161  
162 <            /** Copy the internal data to an array*/
163 <            void getArray(Real* array) {
164 <                for (unsigned int i = 0; i < Dim; i ++) {
165 <                    array[i] = this->data_[i];
166 <                }                
167 <            }
162 >    /** Copy the internal data to an array*/
163 >    void getArray(Real* array) {
164 >      for (unsigned int i = 0; i < Dim; i ++) {
165 >        array[i] = this->data_[i];
166 >      }                
167 >    }
168  
169 <            /** Returns the pointer of internal array */
170 <            Real* getArrayPointer() {
171 <                return this->data_;
172 <            }
169 >    /** Returns the pointer of internal array */
170 >    Real* getArrayPointer() {
171 >      return this->data_;
172 >    }
173              
174 <            /**
175 <             * Tests if this vetor is equal to other vector
176 <             * @return true if equal, otherwise return false
177 <             * @param v vector to be compared
178 <             */
179 <             inline bool operator ==(const Vector<Real, Dim>& v) {
179 <
180 <                for (unsigned int i = 0; i < Dim; i ++) {
181 <                    if (!equal(this->data_[i], v[i])) {
182 <                        return false;
183 <                    }
184 <                }
185 <                
186 <                return true;
187 <            }
174 >    /**
175 >     * Tests if this vetor is equal to other vector
176 >     * @return true if equal, otherwise return false
177 >     * @param v vector to be compared
178 >     */
179 >    inline bool operator ==(const Vector<Real, Dim>& v) {
180  
181 <            /**
182 <             * Tests if this vetor is not equal to other vector
183 <             * @return true if equal, otherwise return false
184 <             * @param v vector to be compared
185 <             */
186 <            inline bool operator !=(const Vector<Real, Dim>& v) {
187 <                return !(*this == v);
188 <            }
181 >      for (unsigned int i = 0; i < Dim; i ++) {
182 >        if (!equal(this->data_[i], v[i])) {
183 >          return false;
184 >        }
185 >      }
186 >                
187 >      return true;
188 >    }
189 >
190 >    /**
191 >     * Tests if this vetor is not equal to other vector
192 >     * @return true if equal, otherwise return false
193 >     * @param v vector to be compared
194 >     */
195 >    inline bool operator !=(const Vector<Real, Dim>& v) {
196 >      return !(*this == v);
197 >    }
198              
199 <            /** Negates the value of this vector in place. */          
200 <            inline void negate() {
201 <                for (unsigned int i = 0; i < Dim; i++)
202 <                    this->data_[i] = -this->data_[i];
203 <            }
199 >    /** Negates the value of this vector in place. */          
200 >    inline void negate() {
201 >      for (unsigned int i = 0; i < Dim; i++)
202 >        this->data_[i] = -this->data_[i];
203 >    }
204  
205 <            /**
206 <            * Sets the value of this vector to the negation of vector v1.
207 <            * @param v1 the source vector
208 <            */
209 <            inline void negate(const Vector<Real, Dim>& v1) {
210 <                for (unsigned int i = 0; i < Dim; i++)
211 <                    this->data_[i] = -v1.data_[i];
205 >    /**
206 >     * Sets the value of this vector to the negation of vector v1.
207 >     * @param v1 the source vector
208 >     */
209 >    inline void negate(const Vector<Real, Dim>& v1) {
210 >      for (unsigned int i = 0; i < Dim; i++)
211 >        this->data_[i] = -v1.data_[i];
212  
213 <            }
213 >    }
214              
215 <            /**
216 <            * Sets the value of this vector to the sum of itself and v1 (*this += v1).
217 <            * @param v1 the other vector
218 <            */
219 <            inline void add( const Vector<Real, Dim>& v1 ) {
220 <                for (unsigned int i = 0; i < Dim; i++)
221 <                    this->data_[i] += v1.data_[i];
222 <            }
215 >    /**
216 >     * Sets the value of this vector to the sum of itself and v1 (*this += v1).
217 >     * @param v1 the other vector
218 >     */
219 >    inline void add( const Vector<Real, Dim>& v1 ) {
220 >      for (unsigned int i = 0; i < Dim; i++)
221 >        this->data_[i] += v1.data_[i];
222 >    }
223  
224 <            /**
225 <            * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2).
226 <            * @param v1 the first vector
227 <            * @param v2 the second vector
228 <            */
229 <            inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
230 <                for (unsigned int i = 0; i < Dim; i++)
231 <                    this->data_[i] = v1.data_[i] + v2.data_[i];
232 <            }
224 >    /**
225 >     * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2).
226 >     * @param v1 the first vector
227 >     * @param v2 the second vector
228 >     */
229 >    inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
230 >      for (unsigned int i = 0; i < Dim; i++)
231 >        this->data_[i] = v1.data_[i] + v2.data_[i];
232 >    }
233  
234 <            /**
235 <            * Sets the value of this vector to the difference  of itself and v1 (*this -= v1).
236 <            * @param v1 the other vector
237 <            */
238 <            inline void sub( const Vector<Real, Dim>& v1 ) {
239 <                for (unsigned int i = 0; i < Dim; i++)
240 <                    this->data_[i] -= v1.data_[i];
241 <            }
234 >    /**
235 >     * Sets the value of this vector to the difference  of itself and v1 (*this -= v1).
236 >     * @param v1 the other vector
237 >     */
238 >    inline void sub( const Vector<Real, Dim>& v1 ) {
239 >      for (unsigned int i = 0; i < Dim; i++)
240 >        this->data_[i] -= v1.data_[i];
241 >    }
242  
243 <            /**
244 <            * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2).
245 <            * @param v1 the first vector
246 <            * @param v2 the second vector
247 <            */
248 <            inline void sub( const Vector<Real, Dim>& v1, const Vector  &v2 ){
249 <                for (unsigned int i = 0; i < Dim; i++)
250 <                    this->data_[i] = v1.data_[i] - v2.data_[i];
251 <            }
243 >    /**
244 >     * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2).
245 >     * @param v1 the first vector
246 >     * @param v2 the second vector
247 >     */
248 >    inline void sub( const Vector<Real, Dim>& v1, const Vector  &v2 ){
249 >      for (unsigned int i = 0; i < Dim; i++)
250 >        this->data_[i] = v1.data_[i] - v2.data_[i];
251 >    }
252  
253 <            /**
254 <            * Sets the value of this vector to the scalar multiplication of itself (*this *= s).
255 <            * @param s the scalar value
256 <            */
257 <            inline void mul( Real s ) {
258 <                for (unsigned int i = 0; i < Dim; i++)
259 <                   this->data_[i] *= s;
260 <            }
253 >    /**
254 >     * Sets the value of this vector to the scalar multiplication of itself (*this *= s).
255 >     * @param s the scalar value
256 >     */
257 >    inline void mul( Real s ) {
258 >      for (unsigned int i = 0; i < Dim; i++)
259 >        this->data_[i] *= s;
260 >    }
261  
262 <            /**
263 <            * Sets the value of this vector to the scalar multiplication of vector v1  
264 <            * (*this = s * v1).
265 <            * @param v1 the vector            
266 <            * @param s the scalar value
267 <            */
268 <            inline void mul( const Vector<Real, Dim>& v1, Real s) {
269 <                for (unsigned int i = 0; i < Dim; i++)
270 <                    this->data_[i] = s * v1.data_[i];
271 <            }
262 >    /**
263 >     * Sets the value of this vector to the scalar multiplication of vector v1  
264 >     * (*this = s * v1).
265 >     * @param v1 the vector            
266 >     * @param s the scalar value
267 >     */
268 >    inline void mul( const Vector<Real, Dim>& v1, Real s) {
269 >      for (unsigned int i = 0; i < Dim; i++)
270 >        this->data_[i] = s * v1.data_[i];
271 >    }
272  
273 <            /**
274 <            * Sets the value of this vector to the scalar division of itself  (*this /= s ).
275 <            * @param s the scalar value
276 <            */            
277 <            inline void div( Real s) {
278 <                for (unsigned int i = 0; i < Dim; i++)            
279 <                    this->data_[i] /= s;
280 <            }
273 >    /**
274 >     * Sets the elements of this vector to the multiplication of
275 >     * elements of two other vectors.  Not to be confused with scalar
276 >     * multiplication (mul) or dot products.
277 >     *
278 >     * (*this.data_[i] =  v1.data_[i] * v2.data_[i]).
279 >     * @param v1 the first vector            
280 >     * @param v2 the second vector
281 >     */
282 >    inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
283 >      for (unsigned int i = 0; i < Dim; i++)
284 >        this->data_[i] = v1.data_[i] * v2.data_[i];
285 >    }
286  
287 <            /**
288 <            * Sets the value of this vector to the scalar division of vector v1  (*this = v1 / s ).
289 <            * @param v1 the source vector
290 <            * @param s the scalar value
291 <            */                        
292 <            inline void div( const Vector<Real, Dim>& v1, Real s ) {
293 <                for (unsigned int i = 0; i < Dim; i++)
294 <                    this->data_[i] = v1.data_[i] / s;
289 <            }
287 >    /**
288 >     * Sets the value of this vector to the scalar division of itself  (*this /= s ).
289 >     * @param s the scalar value
290 >     */            
291 >    inline void div( Real s) {
292 >      for (unsigned int i = 0; i < Dim; i++)            
293 >        this->data_[i] /= s;
294 >    }
295  
296 <            /** @see #add */
297 <            inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) {
298 <                add(v1);
299 <                return *this;
300 <            }
296 >    /**
297 >     * Sets the value of this vector to the scalar division of vector v1  (*this = v1 / s ).
298 >     * @param v1 the source vector
299 >     * @param s the scalar value
300 >     */                        
301 >    inline void div( const Vector<Real, Dim>& v1, Real s ) {
302 >      for (unsigned int i = 0; i < Dim; i++)
303 >        this->data_[i] = v1.data_[i] / s;
304 >    }
305  
306 <            /** @see #sub */
307 <            inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) {
308 <                sub(v1);
309 <                return *this;
310 <            }
306 >    /**
307 >     * Sets the elements of this vector to the division of
308 >     * elements of two other vectors.  Not to be confused with scalar
309 >     * division (div)
310 >     *
311 >     * (*this.data_[i] =  v1.data_[i] / v2.data_[i]).
312 >     * @param v1 the first vector            
313 >     * @param v2 the second vector
314 >     */
315 >    inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
316 >      for (unsigned int i = 0; i < Dim; i++)
317 >        this->data_[i] = v1.data_[i] / v2.data_[i];
318 >    }
319  
303            /** @see #mul */
304            inline Vector<Real, Dim>& operator *=( Real s) {
305                mul(s);
306                return *this;
307            }
320  
321 <            /** @see #div */
322 <            inline Vector<Real, Dim>& operator /=( Real s ) {
323 <                div(s);
324 <                return *this;
325 <            }
321 >    /** @see #add */
322 >    inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) {
323 >      add(v1);
324 >      return *this;
325 >    }
326  
327 <            /**
328 <             * Returns the length of this vector.
329 <             * @return the length of this vector
330 <             */
331 <             inline Real length() {
320 <                return sqrt(lengthSquare());  
321 <            }
322 <            
323 <            /**
324 <             * Returns the squared length of this vector.
325 <             * @return the squared length of this vector
326 <             */
327 <             inline Real lengthSquare() {
328 <                return dot(*this, *this);
329 <            }
330 <            
331 <            /** Normalizes this vector in place */
332 <            inline void normalize() {
333 <                Real len;
327 >    /** @see #sub */
328 >    inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) {
329 >      sub(v1);
330 >      return *this;
331 >    }
332  
333 <                len = length();
334 <                
335 <                //if (len < oopse:epsilon)
336 <                //  throw();
339 <                
340 <                *this /= len;
341 <            }
342 <
343 <            /**
344 <             * Tests if this vector is normalized
345 <             * @return true if this vector is normalized, otherwise return false
346 <             */
347 <            inline bool isNormalized() {
348 <                return equal(lengthSquare(), 1.0);
349 <            }          
350 <            
351 <        protected:
352 <            Real data_[Dim];
353 <        
354 <    };
355 <
356 <    /** unary minus*/
357 <    template<typename Real, unsigned int Dim>    
358 <    inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){
359 <        Vector<Real, Dim> tmp(v1);
360 <        tmp.negate();
361 <        return tmp;
333 >    /** @see #mul */
334 >    inline Vector<Real, Dim>& operator *=( Real s) {
335 >      mul(s);
336 >      return *this;
337      }
338  
339 <    /**
340 <     * Return the sum of two vectors  (v1 - v2).
341 <     * @return the sum of two vectors
342 <     * @param v1 the first vector
368 <     * @param v2 the second vector
369 <     */  
370 <    template<typename Real, unsigned int Dim>    
371 <    inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
372 <        Vector<Real, Dim> result;
373 <        
374 <        result.add(v1, v2);
375 <        return result;        
339 >    /** @see #div */
340 >    inline Vector<Real, Dim>& operator /=( Real s ) {
341 >      div(s);
342 >      return *this;
343      }
344  
345      /**
346 <     * Return the difference of two vectors  (v1 - v2).
347 <     * @return the difference of two vectors
348 <     * @param v1 the first vector
349 <     * @param v2 the second vector
350 <     */  
351 <    template<typename Real, unsigned int Dim>    
352 <    Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
353 <        Vector<Real, Dim> result;
354 <        result.sub(v1, v2);
388 <        return result;        
346 >     * Returns the sum of all elements of this vector.
347 >     * @return the sum of all elements of this vector
348 >     */
349 >    inline Real sum() {
350 >      Real tmp;
351 >      tmp = 0;
352 >      for (unsigned int i = 0; i < Dim; i++)
353 >        tmp += this->data_[i];
354 >      return tmp;  
355      }
390    
391    /**
392     * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
393     * @return  the vaule of scalar multiplication of this vector
394     * @param v1 the source vector
395     * @param s the scalar value
396     */
397    template<typename Real, unsigned int Dim>                
398    Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) {      
399        Vector<Real, Dim> result;
400        result.mul(v1,s);
401        return result;          
402    }
403    
404    /**
405     * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
406     * @return  the vaule of scalar multiplication of this vector
407     * @param s the scalar value
408     * @param v1 the source vector
409     */  
410    template<typename Real, unsigned int Dim>
411    Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) {
412        Vector<Real, Dim> result;
413        result.mul(v1, s);
414        return result;          
415    }
356  
357      /**
358 <     * Returns the  value of division of a vector by a scalar.
359 <     * @return  the vaule of scalar division of this vector
420 <     * @param v1 the source vector
421 <     * @param s the scalar value
358 >     * Returns the product of all elements of this vector.
359 >     * @return the product of all elements of this vector
360       */
361 <    template<typename Real, unsigned int Dim>    
362 <    Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) {      
363 <        Vector<Real, Dim> result;
364 <        result.div( v1,s);
365 <        return result;          
361 >    inline Real componentProduct() {
362 >      Real tmp;
363 >      tmp = 1;
364 >      for (unsigned int i = 0; i < Dim; i++)
365 >        tmp *= this->data_[i];
366 >      return tmp;  
367      }
368 <    
368 >            
369      /**
370 <     * Returns the dot product of two Vectors
371 <     * @param v1 first vector
433 <     * @param v2 second vector
434 <     * @return the dot product of v1 and v2
370 >     * Returns the length of this vector.
371 >     * @return the length of this vector
372       */
373 <    template<typename Real, unsigned int Dim>    
374 <    inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
438 <        Real tmp;
439 <        tmp = 0;
440 <
441 <        for (unsigned int i = 0; i < Dim; i++)
442 <            tmp += v1[i] * v2[i];
443 <
444 <        return tmp;
373 >    inline Real length() {
374 >      return sqrt(lengthSquare());  
375      }
376 <
376 >            
377      /**
378 <     * Returns the distance between  two Vectors
379 <     * @param v1 first vector
380 <     * @param v2 second vector
381 <     * @return the distance between v1 and v2
382 <     */
453 <    template<typename Real, unsigned int Dim>    
454 <    inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
455 <        Vector<Real, Dim> tempVector = v1 - v2;
456 <        return tempVector.length();
378 >     * Returns the squared length of this vector.
379 >     * @return the squared length of this vector
380 >     */
381 >    inline Real lengthSquare() {
382 >      return dot(*this, *this);
383      }
384 +            
385 +    /** Normalizes this vector in place */
386 +    inline void normalize() {
387 +      Real len;
388  
389 <    /**
390 <     * Returns the squared distance between  two Vectors
391 <     * @param v1 first vector
392 <     * @param v2 second vector
393 <     * @return the squared distance between v1 and v2
394 <     */
465 <    template<typename Real, unsigned int Dim>
466 <    inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
467 <        Vector<Real, Dim> tempVector = v1 - v2;
468 <        return tempVector.lengthSquare();
389 >      len = length();
390 >                
391 >      //if (len < OpenMD::NumericConstant::epsilon)
392 >      //  throw();
393 >                
394 >      *this /= len;
395      }
396  
397      /**
398 <     * Write to an output stream
398 >     * Tests if this vector is normalized
399 >     * @return true if this vector is normalized, otherwise return false
400       */
401 <    template<typename Real, unsigned int Dim>
402 <    std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) {
401 >    inline bool isNormalized() {
402 >      return equal(lengthSquare(), (RealType)1);
403 >    }          
404  
405 <        o << "[ ";
405 >    unsigned int size() {return Dim;}
406 >  protected:
407 >    Real data_[Dim];
408          
409 <        for (unsigned int i = 0 ; i< Dim; i++) {
480 <            o << v[i];
409 >  };
410  
411 <            if (i  != Dim -1) {
412 <                o<< ", ";
413 <            }
414 <        }
411 >  /** unary minus*/
412 >  template<typename Real, unsigned int Dim>    
413 >  inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){
414 >    Vector<Real, Dim> tmp(v1);
415 >    tmp.negate();
416 >    return tmp;
417 >  }
418  
419 <        o << " ]";
420 <        return o;        
419 >  /**
420 >   * Return the sum of two vectors  (v1 - v2).
421 >   * @return the sum of two vectors
422 >   * @param v1 the first vector
423 >   * @param v2 the second vector
424 >   */  
425 >  template<typename Real, unsigned int Dim>    
426 >  inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
427 >    Vector<Real, Dim> result;
428 >        
429 >    result.add(v1, v2);
430 >    return result;        
431 >  }
432 >
433 >  /**
434 >   * Return the difference of two vectors  (v1 - v2).
435 >   * @return the difference of two vectors
436 >   * @param v1 the first vector
437 >   * @param v2 the second vector
438 >   */  
439 >  template<typename Real, unsigned int Dim>    
440 >  Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
441 >    Vector<Real, Dim> result;
442 >    result.sub(v1, v2);
443 >    return result;        
444 >  }
445 >    
446 >  /**
447 >   * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
448 >   * @return  the vaule of scalar multiplication of this vector
449 >   * @param v1 the source vector
450 >   * @param s the scalar value
451 >   */
452 >  template<typename Real, unsigned int Dim>                
453 >  Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) {      
454 >    Vector<Real, Dim> result;
455 >    result.mul(v1,s);
456 >    return result;          
457 >  }
458 >    
459 >  /**
460 >   * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
461 >   * @return  the vaule of scalar multiplication of this vector
462 >   * @param s the scalar value
463 >   * @param v1 the source vector
464 >   */  
465 >  template<typename Real, unsigned int Dim>
466 >  Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) {
467 >    Vector<Real, Dim> result;
468 >    result.mul(v1, s);
469 >    return result;          
470 >  }
471 >
472 >  /**
473 >   * Returns the  value of division of a vector by a scalar.
474 >   * @return  the vaule of scalar division of this vector
475 >   * @param v1 the source vector
476 >   * @param s the scalar value
477 >   */
478 >  template<typename Real, unsigned int Dim>    
479 >  Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) {      
480 >    Vector<Real, Dim> result;
481 >    result.div( v1,s);
482 >    return result;          
483 >  }
484 >    
485 >  /**
486 >   * Returns the dot product of two Vectors
487 >   * @param v1 first vector
488 >   * @param v2 second vector
489 >   * @return the dot product of v1 and v2
490 >   */
491 >  template<typename Real, unsigned int Dim>    
492 >  inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
493 >    Real tmp;
494 >    tmp = 0;
495 >
496 >    for (unsigned int i = 0; i < Dim; i++)
497 >      tmp += v1[i] * v2[i];
498 >
499 >    return tmp;
500 >  }
501 >
502 >
503 >  
504 >
505 >  /**
506 >   * Returns the wide dot product of three Vectors.  Compare with
507 >   * Rapaport's VWDot function.
508 >   *
509 >   * @param v1 first vector
510 >   * @param v2 second vector
511 >   * @param v3 third vector
512 >   * @return the wide dot product of v1, v2, and v3.
513 >   */
514 >  template<typename Real, unsigned int Dim>    
515 >  inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) {
516 >    Real tmp;
517 >    tmp = 0;
518 >
519 >    for (unsigned int i = 0; i < Dim; i++)
520 >      tmp += v1[i] * v2[i] * v3[i];
521 >
522 >    return tmp;
523 >  }
524 >
525 >
526 >  /**
527 >   * Returns the distance between  two Vectors
528 >   * @param v1 first vector
529 >   * @param v2 second vector
530 >   * @return the distance between v1 and v2
531 >   */  
532 >  template<typename Real, unsigned int Dim>    
533 >  inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
534 >    Vector<Real, Dim> tempVector = v1 - v2;
535 >    return tempVector.length();
536 >  }
537 >
538 >  /**
539 >   * Returns the squared distance between  two Vectors
540 >   * @param v1 first vector
541 >   * @param v2 second vector
542 >   * @return the squared distance between v1 and v2
543 >   */
544 >  template<typename Real, unsigned int Dim>
545 >  inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
546 >    Vector<Real, Dim> tempVector = v1 - v2;
547 >    return tempVector.lengthSquare();
548 >  }
549 >
550 >  /**
551 >   * Write to an output stream
552 >   */
553 >  template<typename Real, unsigned int Dim>
554 >  std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) {
555 >
556 >    o << "[ ";
557 >        
558 >    for (unsigned int i = 0 ; i< Dim; i++) {
559 >      o << v[i];
560 >
561 >      if (i  != Dim -1) {
562 >        o<< ", ";
563 >      }
564      }
565 +
566 +    o << " ]";
567 +    return o;        
568 +  }
569      
570   }
571   #endif

Comparing trunk/src/math/Vector.hpp (property svn:keywords):
Revision 385 by tim, Tue Mar 1 20:10:14 2005 UTC vs.
Revision 1615 by gezelter, Fri Aug 26 17:55:44 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines